SlideShare a Scribd company logo
NEWTON’S FORWARD
&
NEWTON’S BACKWARD
INTERPOLATION
NEWTON’S FORWARD INTERPOLATION
• Formula of Newton’s Forward Interpolation
𝑦 𝑛 𝑥 = 𝑦0 + 𝑝𝚫𝑦0 +
𝑝(𝑝 − 1)
2!
𝚫2 𝑦0 +
𝑝 𝑝 − 1 𝑝 − 2
3!
𝚫3 𝑦0 + ⋯
+
𝑝 𝑝 − 1 𝑝 − 2 … (𝑝 − 𝑛 + 1)
𝑛!
𝚫 𝑛 𝑦0
Here :- 𝑝 =
𝑥−𝑥0
ℎ
EXAMPLE
• Find The value Of 𝒕𝒂𝒏 0.12
𝑥 0.10 0.15 0.20 0.25 0.30
𝑦 = 𝑡𝑎𝑛 𝑥 0.1003 0.1511 0.2027 0.2553 0.3093
SOLUTION
X Y Δ Δ2 Δ3 Δ4
0.10 0.1003
0.0508
0.15 0.1511 0.0008
0.0516 0.0002
0.20 0.2027 0.0010 0.0002
0.0526 0.0004
0.25 0.2553 0.0014
0.0540
0.30 0.3093
Applying Newton’s Forward Difference Interpolation Formula.
𝑦 𝑛 𝑥 = 𝑦0 + 𝑝𝚫𝑦0 +
𝑝(𝑝 − 1)
2!
𝚫2 𝑦0 +
𝑝 𝑝 − 1 𝑝 − 2
3!
𝚫3 𝑦0 +
𝑝 𝑝 − 1 𝑝 − 2 (𝑝 − 3)
4!
𝚫4 𝑦0
Here 𝑦 𝑛 𝑥 = tan(0.12)
∴ 𝑝 =
𝑥−𝑥0
ℎ
=
0.12−0.10
0.05
=
0.02
0.05
= 0.4
∴ 𝑦 𝑛 𝑥 = 0.1003 + 0.4 0.0508 +
0.4 0.4−1
2
0.0008 +
0.4 0.4−1 0.4−2
6
0.0002 +
0.4 0.4−1 0.4−2 (0.4−3)
24
0.0002
𝑦 𝑛 𝑥 = 0.1205
NEWTON’S BACKEARD INTERPOLATION
• Formula of Newton’s Backward Interpolation
𝑦 𝑛 𝑥 = 𝑦 𝑛 +
𝑝𝛁𝑦 𝑛 +
𝑝(𝑝 + 1)
2!
𝛁2 𝑦 𝑛 + ⋯ +
𝑝 𝑝 − 1 … (𝑝 + 𝑛 − 1)
𝑛!
𝛁 𝑛 𝑦 𝑛
Here :- 𝑝 =
𝑥−𝑥𝑛
ℎ
EXAMPLE
Consider Following Tabular Values Determine y (300)
𝑥 50 100 150 200 250
𝑦 618 724 805 906 1032
SOLUTION
X Y 𝛁 𝛁2 𝛁3 𝛁4
50 618
106
100 724 -25
81 45
150 805 20 -40
101 5
200 906 5
126
250 1032
Applying Newton’s Backward Difference interpolation Formula.
𝑦 𝑛 𝑥 = 𝑦0 + 𝑝𝛁𝑦 𝑛 +
𝑝(𝑝 − 1)
2!
𝛁2 𝑦 𝑛 +
𝑝 𝑝 − 1 𝑝 − 2
3!
𝛁3 𝑦 𝑛 +
𝑝 𝑝 − 1 𝑝 − 2 (𝑝 − 3)
4!
𝛁4 𝑦 𝑛
Here:- 𝑦 𝑛 𝑥 = 𝑦𝑛 300
∴ 𝑝 =
𝑥−𝑥𝑛
ℎ
=
300−250
50
= 1
∴ 𝑦 𝑛 𝑥 = 1032 + 126 +
1(1+1)
2!
25 +
1 1+1 1+2
3!
5 +
1 1+1 1+2 1+3
4!
(−40)
= 1032 + 126 + 25 + 5 − 4
𝑦 𝑛 300 = 1148
Newton’s Forward &  backward interpolation
Ad

More Related Content

What's hot (20)

Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
Raj Parekh
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
VARUN KUMAR
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
Chandra Kundu
 
Fourier series
Fourier seriesFourier series
Fourier series
Naveen Sihag
 
Thomas algorithm
Thomas algorithmThomas algorithm
Thomas algorithm
Paridhi SK
 
Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...
vaibhav tailor
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
001Abhishek1
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
Kunj Patel
 
Interpolation
InterpolationInterpolation
Interpolation
Bhavik A Shah
 
Jacobians new
Jacobians newJacobians new
Jacobians new
Cyprian. Konyeha
 
Finite difference method
Finite difference methodFinite difference method
Finite difference method
Divyansh Verma
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
Rai University
 
Application of Fourier Transformation
Application of Fourier TransformationApplication of Fourier Transformation
Application of Fourier Transformation
ManishKumar3747
 
classification of second order partial differential equation
classification of second order partial differential equationclassification of second order partial differential equation
classification of second order partial differential equation
jigar methaniya
 
Newton backward interpolation
Newton backward interpolationNewton backward interpolation
Newton backward interpolation
MUHAMMADUMAIR647
 
Matlab solved problems
Matlab solved problemsMatlab solved problems
Matlab solved problems
Make Mannan
 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applications
DeepRaval7
 
Application of Laplace Transforme
Application of Laplace TransformeApplication of Laplace Transforme
Application of Laplace Transforme
Maharshi Dave
 
Directional derivative and gradient
Directional derivative and gradientDirectional derivative and gradient
Directional derivative and gradient
Jhonatan Gerardo Soto Puelles
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IVEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Rai University
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
Raj Parekh
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
VARUN KUMAR
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
Chandra Kundu
 
Thomas algorithm
Thomas algorithmThomas algorithm
Thomas algorithm
Paridhi SK
 
Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...
vaibhav tailor
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
001Abhishek1
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
Kunj Patel
 
Finite difference method
Finite difference methodFinite difference method
Finite difference method
Divyansh Verma
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
Rai University
 
Application of Fourier Transformation
Application of Fourier TransformationApplication of Fourier Transformation
Application of Fourier Transformation
ManishKumar3747
 
classification of second order partial differential equation
classification of second order partial differential equationclassification of second order partial differential equation
classification of second order partial differential equation
jigar methaniya
 
Newton backward interpolation
Newton backward interpolationNewton backward interpolation
Newton backward interpolation
MUHAMMADUMAIR647
 
Matlab solved problems
Matlab solved problemsMatlab solved problems
Matlab solved problems
Make Mannan
 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applications
DeepRaval7
 
Application of Laplace Transforme
Application of Laplace TransformeApplication of Laplace Transforme
Application of Laplace Transforme
Maharshi Dave
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IVEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IV
Rai University
 

Similar to Newton’s Forward & backward interpolation (20)

Interpolation
InterpolationInterpolation
Interpolation
Brijesh Padhiyar
 
Numerical Methods and Analysis
Numerical Methods and AnalysisNumerical Methods and Analysis
Numerical Methods and Analysis
Rajshahi University of Engineering and Technology
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullah
Ali Abdullah
 
Internal assessment
Internal assessmentInternal assessment
Internal assessment
gokicchi
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
Meenakshisundaram N
 
Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential Equations
Meenakshisundaram N
 
Interpolation In Numerical Methods.
 Interpolation In Numerical Methods. Interpolation In Numerical Methods.
Interpolation In Numerical Methods.
Abu Kaisar
 
differential-calculus-1-23.pdf
differential-calculus-1-23.pdfdifferential-calculus-1-23.pdf
differential-calculus-1-23.pdf
IILSASTOWER
 
Group 7 Evalution Solution.docx
Group 7 Evalution Solution.docxGroup 7 Evalution Solution.docx
Group 7 Evalution Solution.docx
king27740
 
INTERPOLATION
INTERPOLATIONINTERPOLATION
INTERPOLATION
tirath prajapati
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
DrDeepaChauhan
 
Normal probability distribution
Normal probability distributionNormal probability distribution
Normal probability distribution
Nadeem Uddin
 
trapezoidal rule.pptx
trapezoidal rule.pptxtrapezoidal rule.pptx
trapezoidal rule.pptx
SatishKotwal
 
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptxformulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
madhanperiyasamy024
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
MAY NURHAYATI
 
07-Convolution.pptx signal spectra and signal processing
07-Convolution.pptx signal spectra and signal processing07-Convolution.pptx signal spectra and signal processing
07-Convolution.pptx signal spectra and signal processing
JordanJohmMallillin
 
Standard normal distribution
Standard normal distributionStandard normal distribution
Standard normal distribution
Nadeem Uddin
 
09 numerical integration
09 numerical integration09 numerical integration
09 numerical integration
Mohammad Tawfik
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
Pratik P Chougule
 
Soluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitadosSoluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitados
Márcio Martins
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullah
Ali Abdullah
 
Internal assessment
Internal assessmentInternal assessment
Internal assessment
gokicchi
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
Meenakshisundaram N
 
Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential Equations
Meenakshisundaram N
 
Interpolation In Numerical Methods.
 Interpolation In Numerical Methods. Interpolation In Numerical Methods.
Interpolation In Numerical Methods.
Abu Kaisar
 
differential-calculus-1-23.pdf
differential-calculus-1-23.pdfdifferential-calculus-1-23.pdf
differential-calculus-1-23.pdf
IILSASTOWER
 
Group 7 Evalution Solution.docx
Group 7 Evalution Solution.docxGroup 7 Evalution Solution.docx
Group 7 Evalution Solution.docx
king27740
 
Normal probability distribution
Normal probability distributionNormal probability distribution
Normal probability distribution
Nadeem Uddin
 
trapezoidal rule.pptx
trapezoidal rule.pptxtrapezoidal rule.pptx
trapezoidal rule.pptx
SatishKotwal
 
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptxformulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
madhanperiyasamy024
 
07-Convolution.pptx signal spectra and signal processing
07-Convolution.pptx signal spectra and signal processing07-Convolution.pptx signal spectra and signal processing
07-Convolution.pptx signal spectra and signal processing
JordanJohmMallillin
 
Standard normal distribution
Standard normal distributionStandard normal distribution
Standard normal distribution
Nadeem Uddin
 
09 numerical integration
09 numerical integration09 numerical integration
09 numerical integration
Mohammad Tawfik
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
Pratik P Chougule
 
Soluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitadosSoluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitados
Márcio Martins
 
Ad

Recently uploaded (20)

Nanometer Metal-Organic-Framework Literature Comparison
Nanometer Metal-Organic-Framework  Literature ComparisonNanometer Metal-Organic-Framework  Literature Comparison
Nanometer Metal-Organic-Framework Literature Comparison
Chris Harding
 
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
PawachMetharattanara
 
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software ApplicationsJacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia
 
Frontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend EngineersFrontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend Engineers
Michael Hertzberg
 
hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .
NABLAS株式会社
 
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdfLittle Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
gori42199
 
Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025
Antonin Danalet
 
Modeling the Influence of Environmental Factors on Concrete Evaporation Rate
Modeling the Influence of Environmental Factors on Concrete Evaporation RateModeling the Influence of Environmental Factors on Concrete Evaporation Rate
Modeling the Influence of Environmental Factors on Concrete Evaporation Rate
Journal of Soft Computing in Civil Engineering
 
twin tower attack 2001 new york city
twin  tower  attack  2001 new  york citytwin  tower  attack  2001 new  york city
twin tower attack 2001 new york city
harishreemavs
 
Working with USDOT UTCs: From Conception to Implementation
Working with USDOT UTCs: From Conception to ImplementationWorking with USDOT UTCs: From Conception to Implementation
Working with USDOT UTCs: From Conception to Implementation
Alabama Transportation Assistance Program
 
Machine foundation notes for civil engineering students
Machine foundation notes for civil engineering studentsMachine foundation notes for civil engineering students
Machine foundation notes for civil engineering students
DYPCET
 
Water Industry Process Automation & Control Monthly May 2025
Water Industry Process Automation & Control Monthly May 2025Water Industry Process Automation & Control Monthly May 2025
Water Industry Process Automation & Control Monthly May 2025
Water Industry Process Automation & Control
 
introduction technology technology tec.pptx
introduction technology technology tec.pptxintroduction technology technology tec.pptx
introduction technology technology tec.pptx
Iftikhar70
 
SICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introductionSICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introduction
fabienklr
 
Autodesk Fusion 2025 Tutorial: User Interface
Autodesk Fusion 2025 Tutorial: User InterfaceAutodesk Fusion 2025 Tutorial: User Interface
Autodesk Fusion 2025 Tutorial: User Interface
Atif Razi
 
DED KOMINFO detail engginering design gedung
DED KOMINFO detail engginering design gedungDED KOMINFO detail engginering design gedung
DED KOMINFO detail engginering design gedung
nabilarizqifadhilah1
 
Control Methods of Noise Pollutions.pptx
Control Methods of Noise Pollutions.pptxControl Methods of Noise Pollutions.pptx
Control Methods of Noise Pollutions.pptx
vvsasane
 
22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf
22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf
22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf
Guru Nanak Technical Institutions
 
JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...
JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...
JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...
Reflections on Morality, Philosophy, and History
 
ML_Unit_VI_DEEP LEARNING_Introduction to ANN.pdf
ML_Unit_VI_DEEP LEARNING_Introduction to ANN.pdfML_Unit_VI_DEEP LEARNING_Introduction to ANN.pdf
ML_Unit_VI_DEEP LEARNING_Introduction to ANN.pdf
rameshwarchintamani
 
Nanometer Metal-Organic-Framework Literature Comparison
Nanometer Metal-Organic-Framework  Literature ComparisonNanometer Metal-Organic-Framework  Literature Comparison
Nanometer Metal-Organic-Framework Literature Comparison
Chris Harding
 
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
PawachMetharattanara
 
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software ApplicationsJacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia
 
Frontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend EngineersFrontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend Engineers
Michael Hertzberg
 
hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .
NABLAS株式会社
 
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdfLittle Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
gori42199
 
Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025
Antonin Danalet
 
twin tower attack 2001 new york city
twin  tower  attack  2001 new  york citytwin  tower  attack  2001 new  york city
twin tower attack 2001 new york city
harishreemavs
 
Machine foundation notes for civil engineering students
Machine foundation notes for civil engineering studentsMachine foundation notes for civil engineering students
Machine foundation notes for civil engineering students
DYPCET
 
introduction technology technology tec.pptx
introduction technology technology tec.pptxintroduction technology technology tec.pptx
introduction technology technology tec.pptx
Iftikhar70
 
SICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introductionSICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introduction
fabienklr
 
Autodesk Fusion 2025 Tutorial: User Interface
Autodesk Fusion 2025 Tutorial: User InterfaceAutodesk Fusion 2025 Tutorial: User Interface
Autodesk Fusion 2025 Tutorial: User Interface
Atif Razi
 
DED KOMINFO detail engginering design gedung
DED KOMINFO detail engginering design gedungDED KOMINFO detail engginering design gedung
DED KOMINFO detail engginering design gedung
nabilarizqifadhilah1
 
Control Methods of Noise Pollutions.pptx
Control Methods of Noise Pollutions.pptxControl Methods of Noise Pollutions.pptx
Control Methods of Noise Pollutions.pptx
vvsasane
 
ML_Unit_VI_DEEP LEARNING_Introduction to ANN.pdf
ML_Unit_VI_DEEP LEARNING_Introduction to ANN.pdfML_Unit_VI_DEEP LEARNING_Introduction to ANN.pdf
ML_Unit_VI_DEEP LEARNING_Introduction to ANN.pdf
rameshwarchintamani
 
Ad

Newton’s Forward & backward interpolation

  • 2. NEWTON’S FORWARD INTERPOLATION • Formula of Newton’s Forward Interpolation 𝑦 𝑛 𝑥 = 𝑦0 + 𝑝𝚫𝑦0 + 𝑝(𝑝 − 1) 2! 𝚫2 𝑦0 + 𝑝 𝑝 − 1 𝑝 − 2 3! 𝚫3 𝑦0 + ⋯ + 𝑝 𝑝 − 1 𝑝 − 2 … (𝑝 − 𝑛 + 1) 𝑛! 𝚫 𝑛 𝑦0 Here :- 𝑝 = 𝑥−𝑥0 ℎ
  • 3. EXAMPLE • Find The value Of 𝒕𝒂𝒏 0.12 𝑥 0.10 0.15 0.20 0.25 0.30 𝑦 = 𝑡𝑎𝑛 𝑥 0.1003 0.1511 0.2027 0.2553 0.3093
  • 4. SOLUTION X Y Δ Δ2 Δ3 Δ4 0.10 0.1003 0.0508 0.15 0.1511 0.0008 0.0516 0.0002 0.20 0.2027 0.0010 0.0002 0.0526 0.0004 0.25 0.2553 0.0014 0.0540 0.30 0.3093
  • 5. Applying Newton’s Forward Difference Interpolation Formula. 𝑦 𝑛 𝑥 = 𝑦0 + 𝑝𝚫𝑦0 + 𝑝(𝑝 − 1) 2! 𝚫2 𝑦0 + 𝑝 𝑝 − 1 𝑝 − 2 3! 𝚫3 𝑦0 + 𝑝 𝑝 − 1 𝑝 − 2 (𝑝 − 3) 4! 𝚫4 𝑦0 Here 𝑦 𝑛 𝑥 = tan(0.12) ∴ 𝑝 = 𝑥−𝑥0 ℎ = 0.12−0.10 0.05 = 0.02 0.05 = 0.4 ∴ 𝑦 𝑛 𝑥 = 0.1003 + 0.4 0.0508 + 0.4 0.4−1 2 0.0008 + 0.4 0.4−1 0.4−2 6 0.0002 + 0.4 0.4−1 0.4−2 (0.4−3) 24 0.0002 𝑦 𝑛 𝑥 = 0.1205
  • 6. NEWTON’S BACKEARD INTERPOLATION • Formula of Newton’s Backward Interpolation 𝑦 𝑛 𝑥 = 𝑦 𝑛 + 𝑝𝛁𝑦 𝑛 + 𝑝(𝑝 + 1) 2! 𝛁2 𝑦 𝑛 + ⋯ + 𝑝 𝑝 − 1 … (𝑝 + 𝑛 − 1) 𝑛! 𝛁 𝑛 𝑦 𝑛 Here :- 𝑝 = 𝑥−𝑥𝑛 ℎ
  • 7. EXAMPLE Consider Following Tabular Values Determine y (300) 𝑥 50 100 150 200 250 𝑦 618 724 805 906 1032
  • 8. SOLUTION X Y 𝛁 𝛁2 𝛁3 𝛁4 50 618 106 100 724 -25 81 45 150 805 20 -40 101 5 200 906 5 126 250 1032
  • 9. Applying Newton’s Backward Difference interpolation Formula. 𝑦 𝑛 𝑥 = 𝑦0 + 𝑝𝛁𝑦 𝑛 + 𝑝(𝑝 − 1) 2! 𝛁2 𝑦 𝑛 + 𝑝 𝑝 − 1 𝑝 − 2 3! 𝛁3 𝑦 𝑛 + 𝑝 𝑝 − 1 𝑝 − 2 (𝑝 − 3) 4! 𝛁4 𝑦 𝑛 Here:- 𝑦 𝑛 𝑥 = 𝑦𝑛 300 ∴ 𝑝 = 𝑥−𝑥𝑛 ℎ = 300−250 50 = 1 ∴ 𝑦 𝑛 𝑥 = 1032 + 126 + 1(1+1) 2! 25 + 1 1+1 1+2 3! 5 + 1 1+1 1+2 1+3 4! (−40) = 1032 + 126 + 25 + 5 − 4 𝑦 𝑛 300 = 1148
  翻译: