This document discusses correlation and linear regression. It defines correlation as a statistic that measures the strength and direction of the linear relationship between two continuous variables. Positive correlation indicates that as one variable increases, so does the other. Negative correlation means the variables are inversely related. Linear regression can be used to predict a continuous outcome variable based on a continuous predictor variable using the regression equation y=a+bx. The regression line minimizes the sum of squared differences between the data points and the line. The slope coefficient b indicates the strength of the linear prediction and can be tested for significance.