Task scheduling plays an important part in the improvement of parallel and distributed systems. The problem of task scheduling has been shown to be NP hard. The time consuming is more to solve the problem in deterministic techniques. There are algorithms developed to schedule tasks for distributed environment, which focus on single objective. The problem becomes more complex, while considering biobjective.This paper presents bi-objective independent task scheduling algorithm using elitist Nondominated
sorting genetic algorithm (NSGA-II) to minimize the makespan and flowtime. This algorithm generates pareto global optimal solutions for this bi-objective task scheduling problem. NSGA-II is implemented by using the set of benchmark instances. The experimental result shows NSGA-II generates efficient optimal schedules.