In this talk at AI Frontiers Conference, Alex Smola gives a brief overview over the features used to scale deep learning using MXNet. It relies on a mix between declarative and imperative programming to achieve efficiency while also allowing for significant flexibility for the user. It relies on a distributed (key, value) store for synchronization between GPUs and between machines. It also relies on the separation between a highly efficient execution engine and language bindings to achieve a high degree of flexibility between different languages while offering a native feel in each of them. Alex also briefly discusses how Amazon AWS can help deploy deep learning models and outline steps on our future roadmap.