SlideShare a Scribd company logo
Vincent Sitzmann, SIGGRAPH 2021
Novel View Synthesis for Objects and
Scenes
Neural Rerendering in the Wild, Meshry et al. 2019
Scene Representation Networks, Sitzmann et al. 2019
Neural Volumes,
Lombardi et al. 2019
Deep View, Flynn et al. 2019
Vincent Sitzmann, SIGGRAPH 2021
Goal: Render novel views given sparse set of
observations
+
+
Observations
Image + Pose & Intrinsics
{ ,
,
…
{ Model
Novel Views
Vincent Sitzmann, SIGGRAPH 2021
Training on dataset of images
Differentiab
le Renderer
Scene
Representati
on
Image Loss
Reconstructi
on
Scene Representation + Differentiable Renderer:
Train on images
+ ,
+ ,
…
Observations
Re-Rendered
Observations
, , …
, ,
…
Vincent Sitzmann, SIGGRAPH 2021
How to do few-shot reconstruction?
Differentiab
le Renderer
Scene
Representati
on
Image Loss
Scene Representation + Differentiable Renderer:
Train on images
Prior-based Reconstruction:
If method learns prior, enables few-shot reconstruction!
Single
Observation
+ ?
Prior-Based
Reconstructi
on
Re-Rendered
Observations
, , …
, ,
…
Vincent Sitzmann, SIGGRAPH 2021
Overview
Scene
Representati
on
Multi-Plane Images
Voxelgrids Implicit Function
Renderer
(Alpha) compositing
Volumetric
Ray-based
Sphere-Tracing
Volumetric
Hybrid
Implicit/Explicit
Volumetric
Image-based
Rasterization
Both Scene Representation and Differentiable Renderer often
adapted from traditional computer graphics.
Vincent Sitzmann, SIGGRAPH 2021
Requirements
Scene
Representati
on
Multi-Plane Images
Voxelgrids Implicit Function
Renderer
(Alpha) compositing
Volumetric
Ray-based
Sphere-Tracing
Volumetric
Pros
Cons
Hybrid
Implicit/Explicit
Volumetric
Image-based
Rasterization
Vincent Sitzmann, SIGGRAPH 2021
Voxel-based methods
Lombardi et al., SIGGRAPH 2019
Sitzmann et al., CVPR 2018
DeepVoxels Neural Volumes HoloGAN
Phuoc et al., ICCV 2019
Vincent Sitzmann, SIGGRAPH 2021
Requirements
Scene
Representati
on
Multi-Plane Images
Voxelgrids Implicit Function
Renderer
(Alpha) compositing
Volumetric
Ray-based
Sphere-Tracing
Volumetric
Pros
Cons
“True 3D”
High quality
No reconstruction
priors
Memory O(n3)
Hybrid
Implicit/Explicit
Volumetric
Image-based
Rasterization
Vincent Sitzmann, SIGGRAPH 2021
Requirements
Scene
Representati
on
Multi-Plane Images
Voxelgrids Implicit Function
Renderer
(Alpha) compositing
Volumetric
Ray-based
Sphere-Tracing
Volumetric
Pros
Cons
“True 3D”
High quality
No reconstruction
priors
Memory O(n3)
Hybrid
Implicit/Explicit
Volumetric
Image-based
Rasterization
Vincent Sitzmann, SIGGRAPH 2021
Neural Implicit Approaches
Scene Representation Networks
Generalizes across scenes
Sitzmann et al., NeurIPS 2019
NeRF
Single-scene
Mildenhall et al., ECCV 2020
Implicit Differentiable Renderer
Single-scene
Yariv et al., NeurIPS 2020
Volumetric
• Higher Quality
• Easy convergence
• Very expensive
Near
Far
Sphere tracing
• Faster
• Fewer network evaluations
• Convergence more difficult
Differentiable Volumetric Rendering
Generalizes across scenes
Niemeyer et al., CVPR 2020
Vincent Sitzmann, SIGGRAPH 2021
Dynamic Extensions
Nerfies, Park et al., arXiv 2019
D-NeRF, Pumarola et al. 2020
Neural Radiance Flow, Du et al., arXiv 2020
Neural Scene Flow Fields, Li et al., CVPR 2021
Space-time Neural Irradiance Fields, Xian et al., arXiv 2020
Vincent Sitzmann, SIGGRAPH 2021
Requirements
Scene
Representati
on
Multi-Plane Images
Voxelgrids Implicit Function
Renderer
(Alpha) compositing
Volumetric
Ray-based
Sphere-Tracing
Volumetric
Pros
Cons
“True 3D”
High quality
No reconstruction
priors
Memory O(n3)
Hybrid
Implicit/Explicit
Volumetric
Image-based
Rasterization
True 3D
High quality
Compact
Admits global priors
Extremely expensive,
slow rendering
Vincent Sitzmann, SIGGRAPH 2021
Requirements
Scene
Representati
on
Multi-Plane Images
Voxelgrids Implicit Function
Renderer
(Alpha) compositing
Volumetric
Ray-based
Sphere-Tracing
Volumetric
Pros
Cons
“True 3D”
High quality
No reconstruction
priors
Memory O(n3)
Hybrid
Implicit/Explicit
Volumetric
Image-based
Rasterization
True 3D
High quality
Compact
Admits global priors
Extremely expensive,
slow rendering
Vincent Sitzmann, SIGGRAPH 2021
Hybrid Implicit / Explicit
PiFU, Saito et al., ICCV 2019
GRF, Trevithick et al., arXiv 2020
pixelNeRF, Yu et. al., CVPR 2021
MVSNerf, Chen et al., arXiv 2021
Learn local (image patch-based) priors
Neural Sparse Voxel Fields,
Liu et. al., NeurIPS 2020
Unconstrained Scene Generation with
Locally Conditioned Radiance Fields,
DeVries et al., arXiv 2021
Vincent Sitzmann, SIGGRAPH 2021
Requirements
Scene
Representati
on
Multi-Plane Images
Voxelgrids Implicit Function
Renderer
(Alpha) compositing
Volumetric
Ray-based
Sphere-Tracing
Volumetric
Pros
Cons
“True 3D”
High quality
No reconstruction
priors
Memory O(n3)
Hybrid
Implicit/Explicit
Volumetric
Image-based
Rasterization
True 3D
High quality
Compact
Admits global priors
Extremely expensive,
slow rendering
Significant Speedup
Admits local priors
No compact
representation
No global priors
Vincent Sitzmann, SIGGRAPH 2021
Requirements
Scene
Representati
on
Multi-Plane Images
Voxelgrids Implicit Function
Renderer
(Alpha) compositing
Volumetric
Ray-based
Sphere-Tracing
Volumetric
Pros
Cons
“True 3D”
High quality
No reconstruction
priors
Memory O(n3)
Hybrid
Implicit/Explicit
Volumetric
Image-based
Rasterization
True 3D
High quality
Compact
Admits global priors
Extremely expensive,
slow rendering
Significant Speedup
Admits local priors
No compact
representation
No global priors
Vincent Sitzmann, SIGGRAPH 2021
Requirements
Scene
Representati
on
Multi-Plane Images
Voxelgrids Implicit Function
Renderer
(Alpha) compositing
Volumetric
Ray-based
Sphere-Tracing
Volumetric
Pros
Cons
“True 3D”
High quality
No reconstruction
priors
Memory O(n3)
Hybrid
Implicit/Explicit
Volumetric
Image-based
Rasterization
True 3D
High quality
Compact
Admits global priors
Extremely expensive,
slow rendering
Significant Speedup
Admits local priors
No compact
representation
No global priors
High-quality
Fast
Large Size
Only 2.5D
Vincent Sitzmann, SIGGRAPH 2021
Requirements
Scene
Representati
on
Multi-Plane Images
Voxelgrids Implicit Function
Renderer
(Alpha) compositing
Volumetric
Ray-based
Sphere-Tracing
Volumetric
Pros
Cons
“True 3D”
High quality
No reconstruction
priors
Memory O(n3)
Hybrid
Implicit/Explicit
Volumetric
Image-based
Rasterization
True 3D
High quality
Compact
Admits global priors
Extremely expensive,
slow rendering
Significant Speedup
Admits local priors
High-quality
Fast
Large Size
Only 2.5D
No compact
representation
No global priors
Vincent Sitzmann, SIGGRAPH 2021
Image-based methods
Stable View Synthesis
Riegler et al., CVPR 2021
IBRNet, Wang et al., CVPR 2021
Vincent Sitzmann, SIGGRAPH 2021
Requirements
Scene
Representati
on
Multi-Plane Images
Voxelgrids Implicit Function
Renderer
(Alpha) compositing
Volumetric
Ray-based
Sphere-Tracing
Volumetric
Pros
Cons
“True 3D”
High quality
No reconstruction
priors
Memory O(n3)
Hybrid
Implicit/Explicit
Volumetric
Image-based
Rasterization /
Volumetric
True 3D
High quality
Compact
Admits global priors
Extremely expensive,
slow rendering
Significant Speedup
Admits local priors
No compact
representation
No global priors
Memory O(n3)
High-quality
Fast
Large Size
Only 2.5D
High-quality
Fast
Not compact:
Needs source images.
Vincent Sitzmann, SIGGRAPH 2021
Summary: Open Challenges
Expensive Rendering
• Rendering requires hundreds of samples per ray – at train and test time.
• How to do non-Lambertian effects? Multi-bounce barely tractable.
Generalization
• Local conditioning enables stronger generalization, but doesn’t learn
object-/scene-centric representations. Can we have both?
Scene Understanding
• Lots of important applications outside of computer graphics worth
exploring!
Ad

More Related Content

What's hot (20)

[DL輪読会]Few-Shot Unsupervised Image-to-Image Translation
[DL輪読会]Few-Shot Unsupervised Image-to-Image Translation[DL輪読会]Few-Shot Unsupervised Image-to-Image Translation
[DL輪読会]Few-Shot Unsupervised Image-to-Image Translation
Deep Learning JP
 
Physically Based and Unified Volumetric Rendering in Frostbite
Physically Based and Unified Volumetric Rendering in FrostbitePhysically Based and Unified Volumetric Rendering in Frostbite
Physically Based and Unified Volumetric Rendering in Frostbite
Electronic Arts / DICE
 
Graphics Gems from CryENGINE 3 (Siggraph 2013)
Graphics Gems from CryENGINE 3 (Siggraph 2013)Graphics Gems from CryENGINE 3 (Siggraph 2013)
Graphics Gems from CryENGINE 3 (Siggraph 2013)
Tiago Sousa
 
Photogrammetry and Star Wars Battlefront
Photogrammetry and Star Wars BattlefrontPhotogrammetry and Star Wars Battlefront
Photogrammetry and Star Wars Battlefront
Electronic Arts / DICE
 
Ndc2010 전형규 마비노기2 캐릭터 렌더링 기술
Ndc2010 전형규   마비노기2 캐릭터 렌더링 기술Ndc2010 전형규   마비노기2 캐릭터 렌더링 기술
Ndc2010 전형규 마비노기2 캐릭터 렌더링 기술
henjeon
 
Neural Radiance Fields & Neural Rendering.pdf
Neural Radiance Fields & Neural Rendering.pdfNeural Radiance Fields & Neural Rendering.pdf
Neural Radiance Fields & Neural Rendering.pdf
NavneetPaul2
 
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashi
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashiコンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashi
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashi
Masaki Hayashi
 
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Deep Learning JP
 
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View SynthesisPR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Hyeongmin Lee
 
【DL輪読会】Monocular real time volumetric performance capture
【DL輪読会】Monocular real time volumetric performance capture 【DL輪読会】Monocular real time volumetric performance capture
【DL輪読会】Monocular real time volumetric performance capture
Deep Learning JP
 
Bindless Deferred Decals in The Surge 2
Bindless Deferred Decals in The Surge 2Bindless Deferred Decals in The Surge 2
Bindless Deferred Decals in The Surge 2
Philip Hammer
 
BRDFモデルの変遷
BRDFモデルの変遷BRDFモデルの変遷
BRDFモデルの変遷
Teppei Kurita
 
大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成
大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成
大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成
MobileRoboticsResear
 
Z Buffer Optimizations
Z Buffer OptimizationsZ Buffer Optimizations
Z Buffer Optimizations
pjcozzi
 
DD18 - SEED - Raytracing in Hybrid Real-Time Rendering
DD18 - SEED - Raytracing in Hybrid Real-Time RenderingDD18 - SEED - Raytracing in Hybrid Real-Time Rendering
DD18 - SEED - Raytracing in Hybrid Real-Time Rendering
Electronic Arts / DICE
 
Random Forests
Random ForestsRandom Forests
Random Forests
Hironobu Fujiyoshi
 
Texture-Aware Superpixel Segmentation
Texture-Aware Superpixel SegmentationTexture-Aware Superpixel Segmentation
Texture-Aware Superpixel Segmentation
yukihiro domae
 
Massive Point Light Soft Shadows
Massive Point Light Soft ShadowsMassive Point Light Soft Shadows
Massive Point Light Soft Shadows
Wolfgang Engel
 
【Unite Tokyo 2018】『崩壊3rd』開発者が語るアニメ風レンダリングの極意
【Unite Tokyo 2018】『崩壊3rd』開発者が語るアニメ風レンダリングの極意【Unite Tokyo 2018】『崩壊3rd』開発者が語るアニメ風レンダリングの極意
【Unite Tokyo 2018】『崩壊3rd』開発者が語るアニメ風レンダリングの極意
UnityTechnologiesJapan002
 
三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)
Tomohiro Motoda
 
[DL輪読会]Few-Shot Unsupervised Image-to-Image Translation
[DL輪読会]Few-Shot Unsupervised Image-to-Image Translation[DL輪読会]Few-Shot Unsupervised Image-to-Image Translation
[DL輪読会]Few-Shot Unsupervised Image-to-Image Translation
Deep Learning JP
 
Physically Based and Unified Volumetric Rendering in Frostbite
Physically Based and Unified Volumetric Rendering in FrostbitePhysically Based and Unified Volumetric Rendering in Frostbite
Physically Based and Unified Volumetric Rendering in Frostbite
Electronic Arts / DICE
 
Graphics Gems from CryENGINE 3 (Siggraph 2013)
Graphics Gems from CryENGINE 3 (Siggraph 2013)Graphics Gems from CryENGINE 3 (Siggraph 2013)
Graphics Gems from CryENGINE 3 (Siggraph 2013)
Tiago Sousa
 
Photogrammetry and Star Wars Battlefront
Photogrammetry and Star Wars BattlefrontPhotogrammetry and Star Wars Battlefront
Photogrammetry and Star Wars Battlefront
Electronic Arts / DICE
 
Ndc2010 전형규 마비노기2 캐릭터 렌더링 기술
Ndc2010 전형규   마비노기2 캐릭터 렌더링 기술Ndc2010 전형규   마비노기2 캐릭터 렌더링 기술
Ndc2010 전형규 마비노기2 캐릭터 렌더링 기술
henjeon
 
Neural Radiance Fields & Neural Rendering.pdf
Neural Radiance Fields & Neural Rendering.pdfNeural Radiance Fields & Neural Rendering.pdf
Neural Radiance Fields & Neural Rendering.pdf
NavneetPaul2
 
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashi
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashiコンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashi
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashi
Masaki Hayashi
 
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Deep Learning JP
 
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View SynthesisPR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
PR-302: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Hyeongmin Lee
 
【DL輪読会】Monocular real time volumetric performance capture
【DL輪読会】Monocular real time volumetric performance capture 【DL輪読会】Monocular real time volumetric performance capture
【DL輪読会】Monocular real time volumetric performance capture
Deep Learning JP
 
Bindless Deferred Decals in The Surge 2
Bindless Deferred Decals in The Surge 2Bindless Deferred Decals in The Surge 2
Bindless Deferred Decals in The Surge 2
Philip Hammer
 
BRDFモデルの変遷
BRDFモデルの変遷BRDFモデルの変遷
BRDFモデルの変遷
Teppei Kurita
 
大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成
大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成
大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成
MobileRoboticsResear
 
Z Buffer Optimizations
Z Buffer OptimizationsZ Buffer Optimizations
Z Buffer Optimizations
pjcozzi
 
DD18 - SEED - Raytracing in Hybrid Real-Time Rendering
DD18 - SEED - Raytracing in Hybrid Real-Time RenderingDD18 - SEED - Raytracing in Hybrid Real-Time Rendering
DD18 - SEED - Raytracing in Hybrid Real-Time Rendering
Electronic Arts / DICE
 
Texture-Aware Superpixel Segmentation
Texture-Aware Superpixel SegmentationTexture-Aware Superpixel Segmentation
Texture-Aware Superpixel Segmentation
yukihiro domae
 
Massive Point Light Soft Shadows
Massive Point Light Soft ShadowsMassive Point Light Soft Shadows
Massive Point Light Soft Shadows
Wolfgang Engel
 
【Unite Tokyo 2018】『崩壊3rd』開発者が語るアニメ風レンダリングの極意
【Unite Tokyo 2018】『崩壊3rd』開発者が語るアニメ風レンダリングの極意【Unite Tokyo 2018】『崩壊3rd』開発者が語るアニメ風レンダリングの極意
【Unite Tokyo 2018】『崩壊3rd』開発者が語るアニメ風レンダリングの極意
UnityTechnologiesJapan002
 
三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)
Tomohiro Motoda
 

Similar to Neural Scene Representation & Rendering: Introduction to Novel View Synthesis (20)

Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Rep...
Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Rep...Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Rep...
Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Rep...
Vincent Sitzmann
 
Svr Raskar
Svr RaskarSvr Raskar
Svr Raskar
Camera Culture Group, MIT Media Lab
 
Light Field Networks: Neural Scene Representations with Single-Evaluation Ren...
Light Field Networks: Neural Scene Representations with Single-Evaluation Ren...Light Field Networks: Neural Scene Representations with Single-Evaluation Ren...
Light Field Networks: Neural Scene Representations with Single-Evaluation Ren...
Vincent Sitzmann
 
HR3D: Content Adaptive Parallax Barriers
HR3D: Content Adaptive Parallax BarriersHR3D: Content Adaptive Parallax Barriers
HR3D: Content Adaptive Parallax Barriers
Matt Hirsch - MIT Media Lab
 
Interactive Refractions And Caustics Using Image Space Techniques
Interactive Refractions And Caustics Using Image Space TechniquesInteractive Refractions And Caustics Using Image Space Techniques
Interactive Refractions And Caustics Using Image Space Techniques
codevania
 
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)
Matthew O'Toole
 
Shadow Techniques for Real-Time and Interactive Applications
Shadow Techniques for Real-Time and Interactive ApplicationsShadow Techniques for Real-Time and Interactive Applications
Shadow Techniques for Real-Time and Interactive Applications
stefan_b
 
Raskar Npar04final
Raskar Npar04finalRaskar Npar04final
Raskar Npar04final
Camera Culture Group, MIT Media Lab
 
Lightspeed SIGGRAPH talk
Lightspeed SIGGRAPH talkLightspeed SIGGRAPH talk
Lightspeed SIGGRAPH talk
Jonathan Ragan-Kelley
 
On constructing z dimensional Image By DIBR Synthesized Images
On constructing z dimensional Image By DIBR Synthesized ImagesOn constructing z dimensional Image By DIBR Synthesized Images
On constructing z dimensional Image By DIBR Synthesized Images
Jayakrishnan U
 
PapersWeLove - Rendering Synthetic Objects Into Real Scenes - Paul Debevec.pdf
PapersWeLove - Rendering Synthetic Objects Into Real Scenes - Paul Debevec.pdfPapersWeLove - Rendering Synthetic Objects Into Real Scenes - Paul Debevec.pdf
PapersWeLove - Rendering Synthetic Objects Into Real Scenes - Paul Debevec.pdf
Adam Hill
 
Shadow Mapping with Today's OpenGL Hardware
Shadow Mapping with Today's OpenGL HardwareShadow Mapping with Today's OpenGL Hardware
Shadow Mapping with Today's OpenGL Hardware
Mark Kilgard
 
5 ray casting computer graphics
5 ray casting computer graphics5 ray casting computer graphics
5 ray casting computer graphics
cairo university
 
Computer Graphics Part1
Computer Graphics Part1Computer Graphics Part1
Computer Graphics Part1
qpqpqp
 
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 
AR/SLAM for end-users
AR/SLAM for end-usersAR/SLAM for end-users
AR/SLAM for end-users
Rakuten Group, Inc.
 
Shadow Caster Culling for Efficient Shadow Mapping (Authors: Jiří Bittner, Ol...
Shadow Caster Culling for Efficient Shadow Mapping (Authors: Jiří Bittner, Ol...Shadow Caster Culling for Efficient Shadow Mapping (Authors: Jiří Bittner, Ol...
Shadow Caster Culling for Efficient Shadow Mapping (Authors: Jiří Bittner, Ol...
Umbra
 
Raskar Computational Camera Fall 2009 Lecture 01
Raskar Computational Camera Fall 2009 Lecture 01Raskar Computational Camera Fall 2009 Lecture 01
Raskar Computational Camera Fall 2009 Lecture 01
Camera Culture Group, MIT Media Lab
 
Advanced Lighting for Interactive Applications
Advanced Lighting for Interactive ApplicationsAdvanced Lighting for Interactive Applications
Advanced Lighting for Interactive Applications
stefan_b
 
Visual Environment by Semantic Segmentation Using Deep Learning: A Prototype ...
Visual Environment by Semantic Segmentation Using Deep Learning: A Prototype ...Visual Environment by Semantic Segmentation Using Deep Learning: A Prototype ...
Visual Environment by Semantic Segmentation Using Deep Learning: A Prototype ...
Tomohiro Fukuda
 
Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Rep...
Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Rep...Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Rep...
Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Rep...
Vincent Sitzmann
 
Light Field Networks: Neural Scene Representations with Single-Evaluation Ren...
Light Field Networks: Neural Scene Representations with Single-Evaluation Ren...Light Field Networks: Neural Scene Representations with Single-Evaluation Ren...
Light Field Networks: Neural Scene Representations with Single-Evaluation Ren...
Vincent Sitzmann
 
Interactive Refractions And Caustics Using Image Space Techniques
Interactive Refractions And Caustics Using Image Space TechniquesInteractive Refractions And Caustics Using Image Space Techniques
Interactive Refractions And Caustics Using Image Space Techniques
codevania
 
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)
Matthew O'Toole
 
Shadow Techniques for Real-Time and Interactive Applications
Shadow Techniques for Real-Time and Interactive ApplicationsShadow Techniques for Real-Time and Interactive Applications
Shadow Techniques for Real-Time and Interactive Applications
stefan_b
 
On constructing z dimensional Image By DIBR Synthesized Images
On constructing z dimensional Image By DIBR Synthesized ImagesOn constructing z dimensional Image By DIBR Synthesized Images
On constructing z dimensional Image By DIBR Synthesized Images
Jayakrishnan U
 
PapersWeLove - Rendering Synthetic Objects Into Real Scenes - Paul Debevec.pdf
PapersWeLove - Rendering Synthetic Objects Into Real Scenes - Paul Debevec.pdfPapersWeLove - Rendering Synthetic Objects Into Real Scenes - Paul Debevec.pdf
PapersWeLove - Rendering Synthetic Objects Into Real Scenes - Paul Debevec.pdf
Adam Hill
 
Shadow Mapping with Today's OpenGL Hardware
Shadow Mapping with Today's OpenGL HardwareShadow Mapping with Today's OpenGL Hardware
Shadow Mapping with Today's OpenGL Hardware
Mark Kilgard
 
5 ray casting computer graphics
5 ray casting computer graphics5 ray casting computer graphics
5 ray casting computer graphics
cairo university
 
Computer Graphics Part1
Computer Graphics Part1Computer Graphics Part1
Computer Graphics Part1
qpqpqp
 
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Content-Based Image Retrieval (D2L6 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 
Shadow Caster Culling for Efficient Shadow Mapping (Authors: Jiří Bittner, Ol...
Shadow Caster Culling for Efficient Shadow Mapping (Authors: Jiří Bittner, Ol...Shadow Caster Culling for Efficient Shadow Mapping (Authors: Jiří Bittner, Ol...
Shadow Caster Culling for Efficient Shadow Mapping (Authors: Jiří Bittner, Ol...
Umbra
 
Advanced Lighting for Interactive Applications
Advanced Lighting for Interactive ApplicationsAdvanced Lighting for Interactive Applications
Advanced Lighting for Interactive Applications
stefan_b
 
Visual Environment by Semantic Segmentation Using Deep Learning: A Prototype ...
Visual Environment by Semantic Segmentation Using Deep Learning: A Prototype ...Visual Environment by Semantic Segmentation Using Deep Learning: A Prototype ...
Visual Environment by Semantic Segmentation Using Deep Learning: A Prototype ...
Tomohiro Fukuda
 
Ad

Recently uploaded (20)

External Application in Homoeopathy- Definition,Scope and Types.
External Application  in Homoeopathy- Definition,Scope and Types.External Application  in Homoeopathy- Definition,Scope and Types.
External Application in Homoeopathy- Definition,Scope and Types.
AdharshnaPatrick
 
The Microbial World. Microbiology , Microbes, infections
The Microbial World. Microbiology , Microbes, infectionsThe Microbial World. Microbiology , Microbes, infections
The Microbial World. Microbiology , Microbes, infections
NABIHANAEEM2
 
Eric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptxEric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptx
ttalbert1
 
Sleep_physiology_types_duration_underlying mech.
Sleep_physiology_types_duration_underlying mech.Sleep_physiology_types_duration_underlying mech.
Sleep_physiology_types_duration_underlying mech.
klynct
 
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.pptSULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
HRUTUJA WAGH
 
CORONARY ARTERY BYPASS GRAFTING (1).pptx
CORONARY ARTERY BYPASS GRAFTING (1).pptxCORONARY ARTERY BYPASS GRAFTING (1).pptx
CORONARY ARTERY BYPASS GRAFTING (1).pptx
DharaniJajula
 
Mycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes FungiMycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes Fungi
SAYANTANMALLICK5
 
Proprioceptors_ receptors of muscle_tendon
Proprioceptors_ receptors of muscle_tendonProprioceptors_ receptors of muscle_tendon
Proprioceptors_ receptors of muscle_tendon
klynct
 
Freshwater Biome Types, Characteristics and Factors
Freshwater Biome Types, Characteristics and FactorsFreshwater Biome Types, Characteristics and Factors
Freshwater Biome Types, Characteristics and Factors
mytriplemonlineshop
 
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptxSiver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
PriyaAntil3
 
Hypothalamus_structure_nuclei_ functions.pptx
Hypothalamus_structure_nuclei_ functions.pptxHypothalamus_structure_nuclei_ functions.pptx
Hypothalamus_structure_nuclei_ functions.pptx
klynct
 
Introduction to Black Hole and how its formed
Introduction to Black Hole and how its formedIntroduction to Black Hole and how its formed
Introduction to Black Hole and how its formed
MSafiullahALawi
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
Study in Pink (forensic case study of Death)
Study in Pink (forensic case study of Death)Study in Pink (forensic case study of Death)
Study in Pink (forensic case study of Death)
memesologiesxd
 
Controls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene ExpressionControls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene Expression
NABIHANAEEM2
 
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptxA CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
ANJALICHANDRASEKARAN
 
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Sérgio Sacani
 
Funakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalogFunakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalog
fu7koshi
 
Animal Models for Biological and Clinical Research ppt 2.pptx
Animal Models for Biological and Clinical Research ppt 2.pptxAnimal Models for Biological and Clinical Research ppt 2.pptx
Animal Models for Biological and Clinical Research ppt 2.pptx
MahitaLaveti
 
Pharmacologically active constituents.pdf
Pharmacologically active constituents.pdfPharmacologically active constituents.pdf
Pharmacologically active constituents.pdf
Nistarini College, Purulia (W.B) India
 
External Application in Homoeopathy- Definition,Scope and Types.
External Application  in Homoeopathy- Definition,Scope and Types.External Application  in Homoeopathy- Definition,Scope and Types.
External Application in Homoeopathy- Definition,Scope and Types.
AdharshnaPatrick
 
The Microbial World. Microbiology , Microbes, infections
The Microbial World. Microbiology , Microbes, infectionsThe Microbial World. Microbiology , Microbes, infections
The Microbial World. Microbiology , Microbes, infections
NABIHANAEEM2
 
Eric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptxEric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptx
ttalbert1
 
Sleep_physiology_types_duration_underlying mech.
Sleep_physiology_types_duration_underlying mech.Sleep_physiology_types_duration_underlying mech.
Sleep_physiology_types_duration_underlying mech.
klynct
 
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.pptSULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
HRUTUJA WAGH
 
CORONARY ARTERY BYPASS GRAFTING (1).pptx
CORONARY ARTERY BYPASS GRAFTING (1).pptxCORONARY ARTERY BYPASS GRAFTING (1).pptx
CORONARY ARTERY BYPASS GRAFTING (1).pptx
DharaniJajula
 
Mycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes FungiMycology:Characteristics of Ascomycetes Fungi
Mycology:Characteristics of Ascomycetes Fungi
SAYANTANMALLICK5
 
Proprioceptors_ receptors of muscle_tendon
Proprioceptors_ receptors of muscle_tendonProprioceptors_ receptors of muscle_tendon
Proprioceptors_ receptors of muscle_tendon
klynct
 
Freshwater Biome Types, Characteristics and Factors
Freshwater Biome Types, Characteristics and FactorsFreshwater Biome Types, Characteristics and Factors
Freshwater Biome Types, Characteristics and Factors
mytriplemonlineshop
 
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptxSiver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
PriyaAntil3
 
Hypothalamus_structure_nuclei_ functions.pptx
Hypothalamus_structure_nuclei_ functions.pptxHypothalamus_structure_nuclei_ functions.pptx
Hypothalamus_structure_nuclei_ functions.pptx
klynct
 
Introduction to Black Hole and how its formed
Introduction to Black Hole and how its formedIntroduction to Black Hole and how its formed
Introduction to Black Hole and how its formed
MSafiullahALawi
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
Study in Pink (forensic case study of Death)
Study in Pink (forensic case study of Death)Study in Pink (forensic case study of Death)
Study in Pink (forensic case study of Death)
memesologiesxd
 
Controls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene ExpressionControls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene Expression
NABIHANAEEM2
 
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptxA CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
ANJALICHANDRASEKARAN
 
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Sérgio Sacani
 
Funakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalogFunakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalog
fu7koshi
 
Animal Models for Biological and Clinical Research ppt 2.pptx
Animal Models for Biological and Clinical Research ppt 2.pptxAnimal Models for Biological and Clinical Research ppt 2.pptx
Animal Models for Biological and Clinical Research ppt 2.pptx
MahitaLaveti
 
Ad

Neural Scene Representation & Rendering: Introduction to Novel View Synthesis

  • 1. Vincent Sitzmann, SIGGRAPH 2021 Novel View Synthesis for Objects and Scenes Neural Rerendering in the Wild, Meshry et al. 2019 Scene Representation Networks, Sitzmann et al. 2019 Neural Volumes, Lombardi et al. 2019 Deep View, Flynn et al. 2019
  • 2. Vincent Sitzmann, SIGGRAPH 2021 Goal: Render novel views given sparse set of observations + + Observations Image + Pose & Intrinsics { , , … { Model Novel Views
  • 3. Vincent Sitzmann, SIGGRAPH 2021 Training on dataset of images Differentiab le Renderer Scene Representati on Image Loss Reconstructi on Scene Representation + Differentiable Renderer: Train on images + , + , … Observations Re-Rendered Observations , , … , , …
  • 4. Vincent Sitzmann, SIGGRAPH 2021 How to do few-shot reconstruction? Differentiab le Renderer Scene Representati on Image Loss Scene Representation + Differentiable Renderer: Train on images Prior-based Reconstruction: If method learns prior, enables few-shot reconstruction! Single Observation + ? Prior-Based Reconstructi on Re-Rendered Observations , , … , , …
  • 5. Vincent Sitzmann, SIGGRAPH 2021 Overview Scene Representati on Multi-Plane Images Voxelgrids Implicit Function Renderer (Alpha) compositing Volumetric Ray-based Sphere-Tracing Volumetric Hybrid Implicit/Explicit Volumetric Image-based Rasterization Both Scene Representation and Differentiable Renderer often adapted from traditional computer graphics.
  • 6. Vincent Sitzmann, SIGGRAPH 2021 Requirements Scene Representati on Multi-Plane Images Voxelgrids Implicit Function Renderer (Alpha) compositing Volumetric Ray-based Sphere-Tracing Volumetric Pros Cons Hybrid Implicit/Explicit Volumetric Image-based Rasterization
  • 7. Vincent Sitzmann, SIGGRAPH 2021 Voxel-based methods Lombardi et al., SIGGRAPH 2019 Sitzmann et al., CVPR 2018 DeepVoxels Neural Volumes HoloGAN Phuoc et al., ICCV 2019
  • 8. Vincent Sitzmann, SIGGRAPH 2021 Requirements Scene Representati on Multi-Plane Images Voxelgrids Implicit Function Renderer (Alpha) compositing Volumetric Ray-based Sphere-Tracing Volumetric Pros Cons “True 3D” High quality No reconstruction priors Memory O(n3) Hybrid Implicit/Explicit Volumetric Image-based Rasterization
  • 9. Vincent Sitzmann, SIGGRAPH 2021 Requirements Scene Representati on Multi-Plane Images Voxelgrids Implicit Function Renderer (Alpha) compositing Volumetric Ray-based Sphere-Tracing Volumetric Pros Cons “True 3D” High quality No reconstruction priors Memory O(n3) Hybrid Implicit/Explicit Volumetric Image-based Rasterization
  • 10. Vincent Sitzmann, SIGGRAPH 2021 Neural Implicit Approaches Scene Representation Networks Generalizes across scenes Sitzmann et al., NeurIPS 2019 NeRF Single-scene Mildenhall et al., ECCV 2020 Implicit Differentiable Renderer Single-scene Yariv et al., NeurIPS 2020 Volumetric • Higher Quality • Easy convergence • Very expensive Near Far Sphere tracing • Faster • Fewer network evaluations • Convergence more difficult Differentiable Volumetric Rendering Generalizes across scenes Niemeyer et al., CVPR 2020
  • 11. Vincent Sitzmann, SIGGRAPH 2021 Dynamic Extensions Nerfies, Park et al., arXiv 2019 D-NeRF, Pumarola et al. 2020 Neural Radiance Flow, Du et al., arXiv 2020 Neural Scene Flow Fields, Li et al., CVPR 2021 Space-time Neural Irradiance Fields, Xian et al., arXiv 2020
  • 12. Vincent Sitzmann, SIGGRAPH 2021 Requirements Scene Representati on Multi-Plane Images Voxelgrids Implicit Function Renderer (Alpha) compositing Volumetric Ray-based Sphere-Tracing Volumetric Pros Cons “True 3D” High quality No reconstruction priors Memory O(n3) Hybrid Implicit/Explicit Volumetric Image-based Rasterization True 3D High quality Compact Admits global priors Extremely expensive, slow rendering
  • 13. Vincent Sitzmann, SIGGRAPH 2021 Requirements Scene Representati on Multi-Plane Images Voxelgrids Implicit Function Renderer (Alpha) compositing Volumetric Ray-based Sphere-Tracing Volumetric Pros Cons “True 3D” High quality No reconstruction priors Memory O(n3) Hybrid Implicit/Explicit Volumetric Image-based Rasterization True 3D High quality Compact Admits global priors Extremely expensive, slow rendering
  • 14. Vincent Sitzmann, SIGGRAPH 2021 Hybrid Implicit / Explicit PiFU, Saito et al., ICCV 2019 GRF, Trevithick et al., arXiv 2020 pixelNeRF, Yu et. al., CVPR 2021 MVSNerf, Chen et al., arXiv 2021 Learn local (image patch-based) priors Neural Sparse Voxel Fields, Liu et. al., NeurIPS 2020 Unconstrained Scene Generation with Locally Conditioned Radiance Fields, DeVries et al., arXiv 2021
  • 15. Vincent Sitzmann, SIGGRAPH 2021 Requirements Scene Representati on Multi-Plane Images Voxelgrids Implicit Function Renderer (Alpha) compositing Volumetric Ray-based Sphere-Tracing Volumetric Pros Cons “True 3D” High quality No reconstruction priors Memory O(n3) Hybrid Implicit/Explicit Volumetric Image-based Rasterization True 3D High quality Compact Admits global priors Extremely expensive, slow rendering Significant Speedup Admits local priors No compact representation No global priors
  • 16. Vincent Sitzmann, SIGGRAPH 2021 Requirements Scene Representati on Multi-Plane Images Voxelgrids Implicit Function Renderer (Alpha) compositing Volumetric Ray-based Sphere-Tracing Volumetric Pros Cons “True 3D” High quality No reconstruction priors Memory O(n3) Hybrid Implicit/Explicit Volumetric Image-based Rasterization True 3D High quality Compact Admits global priors Extremely expensive, slow rendering Significant Speedup Admits local priors No compact representation No global priors
  • 17. Vincent Sitzmann, SIGGRAPH 2021 Requirements Scene Representati on Multi-Plane Images Voxelgrids Implicit Function Renderer (Alpha) compositing Volumetric Ray-based Sphere-Tracing Volumetric Pros Cons “True 3D” High quality No reconstruction priors Memory O(n3) Hybrid Implicit/Explicit Volumetric Image-based Rasterization True 3D High quality Compact Admits global priors Extremely expensive, slow rendering Significant Speedup Admits local priors No compact representation No global priors High-quality Fast Large Size Only 2.5D
  • 18. Vincent Sitzmann, SIGGRAPH 2021 Requirements Scene Representati on Multi-Plane Images Voxelgrids Implicit Function Renderer (Alpha) compositing Volumetric Ray-based Sphere-Tracing Volumetric Pros Cons “True 3D” High quality No reconstruction priors Memory O(n3) Hybrid Implicit/Explicit Volumetric Image-based Rasterization True 3D High quality Compact Admits global priors Extremely expensive, slow rendering Significant Speedup Admits local priors High-quality Fast Large Size Only 2.5D No compact representation No global priors
  • 19. Vincent Sitzmann, SIGGRAPH 2021 Image-based methods Stable View Synthesis Riegler et al., CVPR 2021 IBRNet, Wang et al., CVPR 2021
  • 20. Vincent Sitzmann, SIGGRAPH 2021 Requirements Scene Representati on Multi-Plane Images Voxelgrids Implicit Function Renderer (Alpha) compositing Volumetric Ray-based Sphere-Tracing Volumetric Pros Cons “True 3D” High quality No reconstruction priors Memory O(n3) Hybrid Implicit/Explicit Volumetric Image-based Rasterization / Volumetric True 3D High quality Compact Admits global priors Extremely expensive, slow rendering Significant Speedup Admits local priors No compact representation No global priors Memory O(n3) High-quality Fast Large Size Only 2.5D High-quality Fast Not compact: Needs source images.
  • 21. Vincent Sitzmann, SIGGRAPH 2021 Summary: Open Challenges Expensive Rendering • Rendering requires hundreds of samples per ray – at train and test time. • How to do non-Lambertian effects? Multi-bounce barely tractable. Generalization • Local conditioning enables stronger generalization, but doesn’t learn object-/scene-centric representations. Can we have both? Scene Understanding • Lots of important applications outside of computer graphics worth exploring!
  翻译: