Post 1:
What is text analytics? How does it differ from text mining?
Text Analytics is applying of statistical and machine learning techniques to be able to predict /prescribe or infer any information from the text-mined data. Text mining is a tool that helps in getting the data cleaned up.Text analytics and text mining approaches have essentially equivalent performance. Text analytics requires an expert linguist to produce complex rule sets, whereas text mining requires the analyst to hand-label cases with outcomes or classes to create training data.
Differences between Text Mining and Text Analytics:
• Text Mining and Text Analytics solve the same problems, but use different techniques and are complementary ways to automatically extract meaning from text.
• Text Analytics is developed within the field of computational linguistics. It has the ability to encode human understanding into a series of linguistic rules which are generated by humans are high in precision, but they do not automatically adapt and are usually fragile when tried in new situations.
• Text mining is a newer discipline arising out of the fields of statistics, data mining, and machine learning. Its strength is the ability to inductively create models from collections of historical data. Because statistical models are learned from training data they are adaptive and can identify “unknown unknowns”, leading to the better recall. Still, they can be prone to missing something that would seem obvious to a human.
• Text analytics and text mining approaches have essentially equivalent performance. Text analytics requires an expert linguist to produce complex rule sets, whereas text mining requires the analyst to hand-label cases with outcomes or classes to create training data.
• Due to their different perspectives and strengths, combining text analytics with text mining often leads to better performance than either approach alone.
2. What technologies were used in building Watson (both hardware and software)?
Watson is an extraordinary computer system (a novel combination of advanced hardware an software) designed at answering questions posed in natural human language.Watson is an artificially intelligent computer system capable of answering questions posed in natural language, developed in IBM's DeepQA project by a research team led by principal investigator David Ferrucci. Watson was named after IBM's first CEO and industrialist Thomas J. Watson. The computer system was specifically developed to answer questions on the quiz show Jeopardy! In 2011, Watson competed on Jeopardy! against former winners Brad Rutter and Ken Jennings.
Watson received the first prize of $1 million.The goal was to advance computer science by exploring new ways for computer technology to affect science, business, and society.IBM undertook a challenge to build a computer system that could compete at the human champion level in real time on the American TV quiz show Jeopardy!The extent of the challenge in ...