The magnitude of data being stored and processed in the Cloud is quickly increasing due to advancements in areas that rely on cloud computing, e.g. Big Data, Internet of Things and mobile code offloading. Concurrently, cloud services are getting more global and geographically distributed. To handle such changes in its usage scenario, the Cloud needs to transform into a completely decentralized, federated and ubiquitous environment similar to the historical transformation of the Internet. Indeed, research ideas for the transformation has already started to emerge including but not limited to Cloud Federations, Multi-Clouds, Fog Computing, Edge Computing, Cloudlets, Nano data centers, etc.
Standardization and resource management come up as the most significant issues for the realization of the distributed cloud paradigm. The focus in this thesis is the latter: efficient management of limited computing and network resources to adapt to the decentralization. Specifically, cloud services that consist of several virtual machines, dedicated network connections and databases are mapped to a multi-provider, geographically distributed and dynamic cloud infrastructure. The objective of the mapping is to improve quality of service in a cost-effective way. To that end; network latency and bandwidth as well as the cost of storage and computation are subjected to a multi-objective optimization.
The first phase of the resource mapping optimization is the topology mapping. In this phase, the virtual machines and network connections (i.e. the virtual cluster) of the cloud service are mapped to the physical cloud infrastructure. The hypothesis is that mapping the virtual cluster to a group of data centers with a similar topology would be the optimal solution.
Replication management is the second phase where the focus is on the data storage. Data objects that constitute the database are replicated and mapped to the storage as a service providers and end devices. The hypothesis for this phase is that an objective function adapted from the facility location problem optimizes the replica placement.
Detailed experiments under real-world as well as synthetic workloads prove that the hypotheses of the both phases are true.