SlideShare a Scribd company logo
Practical and Worst-Case Efficient Apportionment
Raphael Reitzig @ Theorietage 2015
worked with Sebastian Wild
FACHBEREICH
INFORMATIK
FACHBEREICH
INFORMATIK
&Algorithmen
Komplexität
Apportionment
Votes
19777721
12843458
3585178
3180299 →
?
311
193
63
64
Seats
Apportionment
Wishes:
Pairwise Vote
Monotonicity
House
Monotonicity
Quota
Rule
Apportionment
Wishful thinking:
Pairwise Vote
Monotonicity
House
Monotonicity
Quota
Rule
Apportionment
Wishful thinking:
Pairwise Vote
Monotonicity
House
Monotonicity
Quota
Rule
⇐=
Apportionment
Wishful thinking:
Pairwise Vote
Monotonicity
House
Monotonicity
Quota
Rule
⇐=
Divisor Methods
⇐⇒
Divisor Methods
Input
Votes v of n parties for k seats, k n.
Divisor Methods
Input
Votes v of n parties for k seats, k n.
Method
DivisorMethod(v, k) :
1. s ← 0n.
2. For k, . . . , 1:
2.1 I ← arg maxn
i=1 vi /(si + 1).
2.2 sI ← sI + 1.
3. Return s.
Divisor Methods
Input
Votes v of n parties for k seats, k n.
Increasing divisor sequence d = (dj )j∈N0 .
Method
DivisorMethodd (v, k) :
1. s ← 0n.
2. For k, . . . , 1:
2.1 I ← arg maxn
i=1 vi /dsi
.
2.2 sI ← sI + 1.
3. Return s.
Divisor Methods
Input
Votes v of n parties for k seats, k n.
Increasing divisor sequence d = (dj )j∈N0 .
Method
DivisorMethodd (v, k) :
1. s ← 0n.
2. For k, . . . , 1:
2.1 I ← arg maxn
i=1 vi /dsi
.
2.2 sI ← sI + 1.
3. Return s. Θ
(k
logn)
using
priority
queues
Divisor Methods
dj = j + 1, k = 7
j A B C D
0 58 132 40 72
Divisor Methods
dj = j + 1, k = 7
j A B C D
0 58 132 40 72
1 66
Divisor Methods
dj = j + 1, k = 7
j A B C D
0 58 132 40 72
1 66 36
Divisor Methods
dj = j + 1, k = 7
j A B C D
0 58 132 40 72
1 66 36
2 44
Divisor Methods
dj = j + 1, k = 7
j A B C D
0 58 132 40 72
1 66 36
2 44
29
Divisor Methods
dj = j + 1, k = 7
j A B C D
0 58 132 40 72
1 66 36
2 44
29
3 33
Divisor Methods
dj = j + 1, k = 7
j A B C D
0 58 132 40 72
1 66 36
2 44
29
3 33
20
Divisor Methods
dj = j + 1, k = 7
j A B C D
0 58 132 40 72
1 66 36
2 44
29
3 33
20
24
=: a
Divisor Methods
dj = j + 1, k = 7
j A B C D
0 58 132 40 72
1 66 36
2 44
29
3 33
20
24
=: a
A := {132, 72, 66, 58, 44, 40, 36, 33, . . . }
≤ a > a
Reduction to Rank Selection
Observations
Knowing the value a selected last is sufficient.
We select the kth largest value last.
Reduction to Rank Selection
Observations
Knowing the value a selected last is sufficient.
We select the kth smallest value last.
Idea
Use a selection algorithm on multiset
A = ai,j =
dj
vi
i ∈ [1..n], j ∈ N0
and obtain a = A(k) “directly”.
Reduction to Rank Selection
Observations
Knowing the value a selected last is sufficient.
We select the kth smallest value last.
Idea
Use a selection algorithm on a finite subset of multiset
A = ai,j =
dj
vi
i ∈ [1..n], j ∈ N0
and obtain a = A(k) “directly”.
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
A :
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
A :
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
k
A :
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
k
A :
Θ(kn) algorithm.
Finding Good Cutoffs
Given (dj )j≥−1 with [technical details], we assume δ : R≥0 → R≥d0
with [technical details] so that
ai,j =
δ(j)
vi
and
δ−1
(y) = max{j ∈ Z≥−1 | dj ≤ y}
is the (zero-based) rank function of d.
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
A :
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
A :
δ−1(vi a ) = si − 1
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
[
[
[
[
[
]
]
]
]
]
]
]
]
A :
δ−1(vi a ) = si − 1
δ−1(vi a)
δ−1(vi a)
a ≤ a ≤ a
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
ˆA :
δ−1(vi a ) = si − 1
δ−1(vi a)
δ−1(vi a)
a ≤ a ≤ a
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
ˆA :
δ−1(vi a ) = si − 1
δ−1(vi a) =: ji
δ−1(vi a) =: ji
a ≤ a ≤ a
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
ˆA :
δ−1(vi a ) = si − 1
δ−1(vi a) =: ji
δ−1(vi a) =: ji
a = A(k) = ˆA(ˆk) with ˆk = k − i ji
.
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
ˆA :
δ−1(vi a ) = si − 1
δ−1(vi a) =: ji
δ−1(vi a) =: ji
i ji
< k ≤ i ji
Finding Good Cutoffs
i
j
1 2 3 4 5 6 7 8
0
1
2
3
4
5
...
...
...
...
...
...
...
...
...
ˆA :
δ−1(vi a ) = si − 1
δ−1(vi a) =: ji
δ−1(vi a) =: ji
i ji
< k ≤ i ji
Make tight!
Finding Good Cutoffs
In the Article
Observation:
k ≤ rank(a , A) ≤ k + n.
Ansatz:
rank(a, A) < k and k + n ≤ rank(a, A).
Express rank in terms of bounds on δ−1.
Make tight!
Good Bounds On a
If
αx + β ≤ δ(x) ≤ αx + β
with β ≤ α and [technical details], then
a := max 0,
αk − (α − β) · n)
n
i=1 vi
and
a :=
αk + βn
n
i=1 vi
work.
Good Bounds On a
If
αx + β ≤ δ(x) ≤ αx + β
with β ≤ α and [technical details], then
a := max 0,
αk − (α − β) · n)
n
i=1 vi
and
a :=
αk + βn
n
i=1 vi
work.
Furthermore,
| ˆA| ≤ 2(1 + (β − β)/α) · n ∈ Θ(n) .
An Aside: Applicability
Does anybody use d with suitable δ?
An Aside: Applicability
Does anybody use d with suitable δ?
Method Divisor Sequence δ(x) Sandwich
Smallest divisors 0, 1, 2, 3, . . . x —
Greatest divisors 1, 2, 3, 4, . . . x + 1 —
Sainte-Lagu¨e 1, 3, 5, 7, . . . 2x + 1 —
Modified S-L 1.4, 3, 5, 7, . . . 2x+1
1.6x+1.4
x≥1
x<1 2x + 6
5 ± 1
5
Equal Proportions 0,
√
2,
√
6,
√
12, . . . x(x + 1) x + 1
4 ± 1
4
Harmonic Mean 0, 4
3, 12
5 , 24
7 , . . . 2x(x+1)
2x+1 x + 1
4 ± 1
4
Imperiali 2, 3, 4, 5, . . . x + 2 —
Danish 1, 4, 7, 10, . . . 3x + 1 —
Yes, they all do.
The Algorithm
RW15d (v, k) :
1. Compute a and a.
2. Initialize ˆA := ∅ and ˆk := k.
3. For each i ∈ [1..n] do:
3.1 Compute ji
and ji .
3.2 Add all dj/vi to ˆA for which ji
≤ j ≤ ji .
3.3 Update ˆk ← ˆk − ji
.
4. Select and return ˆA(ˆk).
The Algorithm
RW15d (v, k) :
1. Compute a and a.
2. Initialize ˆA := ∅ and ˆk := k.
3. For each i ∈ [1..n] do:
3.1 Compute ji
and ji .
3.2 Add all dj/vi to ˆA for which ji
≤ j ≤ ji .
3.3 Update ˆk ← ˆk − ji
.
4. Select and return ˆA(ˆk).
Θ
(n)
runtim
e!
In Context
Puk CE14 RW15
WC O(n)
In Context
Puk CE14 RW15
WC O(n)   
Implementable
Advantage: Code Complexity
CE14: ≈ 250 loc PukPQ: ≈ 80 loc RW15: ≈ 50 loc DMPQ: ≈ 25 loc
plus library and shared code
In Context
Puk CE14 RW15
WC O(n)   
Implementable   
Simple
Advantage: Runtime Cost
2 4 6 8 10
0
1
2
3
4
n
Averagerunningtimeinµs/n
(α, β) = (2, 1) and k = 100n
0 50 100 150 200
0
0.2
0.4
0.6
n
(α, β) = (1, 3/4) and k = 10n
PukPQ CE14 RW15 DMPQ
In Context
Puk CE14 RW15
WC O(n)   
Implementable   
Simple   
Fast
Details
Literature
Michel L. Balinski und H. Peyton Young. Fair Representation. Meeting the
Ideal of One Man, One Vote. 2nd. Brookings Institution Press, 2001. isbn:
978-0-8157-0111-8
Friedrich Pukelsheim. Proportional Representation. Apportionment Methods
and Their Applications. 1. Aufl. Springer, 2014. isbn: 978-3-319-03855-1. doi:
10.1007/978-3-319-03856-8
Zhanpeng Cheng und David Eppstein. “Linear-time Algorithms for Proportional
Apportionment”. In: International Symposium on Algorithms and Computation
(ISAAC) 2014. Springer, 2014. doi: 10.1007/978-3-319-13075-0_46
Raphael Reitzig und Sebastian Wild. A Practical and Worst-Case Efficient
Algorithm for Divisor Methods of Apportionment. 2015. arXiv: 1504.06475
Code
github.com/reitzig/2015 apportionment
Ad

More Related Content

What's hot (17)

Πρόσθεση και Αφαίρεση κλασμάτων
Πρόσθεση και Αφαίρεση κλασμάτωνΠρόσθεση και Αφαίρεση κλασμάτων
Πρόσθεση και Αφαίρεση κλασμάτων
teaghet
 
PAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep LearningPAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep Learning
Mark Chang
 
Animashree Anandkumar, Electrical Engineering and CS Dept, UC Irvine at MLcon...
Animashree Anandkumar, Electrical Engineering and CS Dept, UC Irvine at MLcon...Animashree Anandkumar, Electrical Engineering and CS Dept, UC Irvine at MLcon...
Animashree Anandkumar, Electrical Engineering and CS Dept, UC Irvine at MLcon...
MLconf
 
Big data matrix factorizations and Overlapping community detection in graphs
Big data matrix factorizations and Overlapping community detection in graphsBig data matrix factorizations and Overlapping community detection in graphs
Big data matrix factorizations and Overlapping community detection in graphs
David Gleich
 
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
David Gleich
 
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)
Maamoun Hennache
 
DISCRETE LOGARITHM PROBLEM
DISCRETE LOGARITHM PROBLEMDISCRETE LOGARITHM PROBLEM
DISCRETE LOGARITHM PROBLEM
MANISH KUMAR
 
Factorise quadratic equations 2
Factorise quadratic equations 2Factorise quadratic equations 2
Factorise quadratic equations 2
Angela Phillips
 
Introduction about Geometric Algebra
Introduction about Geometric AlgebraIntroduction about Geometric Algebra
Introduction about Geometric Algebra
Vitor Pamplona
 
Solucionario teoria-electromagnetica-hayt-2001
Solucionario teoria-electromagnetica-hayt-2001Solucionario teoria-electromagnetica-hayt-2001
Solucionario teoria-electromagnetica-hayt-2001
Rene Mauricio Cartagena Alvarez
 
Non-exhaustive, Overlapping K-means
Non-exhaustive, Overlapping K-meansNon-exhaustive, Overlapping K-means
Non-exhaustive, Overlapping K-means
David Gleich
 
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lherEngineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
cristhian cabrera
 
Chapter0 reviewofalgebra-151003150137-lva1-app6891
Chapter0 reviewofalgebra-151003150137-lva1-app6891Chapter0 reviewofalgebra-151003150137-lva1-app6891
Chapter0 reviewofalgebra-151003150137-lva1-app6891
Cleophas Rwemera
 
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Chiheb Ben Hammouda
 
Talk iccf 19_ben_hammouda
Talk iccf 19_ben_hammoudaTalk iccf 19_ben_hammouda
Talk iccf 19_ben_hammouda
Chiheb Ben Hammouda
 
Dynamic1
Dynamic1Dynamic1
Dynamic1
MyAlome
 
math m1
math m1math m1
math m1
ZoRo Lossless
 
Πρόσθεση και Αφαίρεση κλασμάτων
Πρόσθεση και Αφαίρεση κλασμάτωνΠρόσθεση και Αφαίρεση κλασμάτων
Πρόσθεση και Αφαίρεση κλασμάτων
teaghet
 
PAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep LearningPAC-Bayesian Bound for Deep Learning
PAC-Bayesian Bound for Deep Learning
Mark Chang
 
Animashree Anandkumar, Electrical Engineering and CS Dept, UC Irvine at MLcon...
Animashree Anandkumar, Electrical Engineering and CS Dept, UC Irvine at MLcon...Animashree Anandkumar, Electrical Engineering and CS Dept, UC Irvine at MLcon...
Animashree Anandkumar, Electrical Engineering and CS Dept, UC Irvine at MLcon...
MLconf
 
Big data matrix factorizations and Overlapping community detection in graphs
Big data matrix factorizations and Overlapping community detection in graphsBig data matrix factorizations and Overlapping community detection in graphs
Big data matrix factorizations and Overlapping community detection in graphs
David Gleich
 
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
David Gleich
 
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)
Maamoun Hennache
 
DISCRETE LOGARITHM PROBLEM
DISCRETE LOGARITHM PROBLEMDISCRETE LOGARITHM PROBLEM
DISCRETE LOGARITHM PROBLEM
MANISH KUMAR
 
Factorise quadratic equations 2
Factorise quadratic equations 2Factorise quadratic equations 2
Factorise quadratic equations 2
Angela Phillips
 
Introduction about Geometric Algebra
Introduction about Geometric AlgebraIntroduction about Geometric Algebra
Introduction about Geometric Algebra
Vitor Pamplona
 
Non-exhaustive, Overlapping K-means
Non-exhaustive, Overlapping K-meansNon-exhaustive, Overlapping K-means
Non-exhaustive, Overlapping K-means
David Gleich
 
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lherEngineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
cristhian cabrera
 
Chapter0 reviewofalgebra-151003150137-lva1-app6891
Chapter0 reviewofalgebra-151003150137-lva1-app6891Chapter0 reviewofalgebra-151003150137-lva1-app6891
Chapter0 reviewofalgebra-151003150137-lva1-app6891
Cleophas Rwemera
 
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Chiheb Ben Hammouda
 
Dynamic1
Dynamic1Dynamic1
Dynamic1
MyAlome
 

Viewers also liked (15)

Pulmad: Great Gatsby
Pulmad: Great GatsbyPulmad: Great Gatsby
Pulmad: Great Gatsby
Mariel Põld
 
mejoras
mejorasmejoras
mejoras
Miguel De La Torre
 
Coffee.etc Presentation
Coffee.etc PresentationCoffee.etc Presentation
Coffee.etc Presentation
Jason Marshgreen
 
Aporte consolidacion
Aporte consolidacionAporte consolidacion
Aporte consolidacion
Edison Zea
 
Teoria general de la prueba judicial tomo i hernando devis echandia
Teoria general de la prueba judicial tomo i   hernando devis echandiaTeoria general de la prueba judicial tomo i   hernando devis echandia
Teoria general de la prueba judicial tomo i hernando devis echandia
Maestr Crim Ii Moreno Iber
 
Informática
Informática Informática
Informática
milypeque
 
Arthur Vinnitsky Poster 4 [Autosaved]
Arthur Vinnitsky Poster 4 [Autosaved]Arthur Vinnitsky Poster 4 [Autosaved]
Arthur Vinnitsky Poster 4 [Autosaved]
Arthur Vinnitsky
 
Ph
Ph Ph
Ph
carlitos1188
 
Declaración Juramentada
Declaración JuramentadaDeclaración Juramentada
Declaración Juramentada
Ramiro Aguilar
 
Riello ups-powerbox-containerised-ups
Riello ups-powerbox-containerised-upsRiello ups-powerbox-containerised-ups
Riello ups-powerbox-containerised-ups
Electrical and renewable energy engineering
 
EL medio Ambiente :D
EL medio Ambiente :D EL medio Ambiente :D
EL medio Ambiente :D
AnnyNicolee
 
Actividad tutoria
Actividad tutoriaActividad tutoria
Actividad tutoria
Sandra Martinez
 
презентація великоозерянської зош і ііі ступенів
презентація великоозерянської зош і ііі ступенівпрезентація великоозерянської зош і ііі ступенів
презентація великоозерянської зош і ііі ступенів
Sergej73
 
Disain instruksional
Disain instruksionalDisain instruksional
Disain instruksional
Dedi Yulianto
 
Pulmad: Great Gatsby
Pulmad: Great GatsbyPulmad: Great Gatsby
Pulmad: Great Gatsby
Mariel Põld
 
Aporte consolidacion
Aporte consolidacionAporte consolidacion
Aporte consolidacion
Edison Zea
 
Teoria general de la prueba judicial tomo i hernando devis echandia
Teoria general de la prueba judicial tomo i   hernando devis echandiaTeoria general de la prueba judicial tomo i   hernando devis echandia
Teoria general de la prueba judicial tomo i hernando devis echandia
Maestr Crim Ii Moreno Iber
 
Informática
Informática Informática
Informática
milypeque
 
Arthur Vinnitsky Poster 4 [Autosaved]
Arthur Vinnitsky Poster 4 [Autosaved]Arthur Vinnitsky Poster 4 [Autosaved]
Arthur Vinnitsky Poster 4 [Autosaved]
Arthur Vinnitsky
 
Declaración Juramentada
Declaración JuramentadaDeclaración Juramentada
Declaración Juramentada
Ramiro Aguilar
 
EL medio Ambiente :D
EL medio Ambiente :D EL medio Ambiente :D
EL medio Ambiente :D
AnnyNicolee
 
презентація великоозерянської зош і ііі ступенів
презентація великоозерянської зош і ііі ступенівпрезентація великоозерянської зош і ііі ступенів
презентація великоозерянської зош і ііі ступенів
Sergej73
 
Disain instruksional
Disain instruksionalDisain instruksional
Disain instruksional
Dedi Yulianto
 
Ad

Similar to Practical and Worst-Case Efficient Apportionment (20)

Integral Calculus Anti Derivatives reviewer
Integral Calculus Anti Derivatives reviewerIntegral Calculus Anti Derivatives reviewer
Integral Calculus Anti Derivatives reviewer
JoshuaAgcopra
 
Dynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain MultiplicationDynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain Multiplication
KrishnakoumarC
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
Christian Robert
 
QMC: Operator Splitting Workshop, Projective Splitting with Forward Steps and...
QMC: Operator Splitting Workshop, Projective Splitting with Forward Steps and...QMC: Operator Splitting Workshop, Projective Splitting with Forward Steps and...
QMC: Operator Splitting Workshop, Projective Splitting with Forward Steps and...
The Statistical and Applied Mathematical Sciences Institute
 
Lecture6 svdd
Lecture6 svddLecture6 svdd
Lecture6 svdd
Stéphane Canu
 
02 basics i-handout
02 basics i-handout02 basics i-handout
02 basics i-handout
sheetslibrary
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Gabriel Peyré
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Antidifferentiation.ppt
Antidifferentiation.pptAntidifferentiation.ppt
Antidifferentiation.ppt
JasonBesinBaroy
 
Antidifferentiation.pptAntidifferentiation.pptAntidifferentiation.pptAntidiff...
Antidifferentiation.pptAntidifferentiation.pptAntidifferentiation.pptAntidiff...Antidifferentiation.pptAntidifferentiation.pptAntidifferentiation.pptAntidiff...
Antidifferentiation.pptAntidifferentiation.pptAntidifferentiation.pptAntidiff...
DenmarkSantos3
 
Week 8- Integration (Intro) Part 7 Summary.pdf
Week 8- Integration (Intro) Part 7 Summary.pdfWeek 8- Integration (Intro) Part 7 Summary.pdf
Week 8- Integration (Intro) Part 7 Summary.pdf
IqmalAmeer
 
Week 8- Integration (Intro) Part 7 Summary.pdf
Week 8- Integration (Intro) Part 7 Summary.pdfWeek 8- Integration (Intro) Part 7 Summary.pdf
Week 8- Integration (Intro) Part 7 Summary.pdf
IqmalAmeer
 
module4_dynamic programming_2022.pdf
module4_dynamic programming_2022.pdfmodule4_dynamic programming_2022.pdf
module4_dynamic programming_2022.pdf
Shiwani Gupta
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture Notes
Sreedhar Chowdam
 
Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
Dr. C.V. Suresh Babu
 
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Chiheb Ben Hammouda
 
Divide-and-Conquer & Dynamic ProgrammingDivide-and-Conqu.docx
Divide-and-Conquer & Dynamic ProgrammingDivide-and-Conqu.docxDivide-and-Conquer & Dynamic ProgrammingDivide-and-Conqu.docx
Divide-and-Conquer & Dynamic ProgrammingDivide-and-Conqu.docx
jacksnathalie
 
Definite Integrals 8/ Integration by Parts
Definite Integrals 8/ Integration by PartsDefinite Integrals 8/ Integration by Parts
Definite Integrals 8/ Integration by Parts
Lakshmikanta Satapathy
 
Design and Implementation of Parallel and Randomized Approximation Algorithms
Design and Implementation of Parallel and Randomized Approximation AlgorithmsDesign and Implementation of Parallel and Randomized Approximation Algorithms
Design and Implementation of Parallel and Randomized Approximation Algorithms
Ajay Bidyarthy
 
Type and proof structures for concurrency
Type and proof structures for concurrencyType and proof structures for concurrency
Type and proof structures for concurrency
Facultad de Informática UCM
 
Integral Calculus Anti Derivatives reviewer
Integral Calculus Anti Derivatives reviewerIntegral Calculus Anti Derivatives reviewer
Integral Calculus Anti Derivatives reviewer
JoshuaAgcopra
 
Dynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain MultiplicationDynamic Programming Matrix Chain Multiplication
Dynamic Programming Matrix Chain Multiplication
KrishnakoumarC
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
Christian Robert
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Gabriel Peyré
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Antidifferentiation.pptAntidifferentiation.pptAntidifferentiation.pptAntidiff...
Antidifferentiation.pptAntidifferentiation.pptAntidifferentiation.pptAntidiff...Antidifferentiation.pptAntidifferentiation.pptAntidifferentiation.pptAntidiff...
Antidifferentiation.pptAntidifferentiation.pptAntidifferentiation.pptAntidiff...
DenmarkSantos3
 
Week 8- Integration (Intro) Part 7 Summary.pdf
Week 8- Integration (Intro) Part 7 Summary.pdfWeek 8- Integration (Intro) Part 7 Summary.pdf
Week 8- Integration (Intro) Part 7 Summary.pdf
IqmalAmeer
 
Week 8- Integration (Intro) Part 7 Summary.pdf
Week 8- Integration (Intro) Part 7 Summary.pdfWeek 8- Integration (Intro) Part 7 Summary.pdf
Week 8- Integration (Intro) Part 7 Summary.pdf
IqmalAmeer
 
module4_dynamic programming_2022.pdf
module4_dynamic programming_2022.pdfmodule4_dynamic programming_2022.pdf
module4_dynamic programming_2022.pdf
Shiwani Gupta
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture Notes
Sreedhar Chowdam
 
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
Chiheb Ben Hammouda
 
Divide-and-Conquer & Dynamic ProgrammingDivide-and-Conqu.docx
Divide-and-Conquer & Dynamic ProgrammingDivide-and-Conqu.docxDivide-and-Conquer & Dynamic ProgrammingDivide-and-Conqu.docx
Divide-and-Conquer & Dynamic ProgrammingDivide-and-Conqu.docx
jacksnathalie
 
Definite Integrals 8/ Integration by Parts
Definite Integrals 8/ Integration by PartsDefinite Integrals 8/ Integration by Parts
Definite Integrals 8/ Integration by Parts
Lakshmikanta Satapathy
 
Design and Implementation of Parallel and Randomized Approximation Algorithms
Design and Implementation of Parallel and Randomized Approximation AlgorithmsDesign and Implementation of Parallel and Randomized Approximation Algorithms
Design and Implementation of Parallel and Randomized Approximation Algorithms
Ajay Bidyarthy
 
Ad

Recently uploaded (20)

Macrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.pptMacrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.ppt
HRUTUJA WAGH
 
Meiosis Notes Slides biology powerpoint.pptx
Meiosis Notes Slides biology powerpoint.pptxMeiosis Notes Slides biology powerpoint.pptx
Meiosis Notes Slides biology powerpoint.pptx
sbates3
 
Antimalarial drug Medicinal Chemistry III
Antimalarial drug Medicinal Chemistry IIIAntimalarial drug Medicinal Chemistry III
Antimalarial drug Medicinal Chemistry III
HRUTUJA WAGH
 
2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx
fafyfskhan251kmf
 
Cordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
Cordaitales - Yudhvir Singh Checked[1].pptx gymnospermsCordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
Cordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
ReetikaMakkar
 
Green Synthesis of Gold Nanoparticles.pptx
Green Synthesis of Gold Nanoparticles.pptxGreen Synthesis of Gold Nanoparticles.pptx
Green Synthesis of Gold Nanoparticles.pptx
Torskal Nanoscience
 
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Helena Celeste Mata Rico
 
ANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC IIIANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC III
HRUTUJA WAGH
 
Anti tubercular drug Medicinal Chemistry III
Anti tubercular drug Medicinal Chemistry  IIIAnti tubercular drug Medicinal Chemistry  III
Anti tubercular drug Medicinal Chemistry III
HRUTUJA WAGH
 
Phytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and ManagementpptxPhytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and Managementpptx
Dr Showkat Ahmad Wani
 
Micro-grooved zein macro-whiskers for large-scale proliferation and different...
Micro-grooved zein macro-whiskers for large-scale proliferation and different...Micro-grooved zein macro-whiskers for large-scale proliferation and different...
Micro-grooved zein macro-whiskers for large-scale proliferation and different...
mdokmeci
 
A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
Sérgio Sacani
 
Seismic evidence of liquid water at the base of Mars' upper crust
Seismic evidence of liquid water at the base of Mars' upper crustSeismic evidence of liquid water at the base of Mars' upper crust
Seismic evidence of liquid water at the base of Mars' upper crust
Sérgio Sacani
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Somato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptxSomato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptx
klynct
 
Mycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes FungiMycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes Fungi
SAYANTANMALLICK5
 
Top 10 Biotech Startups for Beginners.pptx
Top 10 Biotech Startups for Beginners.pptxTop 10 Biotech Startups for Beginners.pptx
Top 10 Biotech Startups for Beginners.pptx
alexbagheriam
 
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
Sérgio Sacani
 
Anti fungal agents Medicinal Chemistry III
Anti fungal agents Medicinal Chemistry  IIIAnti fungal agents Medicinal Chemistry  III
Anti fungal agents Medicinal Chemistry III
HRUTUJA WAGH
 
class 7 polygenic inheritance.pptx biochemistry
class 7 polygenic inheritance.pptx biochemistryclass 7 polygenic inheritance.pptx biochemistry
class 7 polygenic inheritance.pptx biochemistry
LavanyaVijaykumar2
 
Macrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.pptMacrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.ppt
HRUTUJA WAGH
 
Meiosis Notes Slides biology powerpoint.pptx
Meiosis Notes Slides biology powerpoint.pptxMeiosis Notes Slides biology powerpoint.pptx
Meiosis Notes Slides biology powerpoint.pptx
sbates3
 
Antimalarial drug Medicinal Chemistry III
Antimalarial drug Medicinal Chemistry IIIAntimalarial drug Medicinal Chemistry III
Antimalarial drug Medicinal Chemistry III
HRUTUJA WAGH
 
2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx
fafyfskhan251kmf
 
Cordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
Cordaitales - Yudhvir Singh Checked[1].pptx gymnospermsCordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
Cordaitales - Yudhvir Singh Checked[1].pptx gymnosperms
ReetikaMakkar
 
Green Synthesis of Gold Nanoparticles.pptx
Green Synthesis of Gold Nanoparticles.pptxGreen Synthesis of Gold Nanoparticles.pptx
Green Synthesis of Gold Nanoparticles.pptx
Torskal Nanoscience
 
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Helena Celeste Mata Rico
 
ANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC IIIANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC III
HRUTUJA WAGH
 
Anti tubercular drug Medicinal Chemistry III
Anti tubercular drug Medicinal Chemistry  IIIAnti tubercular drug Medicinal Chemistry  III
Anti tubercular drug Medicinal Chemistry III
HRUTUJA WAGH
 
Phytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and ManagementpptxPhytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and Managementpptx
Dr Showkat Ahmad Wani
 
Micro-grooved zein macro-whiskers for large-scale proliferation and different...
Micro-grooved zein macro-whiskers for large-scale proliferation and different...Micro-grooved zein macro-whiskers for large-scale proliferation and different...
Micro-grooved zein macro-whiskers for large-scale proliferation and different...
mdokmeci
 
A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
Sérgio Sacani
 
Seismic evidence of liquid water at the base of Mars' upper crust
Seismic evidence of liquid water at the base of Mars' upper crustSeismic evidence of liquid water at the base of Mars' upper crust
Seismic evidence of liquid water at the base of Mars' upper crust
Sérgio Sacani
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Somato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptxSomato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptx
klynct
 
Mycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes FungiMycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes Fungi
SAYANTANMALLICK5
 
Top 10 Biotech Startups for Beginners.pptx
Top 10 Biotech Startups for Beginners.pptxTop 10 Biotech Startups for Beginners.pptx
Top 10 Biotech Startups for Beginners.pptx
alexbagheriam
 
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
Sérgio Sacani
 
Anti fungal agents Medicinal Chemistry III
Anti fungal agents Medicinal Chemistry  IIIAnti fungal agents Medicinal Chemistry  III
Anti fungal agents Medicinal Chemistry III
HRUTUJA WAGH
 
class 7 polygenic inheritance.pptx biochemistry
class 7 polygenic inheritance.pptx biochemistryclass 7 polygenic inheritance.pptx biochemistry
class 7 polygenic inheritance.pptx biochemistry
LavanyaVijaykumar2
 

Practical and Worst-Case Efficient Apportionment

  • 1. Practical and Worst-Case Efficient Apportionment Raphael Reitzig @ Theorietage 2015 worked with Sebastian Wild FACHBEREICH INFORMATIK FACHBEREICH INFORMATIK &Algorithmen Komplexität
  • 7. Divisor Methods Input Votes v of n parties for k seats, k n.
  • 8. Divisor Methods Input Votes v of n parties for k seats, k n. Method DivisorMethod(v, k) : 1. s ← 0n. 2. For k, . . . , 1: 2.1 I ← arg maxn i=1 vi /(si + 1). 2.2 sI ← sI + 1. 3. Return s.
  • 9. Divisor Methods Input Votes v of n parties for k seats, k n. Increasing divisor sequence d = (dj )j∈N0 . Method DivisorMethodd (v, k) : 1. s ← 0n. 2. For k, . . . , 1: 2.1 I ← arg maxn i=1 vi /dsi . 2.2 sI ← sI + 1. 3. Return s.
  • 10. Divisor Methods Input Votes v of n parties for k seats, k n. Increasing divisor sequence d = (dj )j∈N0 . Method DivisorMethodd (v, k) : 1. s ← 0n. 2. For k, . . . , 1: 2.1 I ← arg maxn i=1 vi /dsi . 2.2 sI ← sI + 1. 3. Return s. Θ (k logn) using priority queues
  • 11. Divisor Methods dj = j + 1, k = 7 j A B C D 0 58 132 40 72
  • 12. Divisor Methods dj = j + 1, k = 7 j A B C D 0 58 132 40 72 1 66
  • 13. Divisor Methods dj = j + 1, k = 7 j A B C D 0 58 132 40 72 1 66 36
  • 14. Divisor Methods dj = j + 1, k = 7 j A B C D 0 58 132 40 72 1 66 36 2 44
  • 15. Divisor Methods dj = j + 1, k = 7 j A B C D 0 58 132 40 72 1 66 36 2 44 29
  • 16. Divisor Methods dj = j + 1, k = 7 j A B C D 0 58 132 40 72 1 66 36 2 44 29 3 33
  • 17. Divisor Methods dj = j + 1, k = 7 j A B C D 0 58 132 40 72 1 66 36 2 44 29 3 33 20
  • 18. Divisor Methods dj = j + 1, k = 7 j A B C D 0 58 132 40 72 1 66 36 2 44 29 3 33 20 24 =: a
  • 19. Divisor Methods dj = j + 1, k = 7 j A B C D 0 58 132 40 72 1 66 36 2 44 29 3 33 20 24 =: a A := {132, 72, 66, 58, 44, 40, 36, 33, . . . } ≤ a > a
  • 20. Reduction to Rank Selection Observations Knowing the value a selected last is sufficient. We select the kth largest value last.
  • 21. Reduction to Rank Selection Observations Knowing the value a selected last is sufficient. We select the kth smallest value last. Idea Use a selection algorithm on multiset A = ai,j = dj vi i ∈ [1..n], j ∈ N0 and obtain a = A(k) “directly”.
  • 22. Reduction to Rank Selection Observations Knowing the value a selected last is sufficient. We select the kth smallest value last. Idea Use a selection algorithm on a finite subset of multiset A = ai,j = dj vi i ∈ [1..n], j ∈ N0 and obtain a = A(k) “directly”.
  • 23. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... A :
  • 24. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... A :
  • 25. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... k A :
  • 26. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... k A : Θ(kn) algorithm.
  • 27. Finding Good Cutoffs Given (dj )j≥−1 with [technical details], we assume δ : R≥0 → R≥d0 with [technical details] so that ai,j = δ(j) vi and δ−1 (y) = max{j ∈ Z≥−1 | dj ≤ y} is the (zero-based) rank function of d.
  • 28. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... A :
  • 29. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... A : δ−1(vi a ) = si − 1
  • 30. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... [ [ [ [ [ ] ] ] ] ] ] ] ] A : δ−1(vi a ) = si − 1 δ−1(vi a) δ−1(vi a) a ≤ a ≤ a
  • 31. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... ˆA : δ−1(vi a ) = si − 1 δ−1(vi a) δ−1(vi a) a ≤ a ≤ a
  • 32. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... ˆA : δ−1(vi a ) = si − 1 δ−1(vi a) =: ji δ−1(vi a) =: ji a ≤ a ≤ a
  • 33. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... ˆA : δ−1(vi a ) = si − 1 δ−1(vi a) =: ji δ−1(vi a) =: ji a = A(k) = ˆA(ˆk) with ˆk = k − i ji .
  • 34. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... ˆA : δ−1(vi a ) = si − 1 δ−1(vi a) =: ji δ−1(vi a) =: ji i ji < k ≤ i ji
  • 35. Finding Good Cutoffs i j 1 2 3 4 5 6 7 8 0 1 2 3 4 5 ... ... ... ... ... ... ... ... ... ˆA : δ−1(vi a ) = si − 1 δ−1(vi a) =: ji δ−1(vi a) =: ji i ji < k ≤ i ji Make tight!
  • 36. Finding Good Cutoffs In the Article Observation: k ≤ rank(a , A) ≤ k + n. Ansatz: rank(a, A) < k and k + n ≤ rank(a, A). Express rank in terms of bounds on δ−1. Make tight!
  • 37. Good Bounds On a If αx + β ≤ δ(x) ≤ αx + β with β ≤ α and [technical details], then a := max 0, αk − (α − β) · n) n i=1 vi and a := αk + βn n i=1 vi work.
  • 38. Good Bounds On a If αx + β ≤ δ(x) ≤ αx + β with β ≤ α and [technical details], then a := max 0, αk − (α − β) · n) n i=1 vi and a := αk + βn n i=1 vi work. Furthermore, | ˆA| ≤ 2(1 + (β − β)/α) · n ∈ Θ(n) .
  • 39. An Aside: Applicability Does anybody use d with suitable δ?
  • 40. An Aside: Applicability Does anybody use d with suitable δ? Method Divisor Sequence δ(x) Sandwich Smallest divisors 0, 1, 2, 3, . . . x — Greatest divisors 1, 2, 3, 4, . . . x + 1 — Sainte-Lagu¨e 1, 3, 5, 7, . . . 2x + 1 — Modified S-L 1.4, 3, 5, 7, . . . 2x+1 1.6x+1.4 x≥1 x<1 2x + 6 5 ± 1 5 Equal Proportions 0, √ 2, √ 6, √ 12, . . . x(x + 1) x + 1 4 ± 1 4 Harmonic Mean 0, 4 3, 12 5 , 24 7 , . . . 2x(x+1) 2x+1 x + 1 4 ± 1 4 Imperiali 2, 3, 4, 5, . . . x + 2 — Danish 1, 4, 7, 10, . . . 3x + 1 — Yes, they all do.
  • 41. The Algorithm RW15d (v, k) : 1. Compute a and a. 2. Initialize ˆA := ∅ and ˆk := k. 3. For each i ∈ [1..n] do: 3.1 Compute ji and ji . 3.2 Add all dj/vi to ˆA for which ji ≤ j ≤ ji . 3.3 Update ˆk ← ˆk − ji . 4. Select and return ˆA(ˆk).
  • 42. The Algorithm RW15d (v, k) : 1. Compute a and a. 2. Initialize ˆA := ∅ and ˆk := k. 3. For each i ∈ [1..n] do: 3.1 Compute ji and ji . 3.2 Add all dj/vi to ˆA for which ji ≤ j ≤ ji . 3.3 Update ˆk ← ˆk − ji . 4. Select and return ˆA(ˆk). Θ (n) runtim e!
  • 43. In Context Puk CE14 RW15 WC O(n)
  • 44. In Context Puk CE14 RW15 WC O(n) Implementable
  • 45. Advantage: Code Complexity CE14: ≈ 250 loc PukPQ: ≈ 80 loc RW15: ≈ 50 loc DMPQ: ≈ 25 loc plus library and shared code
  • 46. In Context Puk CE14 RW15 WC O(n) Implementable Simple
  • 47. Advantage: Runtime Cost 2 4 6 8 10 0 1 2 3 4 n Averagerunningtimeinµs/n (α, β) = (2, 1) and k = 100n 0 50 100 150 200 0 0.2 0.4 0.6 n (α, β) = (1, 3/4) and k = 10n PukPQ CE14 RW15 DMPQ
  • 48. In Context Puk CE14 RW15 WC O(n) Implementable Simple Fast
  • 49. Details Literature Michel L. Balinski und H. Peyton Young. Fair Representation. Meeting the Ideal of One Man, One Vote. 2nd. Brookings Institution Press, 2001. isbn: 978-0-8157-0111-8 Friedrich Pukelsheim. Proportional Representation. Apportionment Methods and Their Applications. 1. Aufl. Springer, 2014. isbn: 978-3-319-03855-1. doi: 10.1007/978-3-319-03856-8 Zhanpeng Cheng und David Eppstein. “Linear-time Algorithms for Proportional Apportionment”. In: International Symposium on Algorithms and Computation (ISAAC) 2014. Springer, 2014. doi: 10.1007/978-3-319-13075-0_46 Raphael Reitzig und Sebastian Wild. A Practical and Worst-Case Efficient Algorithm for Divisor Methods of Apportionment. 2015. arXiv: 1504.06475 Code github.com/reitzig/2015 apportionment
  翻译: