This document proposes using a convolutional neural network (CNN) model to predict cognitive impairment based on MRI data. It describes collecting MRI reports from various sources to create training and test datasets divided into categories for Alzheimer's dementia, healthy controls, and mild cognitive impairment. The CNN model is trained on this data to differentiate between stages of illness. Results showed the CNN approach achieved accuracy of 81.96% for sensitivity, 71.35% for specificity, and 89.72% for precision, outperforming other state-of-the-art methods by around 5%. The proposed system uses CNN to automatically learn features from raw MRI images without need for manual feature extraction, allowing for a more objective and less biased prediction of cognitive impairment.