SlideShare a Scribd company logo
AutoML - Automated Machine Learning
Quoc Le
@quocleix
Joint work with many colleagues in the Google Brain team
Current:
Solution =
ML Expertise + Data + Computation
Current:
Solution =
ML Expertise + Data + Computation
But can we turn this into:
Solution =
Data + 100X Computation
Data processing
Machine
Learning Model
Data
Data processing
Machine
Learning Model
Data
Importance of architectures for Vision
● Designing neural network architectures is hard
● Lots of human efforts go into tuning them
● Can we try and learn good architectures automatically?
Canziani et al, 2017
Convolutional Architectures
Krizhevsky et al, 2012
Neural Architecture Search
● We can specify the structure and connectivity of a neural network by a
configuration string
○ [“Filter Width: 5”, “Filter Height: 3”, “Num Filters: 24”]
● Use a RNN (“Controller”) to generate this string (the “Child Network”)
● Train the Child Network to see how well it performs on a validation set
● Use reinforcement learning to update the Controller based on the accuracy of
the Child Network
Controller: proposes Child Networks Train & evaluate Child Networks
20K
times
Iterate to
find the
most
accurate
Child
Network
Controller: proposes Child Networks Train & evaluate Child Networks
20K
times
Iterate to
find the
most
accurate
Child
Network
Reinforcement Learning
or Evolution Search
Neural Architecture Search for Convolutional Networks
Controller RNN
Softmax classifier
Embedding
Neural Architecture Search for CIFAR-10
Performance of cell on ImageNet
Platform aware Architecture Search
Platform aware Architecture Search
Controller: proposes Child Networks Train & evaluate Child Networks
20K
times
Iterate to
find the
most
accurate
Child
Network
Reinforcement Learning
or Evolution Search
Architecture / Optimization Algorithm /
Nonlinearity
Confidential + Proprietary
Confidential + Proprietary
Confidential + Proprietary
Strange hump
Basically
linear
Confidential + Proprietary
Mobile NASNet-A on ImageNet
Data processing
Machine
Learning Model
Data
Focus of machine
learning research
Data processing
Machine
Learning Model
Data
Focus of machine
learning research
Very important but
manually tuned
Data Augmentation
Controller: proposes Child Networks Train & evaluate Child Networks
20K
times
Iterate to
find the
most
accurate
Child
Network
Reinforcement Learning
or Evolution Search
Architecture / Optimization Algorithm /
Nonlinearity / Augmentation Strategy
AutoAugment: Example Policy
Probability of applying
Magnitude
CIFAR-10
State-of-art: 2.1% error
AutoAugment: 1.5% error
ImageNet
State-of-art: 3.9% error
AutoAugment: 3.5% error
Controller: proposes Child Networks Train & evaluate Child Networks
20K
times
Iterate to
find the
most
accurate
Child
Network
Reinforcement Learning
or Evolution Search
Architecture / Optimization Algorithm /
Nonlinearity / Augmentation Strategy
Summary of AutoML and its progress
CIFAR-10
AutoML
Accuracy
ML Experts
ImageNet
AutoML
Top-1Accuracy
ML Experts
References
● Neural Architecture Search with Reinforcement Learning. Barret Zoph and Quoc
V. Le. ICLR, 2017
● Learning Transferable Architectures for Large Scale Image Recognition. Barret
Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le. CVPR, 2018
● AutoAugment: Learning Augmentation Policies from Data. Ekin D. Cubuk, Barret
Zoph, Dandelion Mane, Vijay Vasudevan, Quoc V. Le. Arxiv, 2018
● Searching for Activation Functions. Prajit Ramachandran, Barret Zoph, Quoc Le.
ICLR Workshop, 2018
Ad

More Related Content

What's hot (20)

Love & Innovative technology presented by a technology pioneer and an AI expe...
Love & Innovative technology presented by a technology pioneer and an AI expe...Love & Innovative technology presented by a technology pioneer and an AI expe...
Love & Innovative technology presented by a technology pioneer and an AI expe...
Romeo Kienzler
 
IBM Middle East Data Science Connect 2016 - Doha, Qatar
IBM Middle East Data Science Connect 2016 - Doha, QatarIBM Middle East Data Science Connect 2016 - Doha, Qatar
IBM Middle East Data Science Connect 2016 - Doha, Qatar
Romeo Kienzler
 
Production ready big ml workflows from zero to hero daniel marcous @ waze
Production ready big ml workflows from zero to hero daniel marcous @ wazeProduction ready big ml workflows from zero to hero daniel marcous @ waze
Production ready big ml workflows from zero to hero daniel marcous @ waze
Ido Shilon
 
DeepLearning and Advanced Machine Learning on IoT
DeepLearning and Advanced Machine Learning on IoTDeepLearning and Advanced Machine Learning on IoT
DeepLearning and Advanced Machine Learning on IoT
Romeo Kienzler
 
Retrieving Visually-Similar Products for Shopping Recommendations using Spark...
Retrieving Visually-Similar Products for Shopping Recommendations using Spark...Retrieving Visually-Similar Products for Shopping Recommendations using Spark...
Retrieving Visually-Similar Products for Shopping Recommendations using Spark...
Databricks
 
Driverless AI - Arno Candel, H2O.ai
Driverless AI - Arno Candel, H2O.aiDriverless AI - Arno Candel, H2O.ai
Driverless AI - Arno Candel, H2O.ai
Sri Ambati
 
Video Analytics on Hadoop webinar victor fang-201309
Video Analytics on Hadoop webinar victor fang-201309Video Analytics on Hadoop webinar victor fang-201309
Video Analytics on Hadoop webinar victor fang-201309
DrVictorFang
 
Python for Data Science with Anaconda
Python for Data Science with AnacondaPython for Data Science with Anaconda
Python for Data Science with Anaconda
Travis Oliphant
 
Webinar - Analyzing Video
Webinar - Analyzing VideoWebinar - Analyzing Video
Webinar - Analyzing Video
Turi, Inc.
 
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
MLconf
 
Helping data scientists escape the seduction of the sandbox - Krish Swamy, We...
Helping data scientists escape the seduction of the sandbox - Krish Swamy, We...Helping data scientists escape the seduction of the sandbox - Krish Swamy, We...
Helping data scientists escape the seduction of the sandbox - Krish Swamy, We...
Sri Ambati
 
Image Classification Done Simply using Keras and TensorFlow
Image Classification Done Simply using Keras and TensorFlow Image Classification Done Simply using Keras and TensorFlow
Image Classification Done Simply using Keras and TensorFlow
Rajiv Shah
 
Predicting Medical Test Results using Driverless AI
Predicting Medical Test Results using Driverless AIPredicting Medical Test Results using Driverless AI
Predicting Medical Test Results using Driverless AI
Sri Ambati
 
SPARK USE CASE- Distributed Reinforcement Learning for Electricity Market Bi...
SPARK USE CASE-  Distributed Reinforcement Learning for Electricity Market Bi...SPARK USE CASE-  Distributed Reinforcement Learning for Electricity Market Bi...
SPARK USE CASE- Distributed Reinforcement Learning for Electricity Market Bi...
Impetus Technologies
 
"How Pirelli uses Domino and Plotly for Smart Manufacturing" by Alberto Arrig...
"How Pirelli uses Domino and Plotly for Smart Manufacturing" by Alberto Arrig..."How Pirelli uses Domino and Plotly for Smart Manufacturing" by Alberto Arrig...
"How Pirelli uses Domino and Plotly for Smart Manufacturing" by Alberto Arrig...
Data Science Milan
 
Nitin sharma - Deep Learning Applications to Online Payment Fraud Detection
Nitin sharma - Deep Learning Applications to Online Payment Fraud DetectionNitin sharma - Deep Learning Applications to Online Payment Fraud Detection
Nitin sharma - Deep Learning Applications to Online Payment Fraud Detection
MLconf
 
Highly-scalable Reinforcement Learning RLlib for Real-world Applications
Highly-scalable Reinforcement Learning RLlib for Real-world ApplicationsHighly-scalable Reinforcement Learning RLlib for Real-world Applications
Highly-scalable Reinforcement Learning RLlib for Real-world Applications
Bill Liu
 
Scaling AI in production using PyTorch
Scaling AI in production using PyTorchScaling AI in production using PyTorch
Scaling AI in production using PyTorch
geetachauhan
 
Deep learning for FinTech
Deep learning for FinTechDeep learning for FinTech
Deep learning for FinTech
geetachauhan
 
Ferruzza g automl deck
Ferruzza g   automl deckFerruzza g   automl deck
Ferruzza g automl deck
Eric Dill
 
Love & Innovative technology presented by a technology pioneer and an AI expe...
Love & Innovative technology presented by a technology pioneer and an AI expe...Love & Innovative technology presented by a technology pioneer and an AI expe...
Love & Innovative technology presented by a technology pioneer and an AI expe...
Romeo Kienzler
 
IBM Middle East Data Science Connect 2016 - Doha, Qatar
IBM Middle East Data Science Connect 2016 - Doha, QatarIBM Middle East Data Science Connect 2016 - Doha, Qatar
IBM Middle East Data Science Connect 2016 - Doha, Qatar
Romeo Kienzler
 
Production ready big ml workflows from zero to hero daniel marcous @ waze
Production ready big ml workflows from zero to hero daniel marcous @ wazeProduction ready big ml workflows from zero to hero daniel marcous @ waze
Production ready big ml workflows from zero to hero daniel marcous @ waze
Ido Shilon
 
DeepLearning and Advanced Machine Learning on IoT
DeepLearning and Advanced Machine Learning on IoTDeepLearning and Advanced Machine Learning on IoT
DeepLearning and Advanced Machine Learning on IoT
Romeo Kienzler
 
Retrieving Visually-Similar Products for Shopping Recommendations using Spark...
Retrieving Visually-Similar Products for Shopping Recommendations using Spark...Retrieving Visually-Similar Products for Shopping Recommendations using Spark...
Retrieving Visually-Similar Products for Shopping Recommendations using Spark...
Databricks
 
Driverless AI - Arno Candel, H2O.ai
Driverless AI - Arno Candel, H2O.aiDriverless AI - Arno Candel, H2O.ai
Driverless AI - Arno Candel, H2O.ai
Sri Ambati
 
Video Analytics on Hadoop webinar victor fang-201309
Video Analytics on Hadoop webinar victor fang-201309Video Analytics on Hadoop webinar victor fang-201309
Video Analytics on Hadoop webinar victor fang-201309
DrVictorFang
 
Python for Data Science with Anaconda
Python for Data Science with AnacondaPython for Data Science with Anaconda
Python for Data Science with Anaconda
Travis Oliphant
 
Webinar - Analyzing Video
Webinar - Analyzing VideoWebinar - Analyzing Video
Webinar - Analyzing Video
Turi, Inc.
 
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
Hussein Mehanna, Engineering Director, ML Core - Facebook at MLconf ATL 2016
MLconf
 
Helping data scientists escape the seduction of the sandbox - Krish Swamy, We...
Helping data scientists escape the seduction of the sandbox - Krish Swamy, We...Helping data scientists escape the seduction of the sandbox - Krish Swamy, We...
Helping data scientists escape the seduction of the sandbox - Krish Swamy, We...
Sri Ambati
 
Image Classification Done Simply using Keras and TensorFlow
Image Classification Done Simply using Keras and TensorFlow Image Classification Done Simply using Keras and TensorFlow
Image Classification Done Simply using Keras and TensorFlow
Rajiv Shah
 
Predicting Medical Test Results using Driverless AI
Predicting Medical Test Results using Driverless AIPredicting Medical Test Results using Driverless AI
Predicting Medical Test Results using Driverless AI
Sri Ambati
 
SPARK USE CASE- Distributed Reinforcement Learning for Electricity Market Bi...
SPARK USE CASE-  Distributed Reinforcement Learning for Electricity Market Bi...SPARK USE CASE-  Distributed Reinforcement Learning for Electricity Market Bi...
SPARK USE CASE- Distributed Reinforcement Learning for Electricity Market Bi...
Impetus Technologies
 
"How Pirelli uses Domino and Plotly for Smart Manufacturing" by Alberto Arrig...
"How Pirelli uses Domino and Plotly for Smart Manufacturing" by Alberto Arrig..."How Pirelli uses Domino and Plotly for Smart Manufacturing" by Alberto Arrig...
"How Pirelli uses Domino and Plotly for Smart Manufacturing" by Alberto Arrig...
Data Science Milan
 
Nitin sharma - Deep Learning Applications to Online Payment Fraud Detection
Nitin sharma - Deep Learning Applications to Online Payment Fraud DetectionNitin sharma - Deep Learning Applications to Online Payment Fraud Detection
Nitin sharma - Deep Learning Applications to Online Payment Fraud Detection
MLconf
 
Highly-scalable Reinforcement Learning RLlib for Real-world Applications
Highly-scalable Reinforcement Learning RLlib for Real-world ApplicationsHighly-scalable Reinforcement Learning RLlib for Real-world Applications
Highly-scalable Reinforcement Learning RLlib for Real-world Applications
Bill Liu
 
Scaling AI in production using PyTorch
Scaling AI in production using PyTorchScaling AI in production using PyTorch
Scaling AI in production using PyTorch
geetachauhan
 
Deep learning for FinTech
Deep learning for FinTechDeep learning for FinTech
Deep learning for FinTech
geetachauhan
 
Ferruzza g automl deck
Ferruzza g   automl deckFerruzza g   automl deck
Ferruzza g automl deck
Eric Dill
 

Similar to Quoc Le at AI Frontiers : Automated Machine Learning (20)

Autimatic Machine Learning and Artificial Intelligence
Autimatic Machine Learning and Artificial IntelligenceAutimatic Machine Learning and Artificial Intelligence
Autimatic Machine Learning and Artificial Intelligence
AyanDas644783
 
B4UConference_machine learning_deeplearning
B4UConference_machine learning_deeplearningB4UConference_machine learning_deeplearning
B4UConference_machine learning_deeplearning
Hoa Le
 
Certification Study Group - Professional ML Engineer Session 3 (Machine Learn...
Certification Study Group - Professional ML Engineer Session 3 (Machine Learn...Certification Study Group - Professional ML Engineer Session 3 (Machine Learn...
Certification Study Group - Professional ML Engineer Session 3 (Machine Learn...
gdgsurrey
 
Semi-Supervised Insight Generation from Petabyte Scale Text Data
Semi-Supervised Insight Generation from Petabyte Scale Text DataSemi-Supervised Insight Generation from Petabyte Scale Text Data
Semi-Supervised Insight Generation from Petabyte Scale Text Data
Tech Triveni
 
Machine Learning Algorithms
Machine Learning AlgorithmsMachine Learning Algorithms
Machine Learning Algorithms
DezyreAcademy
 
Machine Learning 2 deep Learning: An Intro
Machine Learning 2 deep Learning: An IntroMachine Learning 2 deep Learning: An Intro
Machine Learning 2 deep Learning: An Intro
Si Krishan
 
Computer Vision for Beginners
Computer Vision for BeginnersComputer Vision for Beginners
Computer Vision for Beginners
Sanghamitra Deb
 
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMakerMLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
Provectus
 
Performance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use casePerformance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use case
inovex GmbH
 
Performance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use casePerformance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use case
Florian Wilhelm
 
K anonymity for crowdsourcing database
K anonymity for crowdsourcing databaseK anonymity for crowdsourcing database
K anonymity for crowdsourcing database
LeMeniz Infotech
 
Task Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive LearningTask Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive Learning
MLAI2
 
[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이...
[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이...[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이...
[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이...
Amazon Web Services Korea
 
AI @ Microsoft, How we do it and how you can too!
AI @ Microsoft, How we do it and how you can too!AI @ Microsoft, How we do it and how you can too!
AI @ Microsoft, How we do it and how you can too!
Microsoft Tech Community
 
The importance of model fairness and interpretability in AI systems
The importance of model fairness and interpretability in AI systemsThe importance of model fairness and interpretability in AI systems
The importance of model fairness and interpretability in AI systems
Francesca Lazzeri, PhD
 
深度學習在AOI的應用
深度學習在AOI的應用深度學習在AOI的應用
深度學習在AOI的應用
CHENHuiMei
 
Making Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms ReliableMaking Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms Reliable
Justin Basilico
 
C19013010 the tutorial to build shared ai services session 1
C19013010  the tutorial to build shared ai services session 1C19013010  the tutorial to build shared ai services session 1
C19013010 the tutorial to build shared ai services session 1
Bill Liu
 
H2O World - Machine Learning at Comcast - Andrew Leamon & Chushi Ren
H2O World - Machine Learning at Comcast - Andrew Leamon & Chushi RenH2O World - Machine Learning at Comcast - Andrew Leamon & Chushi Ren
H2O World - Machine Learning at Comcast - Andrew Leamon & Chushi Ren
Sri Ambati
 
Azure Machine Learning Challenge_Speakers Presentation.pptx
Azure Machine Learning Challenge_Speakers Presentation.pptxAzure Machine Learning Challenge_Speakers Presentation.pptx
Azure Machine Learning Challenge_Speakers Presentation.pptx
DrSatwinderSingh3
 
Autimatic Machine Learning and Artificial Intelligence
Autimatic Machine Learning and Artificial IntelligenceAutimatic Machine Learning and Artificial Intelligence
Autimatic Machine Learning and Artificial Intelligence
AyanDas644783
 
B4UConference_machine learning_deeplearning
B4UConference_machine learning_deeplearningB4UConference_machine learning_deeplearning
B4UConference_machine learning_deeplearning
Hoa Le
 
Certification Study Group - Professional ML Engineer Session 3 (Machine Learn...
Certification Study Group - Professional ML Engineer Session 3 (Machine Learn...Certification Study Group - Professional ML Engineer Session 3 (Machine Learn...
Certification Study Group - Professional ML Engineer Session 3 (Machine Learn...
gdgsurrey
 
Semi-Supervised Insight Generation from Petabyte Scale Text Data
Semi-Supervised Insight Generation from Petabyte Scale Text DataSemi-Supervised Insight Generation from Petabyte Scale Text Data
Semi-Supervised Insight Generation from Petabyte Scale Text Data
Tech Triveni
 
Machine Learning Algorithms
Machine Learning AlgorithmsMachine Learning Algorithms
Machine Learning Algorithms
DezyreAcademy
 
Machine Learning 2 deep Learning: An Intro
Machine Learning 2 deep Learning: An IntroMachine Learning 2 deep Learning: An Intro
Machine Learning 2 deep Learning: An Intro
Si Krishan
 
Computer Vision for Beginners
Computer Vision for BeginnersComputer Vision for Beginners
Computer Vision for Beginners
Sanghamitra Deb
 
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMakerMLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
Provectus
 
Performance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use casePerformance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use case
inovex GmbH
 
Performance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use casePerformance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use case
Florian Wilhelm
 
K anonymity for crowdsourcing database
K anonymity for crowdsourcing databaseK anonymity for crowdsourcing database
K anonymity for crowdsourcing database
LeMeniz Infotech
 
Task Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive LearningTask Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive Learning
MLAI2
 
[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이...
[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이...[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이...
[AWS Innovate 온라인 컨퍼런스] 간단한 Python 코드만으로 높은 성능의 기계 학습 모델 만들기 - 김무현, AWS Sr.데이...
Amazon Web Services Korea
 
AI @ Microsoft, How we do it and how you can too!
AI @ Microsoft, How we do it and how you can too!AI @ Microsoft, How we do it and how you can too!
AI @ Microsoft, How we do it and how you can too!
Microsoft Tech Community
 
The importance of model fairness and interpretability in AI systems
The importance of model fairness and interpretability in AI systemsThe importance of model fairness and interpretability in AI systems
The importance of model fairness and interpretability in AI systems
Francesca Lazzeri, PhD
 
深度學習在AOI的應用
深度學習在AOI的應用深度學習在AOI的應用
深度學習在AOI的應用
CHENHuiMei
 
Making Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms ReliableMaking Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms Reliable
Justin Basilico
 
C19013010 the tutorial to build shared ai services session 1
C19013010  the tutorial to build shared ai services session 1C19013010  the tutorial to build shared ai services session 1
C19013010 the tutorial to build shared ai services session 1
Bill Liu
 
H2O World - Machine Learning at Comcast - Andrew Leamon & Chushi Ren
H2O World - Machine Learning at Comcast - Andrew Leamon & Chushi RenH2O World - Machine Learning at Comcast - Andrew Leamon & Chushi Ren
H2O World - Machine Learning at Comcast - Andrew Leamon & Chushi Ren
Sri Ambati
 
Azure Machine Learning Challenge_Speakers Presentation.pptx
Azure Machine Learning Challenge_Speakers Presentation.pptxAzure Machine Learning Challenge_Speakers Presentation.pptx
Azure Machine Learning Challenge_Speakers Presentation.pptx
DrSatwinderSingh3
 
Ad

More from AI Frontiers (20)

Divya Jain at AI Frontiers : Video Summarization
Divya Jain at AI Frontiers : Video SummarizationDivya Jain at AI Frontiers : Video Summarization
Divya Jain at AI Frontiers : Video Summarization
AI Frontiers
 
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 1: Heuristi...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 1: Heuristi...Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 1: Heuristi...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 1: Heuristi...
AI Frontiers
 
Training at AI Frontiers 2018 - Ni Lao: Weakly Supervised Natural Language Un...
Training at AI Frontiers 2018 - Ni Lao: Weakly Supervised Natural Language Un...Training at AI Frontiers 2018 - Ni Lao: Weakly Supervised Natural Language Un...
Training at AI Frontiers 2018 - Ni Lao: Weakly Supervised Natural Language Un...
AI Frontiers
 
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-lecture 2: Incremen...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-lecture 2: Incremen...Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-lecture 2: Incremen...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-lecture 2: Incremen...
AI Frontiers
 
Training at AI Frontiers 2018 - Udacity: Enhancing NLP with Deep Neural Networks
Training at AI Frontiers 2018 - Udacity: Enhancing NLP with Deep Neural NetworksTraining at AI Frontiers 2018 - Udacity: Enhancing NLP with Deep Neural Networks
Training at AI Frontiers 2018 - Udacity: Enhancing NLP with Deep Neural Networks
AI Frontiers
 
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 3: Any-Angl...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 3: Any-Angl...Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 3: Any-Angl...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 3: Any-Angl...
AI Frontiers
 
Training at AI Frontiers 2018 - Lukasz Kaiser: Sequence to Sequence Learning ...
Training at AI Frontiers 2018 - Lukasz Kaiser: Sequence to Sequence Learning ...Training at AI Frontiers 2018 - Lukasz Kaiser: Sequence to Sequence Learning ...
Training at AI Frontiers 2018 - Lukasz Kaiser: Sequence to Sequence Learning ...
AI Frontiers
 
Percy Liang at AI Frontiers : Pushing the Limits of Machine Learning
Percy Liang at AI Frontiers : Pushing the Limits of Machine LearningPercy Liang at AI Frontiers : Pushing the Limits of Machine Learning
Percy Liang at AI Frontiers : Pushing the Limits of Machine Learning
AI Frontiers
 
Ilya Sutskever at AI Frontiers : Progress towards the OpenAI mission
Ilya Sutskever at AI Frontiers : Progress towards the OpenAI missionIlya Sutskever at AI Frontiers : Progress towards the OpenAI mission
Ilya Sutskever at AI Frontiers : Progress towards the OpenAI mission
AI Frontiers
 
Mark Moore at AI Frontiers : Uber Elevate
Mark Moore at AI Frontiers : Uber ElevateMark Moore at AI Frontiers : Uber Elevate
Mark Moore at AI Frontiers : Uber Elevate
AI Frontiers
 
Mario Munich at AI Frontiers : Consumer robotics: embedding affordable AI in ...
Mario Munich at AI Frontiers : Consumer robotics: embedding affordable AI in ...Mario Munich at AI Frontiers : Consumer robotics: embedding affordable AI in ...
Mario Munich at AI Frontiers : Consumer robotics: embedding affordable AI in ...
AI Frontiers
 
Arnaud Thiercelin at AI Frontiers : AI in the Sky
Arnaud Thiercelin at AI Frontiers : AI in the SkyArnaud Thiercelin at AI Frontiers : AI in the Sky
Arnaud Thiercelin at AI Frontiers : AI in the Sky
AI Frontiers
 
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
AI Frontiers
 
Wei Xu at AI Frontiers : Language Learning in an Interactive and Embodied Set...
Wei Xu at AI Frontiers : Language Learning in an Interactive and Embodied Set...Wei Xu at AI Frontiers : Language Learning in an Interactive and Embodied Set...
Wei Xu at AI Frontiers : Language Learning in an Interactive and Embodied Set...
AI Frontiers
 
Sumit Gupta at AI Frontiers : AI for Enterprise
Sumit Gupta at AI Frontiers : AI for EnterpriseSumit Gupta at AI Frontiers : AI for Enterprise
Sumit Gupta at AI Frontiers : AI for Enterprise
AI Frontiers
 
Yuandong Tian at AI Frontiers : Planning in Reinforcement Learning
Yuandong Tian at AI Frontiers : Planning in Reinforcement LearningYuandong Tian at AI Frontiers : Planning in Reinforcement Learning
Yuandong Tian at AI Frontiers : Planning in Reinforcement Learning
AI Frontiers
 
Alex Ermolaev at AI Frontiers : Major Applications of AI in Healthcare
Alex Ermolaev at AI Frontiers : Major Applications of AI in HealthcareAlex Ermolaev at AI Frontiers : Major Applications of AI in Healthcare
Alex Ermolaev at AI Frontiers : Major Applications of AI in Healthcare
AI Frontiers
 
Long Lin at AI Frontiers : AI in Gaming
Long Lin at AI Frontiers : AI in GamingLong Lin at AI Frontiers : AI in Gaming
Long Lin at AI Frontiers : AI in Gaming
AI Frontiers
 
Melissa Goldman at AI Frontiers : AI & Finance
Melissa Goldman at AI Frontiers : AI & FinanceMelissa Goldman at AI Frontiers : AI & Finance
Melissa Goldman at AI Frontiers : AI & Finance
AI Frontiers
 
Li Deng at AI Frontiers : From Modeling Speech/Language to Modeling Financial...
Li Deng at AI Frontiers : From Modeling Speech/Language to Modeling Financial...Li Deng at AI Frontiers : From Modeling Speech/Language to Modeling Financial...
Li Deng at AI Frontiers : From Modeling Speech/Language to Modeling Financial...
AI Frontiers
 
Divya Jain at AI Frontiers : Video Summarization
Divya Jain at AI Frontiers : Video SummarizationDivya Jain at AI Frontiers : Video Summarization
Divya Jain at AI Frontiers : Video Summarization
AI Frontiers
 
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 1: Heuristi...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 1: Heuristi...Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 1: Heuristi...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 1: Heuristi...
AI Frontiers
 
Training at AI Frontiers 2018 - Ni Lao: Weakly Supervised Natural Language Un...
Training at AI Frontiers 2018 - Ni Lao: Weakly Supervised Natural Language Un...Training at AI Frontiers 2018 - Ni Lao: Weakly Supervised Natural Language Un...
Training at AI Frontiers 2018 - Ni Lao: Weakly Supervised Natural Language Un...
AI Frontiers
 
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-lecture 2: Incremen...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-lecture 2: Incremen...Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-lecture 2: Incremen...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-lecture 2: Incremen...
AI Frontiers
 
Training at AI Frontiers 2018 - Udacity: Enhancing NLP with Deep Neural Networks
Training at AI Frontiers 2018 - Udacity: Enhancing NLP with Deep Neural NetworksTraining at AI Frontiers 2018 - Udacity: Enhancing NLP with Deep Neural Networks
Training at AI Frontiers 2018 - Udacity: Enhancing NLP with Deep Neural Networks
AI Frontiers
 
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 3: Any-Angl...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 3: Any-Angl...Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 3: Any-Angl...
Training at AI Frontiers 2018 - LaiOffer Self-Driving-Car-Lecture 3: Any-Angl...
AI Frontiers
 
Training at AI Frontiers 2018 - Lukasz Kaiser: Sequence to Sequence Learning ...
Training at AI Frontiers 2018 - Lukasz Kaiser: Sequence to Sequence Learning ...Training at AI Frontiers 2018 - Lukasz Kaiser: Sequence to Sequence Learning ...
Training at AI Frontiers 2018 - Lukasz Kaiser: Sequence to Sequence Learning ...
AI Frontiers
 
Percy Liang at AI Frontiers : Pushing the Limits of Machine Learning
Percy Liang at AI Frontiers : Pushing the Limits of Machine LearningPercy Liang at AI Frontiers : Pushing the Limits of Machine Learning
Percy Liang at AI Frontiers : Pushing the Limits of Machine Learning
AI Frontiers
 
Ilya Sutskever at AI Frontiers : Progress towards the OpenAI mission
Ilya Sutskever at AI Frontiers : Progress towards the OpenAI missionIlya Sutskever at AI Frontiers : Progress towards the OpenAI mission
Ilya Sutskever at AI Frontiers : Progress towards the OpenAI mission
AI Frontiers
 
Mark Moore at AI Frontiers : Uber Elevate
Mark Moore at AI Frontiers : Uber ElevateMark Moore at AI Frontiers : Uber Elevate
Mark Moore at AI Frontiers : Uber Elevate
AI Frontiers
 
Mario Munich at AI Frontiers : Consumer robotics: embedding affordable AI in ...
Mario Munich at AI Frontiers : Consumer robotics: embedding affordable AI in ...Mario Munich at AI Frontiers : Consumer robotics: embedding affordable AI in ...
Mario Munich at AI Frontiers : Consumer robotics: embedding affordable AI in ...
AI Frontiers
 
Arnaud Thiercelin at AI Frontiers : AI in the Sky
Arnaud Thiercelin at AI Frontiers : AI in the SkyArnaud Thiercelin at AI Frontiers : AI in the Sky
Arnaud Thiercelin at AI Frontiers : AI in the Sky
AI Frontiers
 
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
Anima Anandkumar at AI Frontiers : Modern ML : Deep, distributed, Multi-dimen...
AI Frontiers
 
Wei Xu at AI Frontiers : Language Learning in an Interactive and Embodied Set...
Wei Xu at AI Frontiers : Language Learning in an Interactive and Embodied Set...Wei Xu at AI Frontiers : Language Learning in an Interactive and Embodied Set...
Wei Xu at AI Frontiers : Language Learning in an Interactive and Embodied Set...
AI Frontiers
 
Sumit Gupta at AI Frontiers : AI for Enterprise
Sumit Gupta at AI Frontiers : AI for EnterpriseSumit Gupta at AI Frontiers : AI for Enterprise
Sumit Gupta at AI Frontiers : AI for Enterprise
AI Frontiers
 
Yuandong Tian at AI Frontiers : Planning in Reinforcement Learning
Yuandong Tian at AI Frontiers : Planning in Reinforcement LearningYuandong Tian at AI Frontiers : Planning in Reinforcement Learning
Yuandong Tian at AI Frontiers : Planning in Reinforcement Learning
AI Frontiers
 
Alex Ermolaev at AI Frontiers : Major Applications of AI in Healthcare
Alex Ermolaev at AI Frontiers : Major Applications of AI in HealthcareAlex Ermolaev at AI Frontiers : Major Applications of AI in Healthcare
Alex Ermolaev at AI Frontiers : Major Applications of AI in Healthcare
AI Frontiers
 
Long Lin at AI Frontiers : AI in Gaming
Long Lin at AI Frontiers : AI in GamingLong Lin at AI Frontiers : AI in Gaming
Long Lin at AI Frontiers : AI in Gaming
AI Frontiers
 
Melissa Goldman at AI Frontiers : AI & Finance
Melissa Goldman at AI Frontiers : AI & FinanceMelissa Goldman at AI Frontiers : AI & Finance
Melissa Goldman at AI Frontiers : AI & Finance
AI Frontiers
 
Li Deng at AI Frontiers : From Modeling Speech/Language to Modeling Financial...
Li Deng at AI Frontiers : From Modeling Speech/Language to Modeling Financial...Li Deng at AI Frontiers : From Modeling Speech/Language to Modeling Financial...
Li Deng at AI Frontiers : From Modeling Speech/Language to Modeling Financial...
AI Frontiers
 
Ad

Recently uploaded (20)

Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
Toru Tamaki
 
Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025
Damco Salesforce Services
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
MEMS IC Substrate Technologies Guide 2025.pptx
MEMS IC Substrate Technologies Guide 2025.pptxMEMS IC Substrate Technologies Guide 2025.pptx
MEMS IC Substrate Technologies Guide 2025.pptx
IC substrate Shawn Wang
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
How to Build an AI-Powered App: Tools, Techniques, and Trends
How to Build an AI-Powered App: Tools, Techniques, and TrendsHow to Build an AI-Powered App: Tools, Techniques, and Trends
How to Build an AI-Powered App: Tools, Techniques, and Trends
Nascenture
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
DNF 2.0 Implementations Challenges in Nepal
DNF 2.0 Implementations Challenges in NepalDNF 2.0 Implementations Challenges in Nepal
DNF 2.0 Implementations Challenges in Nepal
ICT Frame Magazine Pvt. Ltd.
 
Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
Build With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdfBuild With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdf
Google Developer Group - Harare
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Dark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanizationDark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanization
Jakub Šimek
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
Toru Tamaki
 
Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025
Damco Salesforce Services
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
MEMS IC Substrate Technologies Guide 2025.pptx
MEMS IC Substrate Technologies Guide 2025.pptxMEMS IC Substrate Technologies Guide 2025.pptx
MEMS IC Substrate Technologies Guide 2025.pptx
IC substrate Shawn Wang
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
How to Build an AI-Powered App: Tools, Techniques, and Trends
How to Build an AI-Powered App: Tools, Techniques, and TrendsHow to Build an AI-Powered App: Tools, Techniques, and Trends
How to Build an AI-Powered App: Tools, Techniques, and Trends
Nascenture
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Dark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanizationDark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanization
Jakub Šimek
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 

Quoc Le at AI Frontiers : Automated Machine Learning

Editor's Notes

  • #3: Many different algorithms could be used, in this we used the basic REINFORCE Goal is to make the Controller sampler better and better architectures over time
  • #4: Many different algorithms could be used, in this we used the basic REINFORCE Goal is to make the Controller sampler better and better architectures over time
  • #7: Bayesian optimization scales cubically, and can only work over fixed length spaces Evolutionary algorithms
  • #8: Bayesian optimization scales cubically, and can only work over fixed length spaces Evolutionary algorithms
  • #10: Many different algorithms could be used, in this we used the basic REINFORCE Goal is to make the Controller sampler better and better architectures over time
  • #11: Many different algorithms could be used, in this we used the basic REINFORCE Goal is to make the Controller sampler better and better architectures over time
  • #12: Each prediction is carried out by a softmax classifier Example of a convolutional network
  • #13: Mention the networks are much smaller than any of the other networks on the list
  • #17: Many different algorithms could be used, in this we used the basic REINFORCE Goal is to make the Controller sampler better and better architectures over time
  • #25: Many different algorithms could be used, in this we used the basic REINFORCE Goal is to make the Controller sampler better and better architectures over time
  • #28: Many different algorithms could be used, in this we used the basic REINFORCE Goal is to make the Controller sampler better and better architectures over time
  翻译: