SlideShare a Scribd company logo
SigOpt. Confidential.
Why is Experiment Management
important for NLP?
SigOpt. Confidential.
First, a quick overview of the
problem
SigOpt. Confidential.
Two main questions
3
Can we understand the
trade-offs made during
model compression?
Can we find a model
architecture that fits our
needs?
SigOpt. Confidential.
The Data: SQUAD 2.0
4
SQUAD 2.0
SigOpt. Confidential.
Distilling BERT for Question Answering
5
BERT
Pre-trained for language
modeling
Student Model
SQUAD 2.0
SQUAD 2.0
Soft
target
loss
Hard
target
loss
BERT
Fine-tuned for SQUAD 2.0
Trained Student Model
For more on distillation: Hinton et al 2015, DistilBERT
SigOpt. Confidential.
Multimetric Bayesian Optimization
Optimizing for two competing metrics
6
SigOpt’s Multimetric Optimization
SigOpt. Confidential.
Experiment Management was critical
throughout this process
SigOpt. Confidential.
Experiment management was critical for
8
Model Development
Understanding the Problem
Space
Monitoring Long Cycles
SigOpt. Confidential.
Model Development
SigOpt. Confidential.
Establishing a Baseline
10
BERT
Pre-trained for language
modeling
Student Model
SQUAD 2.0
SQUAD 2.0
Soft
target
loss
Hard
target
loss
BERT
Fine-tuned for SQUAD 2.0
Trained Student Model
?
?
?
? ?
SigOpt. Confidential.
Establishing a Baseline: Training from scratch
11
BERT
Pre-trained for language
modeling
DistilBERT
SQUAD 2.0
SQUAD 2.0
Standard
soft target
loss
Standard
hard
target
loss
BERT
Fine-tuned for SQUAD 2.0
Trained Model
? ?
?
?
?
SigOpt. Confidential.
Baseline #1: Trained from scratch
Dashboard link
SigOpt. Confidential.
Establishing a Baseline: Warm starting the model
13
BERT
Pre-trained for language
modeling
DistilBERT
SQUAD 2.0
SQUAD 2.0
Standard soft
target loss
Standard
Hard target
loss
BERT
Fine-tuned for SQUAD 2.0
Trained Model
DistilBERT
Pre-trained for language
modeling
Pretrained Weights
?
?
SigOpt. Confidential.
Baseline #2: Pretrained weights
Dashboard link
SigOpt. Confidential.
Understanding the problem space
SigOpt. Confidential.
Running HPO to understand the problem space
16
SigOpt. Confidential.
Let’s take a look at the experiment
dashboard
SigOpt. Confidential.
Correlations in the parameter space
18
SigOpt. Confidential.
Exploring specific parameter areas
19
Runs dashboard
SigOpt. Confidential.
Taking data properties into account
20
SigOpt. Confidential.
Providing feedback to the optimizer
21
SigOpt. Confidential.
Monitoring the full experiment
SigOpt. Confidential.
Monitoring the full experiment
23
Run dashboard
SigOpt. Confidential.
SigOpt found dozens of viable models
24
Baseline Exact
Baseline
Size
Metric Threshold
SigOpt. Confidential.
How did experiment management
help throughout my process?
SigOpt. Confidential.26
Model Development
Understanding the
Problem Space
Monitoring Long Cycles
Experiment Validation
Experiment design and
exploring the
parameter space
Tracking and
Debugging
SigOpt. Confidential.
So why Experiment Management?
27
SigOpt. Confidential.
Check out our
YouTube channel:
Learn more about SigOpt
Read our research and product blog.
See more videos here.
Sign up to try out SigOpt
for free!
Join the Experiment Management
beta
Click Here
Read the full work on Nvidia’s
dev blog
SigOpt. Confidential.
Thank you!
Ad

More Related Content

Similar to Optimizing BERT and Natural Language Models with SigOpt Experiment Management (20)

Sattose 2020 presentation
Sattose 2020 presentationSattose 2020 presentation
Sattose 2020 presentation
Céline Deknop
 
Deep MIML Network
Deep MIML NetworkDeep MIML Network
Deep MIML Network
Saad Elbeleidy
 
Large Language Models (LLMs) - Level 3 Slides
Large Language Models (LLMs) - Level 3 SlidesLarge Language Models (LLMs) - Level 3 Slides
Large Language Models (LLMs) - Level 3 Slides
Sri Ambati
 
Introduction To Git For Version Control Architecture And Common Commands Comp...
Introduction To Git For Version Control Architecture And Common Commands Comp...Introduction To Git For Version Control Architecture And Common Commands Comp...
Introduction To Git For Version Control Architecture And Common Commands Comp...
SlideTeam
 
TC39: How we work, what we are working on, and how you can get involved (dotJ...
TC39: How we work, what we are working on, and how you can get involved (dotJ...TC39: How we work, what we are working on, and how you can get involved (dotJ...
TC39: How we work, what we are working on, and how you can get involved (dotJ...
Igalia
 
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Ricardo Guerrero Gómez-Olmedo
 
Delivering Quality at Speed with GitOps
Delivering Quality at Speed with GitOpsDelivering Quality at Speed with GitOps
Delivering Quality at Speed with GitOps
Weaveworks
 
Advanced Techniques to Accelerate Model Tuning | Software for AI Optimization...
Advanced Techniques to Accelerate Model Tuning | Software for AI Optimization...Advanced Techniques to Accelerate Model Tuning | Software for AI Optimization...
Advanced Techniques to Accelerate Model Tuning | Software for AI Optimization...
Intel® Software
 
SOLID Design principles
SOLID Design principlesSOLID Design principles
SOLID Design principles
Mohamed Sanaulla
 
Fine tuning large LMs
Fine tuning large LMsFine tuning large LMs
Fine tuning large LMs
SylvainGugger
 
Azure Industrial Iot Edge
Azure Industrial Iot EdgeAzure Industrial Iot Edge
Azure Industrial Iot Edge
Riccardo Zamana
 
Large Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and RepairLarge Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and Repair
Lionel Briand
 
“Powering the Connected Intelligent Edge and the Future of On-Device AI,” a P...
“Powering the Connected Intelligent Edge and the Future of On-Device AI,” a P...“Powering the Connected Intelligent Edge and the Future of On-Device AI,” a P...
“Powering the Connected Intelligent Edge and the Future of On-Device AI,” a P...
Edge AI and Vision Alliance
 
What is the best approach to tdd
What is the best approach to tddWhat is the best approach to tdd
What is the best approach to tdd
Red Hat
 
Gitops Hands On
Gitops Hands OnGitops Hands On
Gitops Hands On
Brice Fernandes
 
BBD Hands-on with Python. Practical Hands-on Workshop about "Behaviour Driven...
BBD Hands-on with Python. Practical Hands-on Workshop about "Behaviour Driven...BBD Hands-on with Python. Practical Hands-on Workshop about "Behaviour Driven...
BBD Hands-on with Python. Practical Hands-on Workshop about "Behaviour Driven...
Hemmerling
 
Oh the compilers you'll build
Oh the compilers you'll buildOh the compilers you'll build
Oh the compilers you'll build
Mark Stoodley
 
Using Diversity for Automated Boundary Value Testing
Using Diversity for Automated Boundary Value TestingUsing Diversity for Automated Boundary Value Testing
Using Diversity for Automated Boundary Value Testing
Felix Dobslaw
 
Easydd program
Easydd programEasydd program
Easydd program
Taha Sochi
 
BigData HUB Workshop
BigData HUB WorkshopBigData HUB Workshop
BigData HUB Workshop
Ahmed Salman
 
Sattose 2020 presentation
Sattose 2020 presentationSattose 2020 presentation
Sattose 2020 presentation
Céline Deknop
 
Large Language Models (LLMs) - Level 3 Slides
Large Language Models (LLMs) - Level 3 SlidesLarge Language Models (LLMs) - Level 3 Slides
Large Language Models (LLMs) - Level 3 Slides
Sri Ambati
 
Introduction To Git For Version Control Architecture And Common Commands Comp...
Introduction To Git For Version Control Architecture And Common Commands Comp...Introduction To Git For Version Control Architecture And Common Commands Comp...
Introduction To Git For Version Control Architecture And Common Commands Comp...
SlideTeam
 
TC39: How we work, what we are working on, and how you can get involved (dotJ...
TC39: How we work, what we are working on, and how you can get involved (dotJ...TC39: How we work, what we are working on, and how you can get involved (dotJ...
TC39: How we work, what we are working on, and how you can get involved (dotJ...
Igalia
 
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Ricardo Guerrero Gómez-Olmedo
 
Delivering Quality at Speed with GitOps
Delivering Quality at Speed with GitOpsDelivering Quality at Speed with GitOps
Delivering Quality at Speed with GitOps
Weaveworks
 
Advanced Techniques to Accelerate Model Tuning | Software for AI Optimization...
Advanced Techniques to Accelerate Model Tuning | Software for AI Optimization...Advanced Techniques to Accelerate Model Tuning | Software for AI Optimization...
Advanced Techniques to Accelerate Model Tuning | Software for AI Optimization...
Intel® Software
 
Fine tuning large LMs
Fine tuning large LMsFine tuning large LMs
Fine tuning large LMs
SylvainGugger
 
Azure Industrial Iot Edge
Azure Industrial Iot EdgeAzure Industrial Iot Edge
Azure Industrial Iot Edge
Riccardo Zamana
 
Large Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and RepairLarge Language Models for Test Case Evolution and Repair
Large Language Models for Test Case Evolution and Repair
Lionel Briand
 
“Powering the Connected Intelligent Edge and the Future of On-Device AI,” a P...
“Powering the Connected Intelligent Edge and the Future of On-Device AI,” a P...“Powering the Connected Intelligent Edge and the Future of On-Device AI,” a P...
“Powering the Connected Intelligent Edge and the Future of On-Device AI,” a P...
Edge AI and Vision Alliance
 
What is the best approach to tdd
What is the best approach to tddWhat is the best approach to tdd
What is the best approach to tdd
Red Hat
 
BBD Hands-on with Python. Practical Hands-on Workshop about "Behaviour Driven...
BBD Hands-on with Python. Practical Hands-on Workshop about "Behaviour Driven...BBD Hands-on with Python. Practical Hands-on Workshop about "Behaviour Driven...
BBD Hands-on with Python. Practical Hands-on Workshop about "Behaviour Driven...
Hemmerling
 
Oh the compilers you'll build
Oh the compilers you'll buildOh the compilers you'll build
Oh the compilers you'll build
Mark Stoodley
 
Using Diversity for Automated Boundary Value Testing
Using Diversity for Automated Boundary Value TestingUsing Diversity for Automated Boundary Value Testing
Using Diversity for Automated Boundary Value Testing
Felix Dobslaw
 
Easydd program
Easydd programEasydd program
Easydd program
Taha Sochi
 
BigData HUB Workshop
BigData HUB WorkshopBigData HUB Workshop
BigData HUB Workshop
Ahmed Salman
 

More from SigOpt (20)

Experiment Management for the Enterprise
Experiment Management for the EnterpriseExperiment Management for the Enterprise
Experiment Management for the Enterprise
SigOpt
 
Detecting COVID-19 Cases with Deep Learning
Detecting COVID-19 Cases with Deep LearningDetecting COVID-19 Cases with Deep Learning
Detecting COVID-19 Cases with Deep Learning
SigOpt
 
Metric Management: a SigOpt Applied Use Case
Metric Management: a SigOpt Applied Use CaseMetric Management: a SigOpt Applied Use Case
Metric Management: a SigOpt Applied Use Case
SigOpt
 
Tuning for Systematic Trading: Talk 3: Training, Tuning, and Metric Strategy
Tuning for Systematic Trading: Talk 3: Training, Tuning, and Metric StrategyTuning for Systematic Trading: Talk 3: Training, Tuning, and Metric Strategy
Tuning for Systematic Trading: Talk 3: Training, Tuning, and Metric Strategy
SigOpt
 
Tuning for Systematic Trading: Talk 2: Deep Learning
Tuning for Systematic Trading: Talk 2: Deep LearningTuning for Systematic Trading: Talk 2: Deep Learning
Tuning for Systematic Trading: Talk 2: Deep Learning
SigOpt
 
Tuning for Systematic Trading: Talk 1
Tuning for Systematic Trading: Talk 1Tuning for Systematic Trading: Talk 1
Tuning for Systematic Trading: Talk 1
SigOpt
 
Tuning Data Augmentation to Boost Model Performance
Tuning Data Augmentation to Boost Model PerformanceTuning Data Augmentation to Boost Model Performance
Tuning Data Augmentation to Boost Model Performance
SigOpt
 
Advanced Optimization for the Enterprise Webinar
Advanced Optimization for the Enterprise WebinarAdvanced Optimization for the Enterprise Webinar
Advanced Optimization for the Enterprise Webinar
SigOpt
 
Modeling at Scale: SigOpt at TWIMLcon 2019
Modeling at Scale: SigOpt at TWIMLcon 2019Modeling at Scale: SigOpt at TWIMLcon 2019
Modeling at Scale: SigOpt at TWIMLcon 2019
SigOpt
 
SigOpt at Ai4 Finance—Modeling at Scale
SigOpt at Ai4 Finance—Modeling at Scale SigOpt at Ai4 Finance—Modeling at Scale
SigOpt at Ai4 Finance—Modeling at Scale
SigOpt
 
Interactive Tradeoffs Between Competing Offline Metrics with Bayesian Optimiz...
Interactive Tradeoffs Between Competing Offline Metrics with Bayesian Optimiz...Interactive Tradeoffs Between Competing Offline Metrics with Bayesian Optimiz...
Interactive Tradeoffs Between Competing Offline Metrics with Bayesian Optimiz...
SigOpt
 
Machine Learning Infrastructure
Machine Learning InfrastructureMachine Learning Infrastructure
Machine Learning Infrastructure
SigOpt
 
SigOpt at Uber Science Symposium - Exploring the spectrum of black-box optimi...
SigOpt at Uber Science Symposium - Exploring the spectrum of black-box optimi...SigOpt at Uber Science Symposium - Exploring the spectrum of black-box optimi...
SigOpt at Uber Science Symposium - Exploring the spectrum of black-box optimi...
SigOpt
 
SigOpt at O'Reilly - Best Practices for Scaling Modeling Platforms
SigOpt at O'Reilly - Best Practices for Scaling Modeling PlatformsSigOpt at O'Reilly - Best Practices for Scaling Modeling Platforms
SigOpt at O'Reilly - Best Practices for Scaling Modeling Platforms
SigOpt
 
SigOpt at GTC - Tuning the Untunable
SigOpt at GTC - Tuning the UntunableSigOpt at GTC - Tuning the Untunable
SigOpt at GTC - Tuning the Untunable
SigOpt
 
SigOpt at GTC - Reducing operational barriers to optimization
SigOpt at GTC - Reducing operational barriers to optimizationSigOpt at GTC - Reducing operational barriers to optimization
SigOpt at GTC - Reducing operational barriers to optimization
SigOpt
 
Lessons for an enterprise approach to modeling at scale
Lessons for an enterprise approach to modeling at scaleLessons for an enterprise approach to modeling at scale
Lessons for an enterprise approach to modeling at scale
SigOpt
 
Modeling at scale in systematic trading
Modeling at scale in systematic tradingModeling at scale in systematic trading
Modeling at scale in systematic trading
SigOpt
 
SigOpt at MLconf - Reducing Operational Barriers to Model Training
SigOpt at MLconf - Reducing Operational Barriers to Model TrainingSigOpt at MLconf - Reducing Operational Barriers to Model Training
SigOpt at MLconf - Reducing Operational Barriers to Model Training
SigOpt
 
Machine Learning Infrastructure
Machine Learning InfrastructureMachine Learning Infrastructure
Machine Learning Infrastructure
SigOpt
 
Experiment Management for the Enterprise
Experiment Management for the EnterpriseExperiment Management for the Enterprise
Experiment Management for the Enterprise
SigOpt
 
Detecting COVID-19 Cases with Deep Learning
Detecting COVID-19 Cases with Deep LearningDetecting COVID-19 Cases with Deep Learning
Detecting COVID-19 Cases with Deep Learning
SigOpt
 
Metric Management: a SigOpt Applied Use Case
Metric Management: a SigOpt Applied Use CaseMetric Management: a SigOpt Applied Use Case
Metric Management: a SigOpt Applied Use Case
SigOpt
 
Tuning for Systematic Trading: Talk 3: Training, Tuning, and Metric Strategy
Tuning for Systematic Trading: Talk 3: Training, Tuning, and Metric StrategyTuning for Systematic Trading: Talk 3: Training, Tuning, and Metric Strategy
Tuning for Systematic Trading: Talk 3: Training, Tuning, and Metric Strategy
SigOpt
 
Tuning for Systematic Trading: Talk 2: Deep Learning
Tuning for Systematic Trading: Talk 2: Deep LearningTuning for Systematic Trading: Talk 2: Deep Learning
Tuning for Systematic Trading: Talk 2: Deep Learning
SigOpt
 
Tuning for Systematic Trading: Talk 1
Tuning for Systematic Trading: Talk 1Tuning for Systematic Trading: Talk 1
Tuning for Systematic Trading: Talk 1
SigOpt
 
Tuning Data Augmentation to Boost Model Performance
Tuning Data Augmentation to Boost Model PerformanceTuning Data Augmentation to Boost Model Performance
Tuning Data Augmentation to Boost Model Performance
SigOpt
 
Advanced Optimization for the Enterprise Webinar
Advanced Optimization for the Enterprise WebinarAdvanced Optimization for the Enterprise Webinar
Advanced Optimization for the Enterprise Webinar
SigOpt
 
Modeling at Scale: SigOpt at TWIMLcon 2019
Modeling at Scale: SigOpt at TWIMLcon 2019Modeling at Scale: SigOpt at TWIMLcon 2019
Modeling at Scale: SigOpt at TWIMLcon 2019
SigOpt
 
SigOpt at Ai4 Finance—Modeling at Scale
SigOpt at Ai4 Finance—Modeling at Scale SigOpt at Ai4 Finance—Modeling at Scale
SigOpt at Ai4 Finance—Modeling at Scale
SigOpt
 
Interactive Tradeoffs Between Competing Offline Metrics with Bayesian Optimiz...
Interactive Tradeoffs Between Competing Offline Metrics with Bayesian Optimiz...Interactive Tradeoffs Between Competing Offline Metrics with Bayesian Optimiz...
Interactive Tradeoffs Between Competing Offline Metrics with Bayesian Optimiz...
SigOpt
 
Machine Learning Infrastructure
Machine Learning InfrastructureMachine Learning Infrastructure
Machine Learning Infrastructure
SigOpt
 
SigOpt at Uber Science Symposium - Exploring the spectrum of black-box optimi...
SigOpt at Uber Science Symposium - Exploring the spectrum of black-box optimi...SigOpt at Uber Science Symposium - Exploring the spectrum of black-box optimi...
SigOpt at Uber Science Symposium - Exploring the spectrum of black-box optimi...
SigOpt
 
SigOpt at O'Reilly - Best Practices for Scaling Modeling Platforms
SigOpt at O'Reilly - Best Practices for Scaling Modeling PlatformsSigOpt at O'Reilly - Best Practices for Scaling Modeling Platforms
SigOpt at O'Reilly - Best Practices for Scaling Modeling Platforms
SigOpt
 
SigOpt at GTC - Tuning the Untunable
SigOpt at GTC - Tuning the UntunableSigOpt at GTC - Tuning the Untunable
SigOpt at GTC - Tuning the Untunable
SigOpt
 
SigOpt at GTC - Reducing operational barriers to optimization
SigOpt at GTC - Reducing operational barriers to optimizationSigOpt at GTC - Reducing operational barriers to optimization
SigOpt at GTC - Reducing operational barriers to optimization
SigOpt
 
Lessons for an enterprise approach to modeling at scale
Lessons for an enterprise approach to modeling at scaleLessons for an enterprise approach to modeling at scale
Lessons for an enterprise approach to modeling at scale
SigOpt
 
Modeling at scale in systematic trading
Modeling at scale in systematic tradingModeling at scale in systematic trading
Modeling at scale in systematic trading
SigOpt
 
SigOpt at MLconf - Reducing Operational Barriers to Model Training
SigOpt at MLconf - Reducing Operational Barriers to Model TrainingSigOpt at MLconf - Reducing Operational Barriers to Model Training
SigOpt at MLconf - Reducing Operational Barriers to Model Training
SigOpt
 
Machine Learning Infrastructure
Machine Learning InfrastructureMachine Learning Infrastructure
Machine Learning Infrastructure
SigOpt
 
Ad

Recently uploaded (20)

Build With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdfBuild With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdf
Google Developer Group - Harare
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
Developing System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptxDeveloping System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptx
wondimagegndesta
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
Developing System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptxDeveloping System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptx
wondimagegndesta
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Ad

Optimizing BERT and Natural Language Models with SigOpt Experiment Management

  翻译: