SlideShare a Scribd company logo
MPI Raspberry pi 3 &
Hadoop cluster
4 nodes
MPI Raspberry pi cluster
 Why MPI
 Hardware Needed
 Software Needed
 Machine File
 MPI Code
 Python Code
 Output
 Finished product
Why MPI?
 Scientist during World War II used the same method of Parallel Computing to
solve mathematical problems in the Manhattan Project.
 reduce the amount of time it took to solve a large mathematical problem.
 the people who performed these calculations were called computers.
 How far can you go with MPI?
Hardware you need
X4 Raspberry pi 3
X5 Ethernet cat 5 cables
X4 micro USB cables
X4 8 GB micro SD
One 5 port Ethernet switch
Option but recommended one 4 port USB power hub
Software Needed
 MPICH
 MPI4PY
 Python to MPI interpreter
Machine File
MPI code
Python code
Output
Finished product
Hadoop
 Hadoop is a framework of tools based on Java that supports running Big Data.
 Inspired from Google’s GFS and MapReduce.
 It is open source.
 Relatively cheap to build.
 Has Fault Tolerant System.
Parts of Hadoop
 Hadoop consists of two main elements,
 HDFS (Hadoop Distributed File System)
 Name Node (Store the directories of all files in the cluster)
 Data Node (Store Data)
 MapReduce
 Job Tracker(Responsible for taking requests from client and assign to TaskTracker)
 Task Tracker(Perform MapReduce in DataNodes/Slave)
HDFS (Hadoop Distributed File System)
MapReduce
Use of Hadoop in Tech World
 Amazon
 Facebook
 Netflix
 eBay
 Twitter etc.
Thank You
Ad

More Related Content

What's hot (20)

Understand and Harness the Capabilities of Intel® Xeon Phi™ Processors
Understand and Harness the Capabilities of Intel® Xeon Phi™ ProcessorsUnderstand and Harness the Capabilities of Intel® Xeon Phi™ Processors
Understand and Harness the Capabilities of Intel® Xeon Phi™ Processors
Intel® Software
 
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Intel® Software
 
My ppt hpc u4
My ppt hpc u4My ppt hpc u4
My ppt hpc u4
Vidyalankar Institute of Technology
 
Manycores for the Masses
Manycores for the MassesManycores for the Masses
Manycores for the Masses
Intel® Software
 
Multicore
MulticoreMulticore
Multicore
Birgit Plötzeneder
 
Standardizing on a single N-dimensional array API for Python
Standardizing on a single N-dimensional array API for PythonStandardizing on a single N-dimensional array API for Python
Standardizing on a single N-dimensional array API for Python
Ralf Gommers
 
Migration To Multi Core - Parallel Programming Models
Migration To Multi Core - Parallel Programming ModelsMigration To Multi Core - Parallel Programming Models
Migration To Multi Core - Parallel Programming Models
Zvi Avraham
 
Numba Overview
Numba OverviewNumba Overview
Numba Overview
stan_seibert
 
Get Your Hands Dirty with Intel® Distribution for Python*
Get Your Hands Dirty with Intel® Distribution for Python*Get Your Hands Dirty with Intel® Distribution for Python*
Get Your Hands Dirty with Intel® Distribution for Python*
Intel® Software
 
Hetergeneous Compute with Standards Based OFI/MPI/OpenMP Programming
Hetergeneous Compute with Standards Based OFI/MPI/OpenMP ProgrammingHetergeneous Compute with Standards Based OFI/MPI/OpenMP Programming
Hetergeneous Compute with Standards Based OFI/MPI/OpenMP Programming
Intel® Software
 
Optimize Single Particle Orbital (SPO) Evaluations Based on B-splines
Optimize Single Particle Orbital (SPO) Evaluations Based on B-splinesOptimize Single Particle Orbital (SPO) Evaluations Based on B-splines
Optimize Single Particle Orbital (SPO) Evaluations Based on B-splines
Intel® Software
 
SciPy 2019: How to Accelerate an Existing Codebase with Numba
SciPy 2019: How to Accelerate an Existing Codebase with NumbaSciPy 2019: How to Accelerate an Existing Codebase with Numba
SciPy 2019: How to Accelerate an Existing Codebase with Numba
stan_seibert
 
PyData NYC whatsnew NumPy-SciPy 2019
PyData NYC whatsnew NumPy-SciPy 2019PyData NYC whatsnew NumPy-SciPy 2019
PyData NYC whatsnew NumPy-SciPy 2019
Ralf Gommers
 
High Performance Python - Marc Garcia
High Performance Python - Marc GarciaHigh Performance Python - Marc Garcia
High Performance Python - Marc Garcia
Marc Garcia
 
On the Capability and Achievable Performance of FPGAs for HPC Applications
On the Capability and Achievable Performance of FPGAs for HPC ApplicationsOn the Capability and Achievable Performance of FPGAs for HPC Applications
On the Capability and Achievable Performance of FPGAs for HPC Applications
Wim Vanderbauwhede
 
TinyML as-a-Service
TinyML as-a-ServiceTinyML as-a-Service
TinyML as-a-Service
Hiroshi Doyu
 
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Intel® Software
 
Numba: Array-oriented Python Compiler for NumPy
Numba: Array-oriented Python Compiler for NumPyNumba: Array-oriented Python Compiler for NumPy
Numba: Array-oriented Python Compiler for NumPy
Travis Oliphant
 
Numba
NumbaNumba
Numba
Travis Oliphant
 
Introduction to MPI
Introduction to MPIIntroduction to MPI
Introduction to MPI
Akhila Prabhakaran
 
Understand and Harness the Capabilities of Intel® Xeon Phi™ Processors
Understand and Harness the Capabilities of Intel® Xeon Phi™ ProcessorsUnderstand and Harness the Capabilities of Intel® Xeon Phi™ Processors
Understand and Harness the Capabilities of Intel® Xeon Phi™ Processors
Intel® Software
 
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Intel® Software
 
Standardizing on a single N-dimensional array API for Python
Standardizing on a single N-dimensional array API for PythonStandardizing on a single N-dimensional array API for Python
Standardizing on a single N-dimensional array API for Python
Ralf Gommers
 
Migration To Multi Core - Parallel Programming Models
Migration To Multi Core - Parallel Programming ModelsMigration To Multi Core - Parallel Programming Models
Migration To Multi Core - Parallel Programming Models
Zvi Avraham
 
Get Your Hands Dirty with Intel® Distribution for Python*
Get Your Hands Dirty with Intel® Distribution for Python*Get Your Hands Dirty with Intel® Distribution for Python*
Get Your Hands Dirty with Intel® Distribution for Python*
Intel® Software
 
Hetergeneous Compute with Standards Based OFI/MPI/OpenMP Programming
Hetergeneous Compute with Standards Based OFI/MPI/OpenMP ProgrammingHetergeneous Compute with Standards Based OFI/MPI/OpenMP Programming
Hetergeneous Compute with Standards Based OFI/MPI/OpenMP Programming
Intel® Software
 
Optimize Single Particle Orbital (SPO) Evaluations Based on B-splines
Optimize Single Particle Orbital (SPO) Evaluations Based on B-splinesOptimize Single Particle Orbital (SPO) Evaluations Based on B-splines
Optimize Single Particle Orbital (SPO) Evaluations Based on B-splines
Intel® Software
 
SciPy 2019: How to Accelerate an Existing Codebase with Numba
SciPy 2019: How to Accelerate an Existing Codebase with NumbaSciPy 2019: How to Accelerate an Existing Codebase with Numba
SciPy 2019: How to Accelerate an Existing Codebase with Numba
stan_seibert
 
PyData NYC whatsnew NumPy-SciPy 2019
PyData NYC whatsnew NumPy-SciPy 2019PyData NYC whatsnew NumPy-SciPy 2019
PyData NYC whatsnew NumPy-SciPy 2019
Ralf Gommers
 
High Performance Python - Marc Garcia
High Performance Python - Marc GarciaHigh Performance Python - Marc Garcia
High Performance Python - Marc Garcia
Marc Garcia
 
On the Capability and Achievable Performance of FPGAs for HPC Applications
On the Capability and Achievable Performance of FPGAs for HPC ApplicationsOn the Capability and Achievable Performance of FPGAs for HPC Applications
On the Capability and Achievable Performance of FPGAs for HPC Applications
Wim Vanderbauwhede
 
TinyML as-a-Service
TinyML as-a-ServiceTinyML as-a-Service
TinyML as-a-Service
Hiroshi Doyu
 
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Intel® Software
 
Numba: Array-oriented Python Compiler for NumPy
Numba: Array-oriented Python Compiler for NumPyNumba: Array-oriented Python Compiler for NumPy
Numba: Array-oriented Python Compiler for NumPy
Travis Oliphant
 

Viewers also liked (19)

MPI and Distributed Applications
MPI and Distributed ApplicationsMPI and Distributed Applications
MPI and Distributed Applications
Marcos Gonzalez
 
Open MPI State of the Union X SC'16 BOF
Open MPI State of the Union X SC'16 BOFOpen MPI State of the Union X SC'16 BOF
Open MPI State of the Union X SC'16 BOF
Jeff Squyres
 
Ejclase mpi
Ejclase mpiEjclase mpi
Ejclase mpi
Fernanda Escobar
 
CUDA-Aware MPI
CUDA-Aware MPICUDA-Aware MPI
CUDA-Aware MPI
Eugene Kolesnikov
 
MPI message passing interface
MPI message passing interfaceMPI message passing interface
MPI message passing interface
Mohit Raghuvanshi
 
FDA Focus on Design Controls
FDA Focus on Design Controls FDA Focus on Design Controls
FDA Focus on Design Controls
April Bright
 
Présentation Raspberry Pi (cocoaheads remix)
Présentation Raspberry Pi (cocoaheads remix)Présentation Raspberry Pi (cocoaheads remix)
Présentation Raspberry Pi (cocoaheads remix)
Arnaud Boudou
 
Sophia conf 2013 - Le monde du Raspberry
Sophia conf 2013 - Le monde du RaspberrySophia conf 2013 - Le monde du Raspberry
Sophia conf 2013 - Le monde du Raspberry
Nicolas Hennion
 
Raspberry Pi - Lecture 3 Embedded Communication Protocols
Raspberry Pi - Lecture 3 Embedded Communication ProtocolsRaspberry Pi - Lecture 3 Embedded Communication Protocols
Raspberry Pi - Lecture 3 Embedded Communication Protocols
Mohamed Abdallah
 
raspberry pi
 raspberry pi raspberry pi
raspberry pi
TECOS
 
Introduction to Windows IoT via Raspberry Pi 3
Introduction to Windows IoT via Raspberry Pi 3Introduction to Windows IoT via Raspberry Pi 3
Introduction to Windows IoT via Raspberry Pi 3
Lee Richardson
 
FINAL SEMINAR REPORT OF RASPBERRY PI
FINAL SEMINAR REPORT OF RASPBERRY PIFINAL SEMINAR REPORT OF RASPBERRY PI
FINAL SEMINAR REPORT OF RASPBERRY PI
GANESH GOVIND BHOR
 
Raspberry-Pi
Raspberry-PiRaspberry-Pi
Raspberry-Pi
Christophe Porchet
 
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Sameh BEN FREDJ
 
Présentation Projet de fin d'année
Présentation Projet de fin d'annéePrésentation Projet de fin d'année
Présentation Projet de fin d'année
Yassine DAHMANE
 
Hec propriété intellectuelle, seance 1, 30 septembre 2015
Hec   propriété intellectuelle, seance 1, 30 septembre 2015 Hec   propriété intellectuelle, seance 1, 30 septembre 2015
Hec propriété intellectuelle, seance 1, 30 septembre 2015
Céline Bondard
 
Gateway d’un système de monitoring
Gateway d’un système de monitoringGateway d’un système de monitoring
Gateway d’un système de monitoring
Ghassen Chaieb
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & Tricks
SlideShare
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
SlideShare
 
MPI and Distributed Applications
MPI and Distributed ApplicationsMPI and Distributed Applications
MPI and Distributed Applications
Marcos Gonzalez
 
Open MPI State of the Union X SC'16 BOF
Open MPI State of the Union X SC'16 BOFOpen MPI State of the Union X SC'16 BOF
Open MPI State of the Union X SC'16 BOF
Jeff Squyres
 
MPI message passing interface
MPI message passing interfaceMPI message passing interface
MPI message passing interface
Mohit Raghuvanshi
 
FDA Focus on Design Controls
FDA Focus on Design Controls FDA Focus on Design Controls
FDA Focus on Design Controls
April Bright
 
Présentation Raspberry Pi (cocoaheads remix)
Présentation Raspberry Pi (cocoaheads remix)Présentation Raspberry Pi (cocoaheads remix)
Présentation Raspberry Pi (cocoaheads remix)
Arnaud Boudou
 
Sophia conf 2013 - Le monde du Raspberry
Sophia conf 2013 - Le monde du RaspberrySophia conf 2013 - Le monde du Raspberry
Sophia conf 2013 - Le monde du Raspberry
Nicolas Hennion
 
Raspberry Pi - Lecture 3 Embedded Communication Protocols
Raspberry Pi - Lecture 3 Embedded Communication ProtocolsRaspberry Pi - Lecture 3 Embedded Communication Protocols
Raspberry Pi - Lecture 3 Embedded Communication Protocols
Mohamed Abdallah
 
raspberry pi
 raspberry pi raspberry pi
raspberry pi
TECOS
 
Introduction to Windows IoT via Raspberry Pi 3
Introduction to Windows IoT via Raspberry Pi 3Introduction to Windows IoT via Raspberry Pi 3
Introduction to Windows IoT via Raspberry Pi 3
Lee Richardson
 
FINAL SEMINAR REPORT OF RASPBERRY PI
FINAL SEMINAR REPORT OF RASPBERRY PIFINAL SEMINAR REPORT OF RASPBERRY PI
FINAL SEMINAR REPORT OF RASPBERRY PI
GANESH GOVIND BHOR
 
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Sameh BEN FREDJ
 
Présentation Projet de fin d'année
Présentation Projet de fin d'annéePrésentation Projet de fin d'année
Présentation Projet de fin d'année
Yassine DAHMANE
 
Hec propriété intellectuelle, seance 1, 30 septembre 2015
Hec   propriété intellectuelle, seance 1, 30 septembre 2015 Hec   propriété intellectuelle, seance 1, 30 septembre 2015
Hec propriété intellectuelle, seance 1, 30 septembre 2015
Céline Bondard
 
Gateway d’un système de monitoring
Gateway d’un système de monitoringGateway d’un système de monitoring
Gateway d’un système de monitoring
Ghassen Chaieb
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & Tricks
SlideShare
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
SlideShare
 
Ad

Similar to MPI Raspberry pi 3 cluster (20)

Intro to BigData , Hadoop and Mapreduce
Intro to BigData , Hadoop and MapreduceIntro to BigData , Hadoop and Mapreduce
Intro to BigData , Hadoop and Mapreduce
Krishna Sangeeth KS
 
The Future of Computing is Distributed
The Future of Computing is DistributedThe Future of Computing is Distributed
The Future of Computing is Distributed
Alluxio, Inc.
 
Apache-Flink-What-How-Why-Who-Where-by-Slim-Baltagi
Apache-Flink-What-How-Why-Who-Where-by-Slim-BaltagiApache-Flink-What-How-Why-Who-Where-by-Slim-Baltagi
Apache-Flink-What-How-Why-Who-Where-by-Slim-Baltagi
Slim Baltagi
 
Finding URL pattern with MapReduce and Apache Hadoop
Finding URL pattern with MapReduce and Apache HadoopFinding URL pattern with MapReduce and Apache Hadoop
Finding URL pattern with MapReduce and Apache Hadoop
Nushrat
 
Hadoop basics
Hadoop basicsHadoop basics
Hadoop basics
Antonio Silveira
 
Hadoop_Its_Not_Just_Internal_Storage_V14
Hadoop_Its_Not_Just_Internal_Storage_V14Hadoop_Its_Not_Just_Internal_Storage_V14
Hadoop_Its_Not_Just_Internal_Storage_V14
John Sing
 
Overview of big data & hadoop v1
Overview of big data & hadoop   v1Overview of big data & hadoop   v1
Overview of big data & hadoop v1
Thanh Nguyen
 
PyConDE / PyData Karlsruhe 2017 – Connecting PyData to other Big Data Landsca...
PyConDE / PyData Karlsruhe 2017 – Connecting PyData to other Big Data Landsca...PyConDE / PyData Karlsruhe 2017 – Connecting PyData to other Big Data Landsca...
PyConDE / PyData Karlsruhe 2017 – Connecting PyData to other Big Data Landsca...
Uwe Korn
 
Introduction to HPC Programming Models - EUDAT Summer School (Stefano Markidi...
Introduction to HPC Programming Models - EUDAT Summer School (Stefano Markidi...Introduction to HPC Programming Models - EUDAT Summer School (Stefano Markidi...
Introduction to HPC Programming Models - EUDAT Summer School (Stefano Markidi...
EUDAT
 
Available platforms for Big Data 2.0
Available platforms for Big Data 2.0Available platforms for Big Data 2.0
Available platforms for Big Data 2.0
Petr Novotný
 
London level39
London level39London level39
London level39
Travis Oliphant
 
The road ahead for scientific computing with Python
The road ahead for scientific computing with PythonThe road ahead for scientific computing with Python
The road ahead for scientific computing with Python
Ralf Gommers
 
Hadoop a Natural Choice for Data Intensive Log Processing
Hadoop a Natural Choice for Data Intensive Log ProcessingHadoop a Natural Choice for Data Intensive Log Processing
Hadoop a Natural Choice for Data Intensive Log Processing
Hitendra Kumar
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Unified Batch and Real-Time Stream Processing Using Apache Flink
Unified Batch and Real-Time Stream Processing Using Apache FlinkUnified Batch and Real-Time Stream Processing Using Apache Flink
Unified Batch and Real-Time Stream Processing Using Apache Flink
Slim Baltagi
 
Introduction to apache horn (incubating)
Introduction to apache horn (incubating)Introduction to apache horn (incubating)
Introduction to apache horn (incubating)
Edward Yoon
 
final report
final reportfinal report
final report
Prathamesh Mantri
 
Keynote at Converge 2019
Keynote at Converge 2019Keynote at Converge 2019
Keynote at Converge 2019
Travis Oliphant
 
Architecting the Future of Big Data and Search
Architecting the Future of Big Data and SearchArchitecting the Future of Big Data and Search
Architecting the Future of Big Data and Search
Hortonworks
 
Unit V.pdf
Unit V.pdfUnit V.pdf
Unit V.pdf
KennyPratheepKumar
 
Intro to BigData , Hadoop and Mapreduce
Intro to BigData , Hadoop and MapreduceIntro to BigData , Hadoop and Mapreduce
Intro to BigData , Hadoop and Mapreduce
Krishna Sangeeth KS
 
The Future of Computing is Distributed
The Future of Computing is DistributedThe Future of Computing is Distributed
The Future of Computing is Distributed
Alluxio, Inc.
 
Apache-Flink-What-How-Why-Who-Where-by-Slim-Baltagi
Apache-Flink-What-How-Why-Who-Where-by-Slim-BaltagiApache-Flink-What-How-Why-Who-Where-by-Slim-Baltagi
Apache-Flink-What-How-Why-Who-Where-by-Slim-Baltagi
Slim Baltagi
 
Finding URL pattern with MapReduce and Apache Hadoop
Finding URL pattern with MapReduce and Apache HadoopFinding URL pattern with MapReduce and Apache Hadoop
Finding URL pattern with MapReduce and Apache Hadoop
Nushrat
 
Hadoop_Its_Not_Just_Internal_Storage_V14
Hadoop_Its_Not_Just_Internal_Storage_V14Hadoop_Its_Not_Just_Internal_Storage_V14
Hadoop_Its_Not_Just_Internal_Storage_V14
John Sing
 
Overview of big data & hadoop v1
Overview of big data & hadoop   v1Overview of big data & hadoop   v1
Overview of big data & hadoop v1
Thanh Nguyen
 
PyConDE / PyData Karlsruhe 2017 – Connecting PyData to other Big Data Landsca...
PyConDE / PyData Karlsruhe 2017 – Connecting PyData to other Big Data Landsca...PyConDE / PyData Karlsruhe 2017 – Connecting PyData to other Big Data Landsca...
PyConDE / PyData Karlsruhe 2017 – Connecting PyData to other Big Data Landsca...
Uwe Korn
 
Introduction to HPC Programming Models - EUDAT Summer School (Stefano Markidi...
Introduction to HPC Programming Models - EUDAT Summer School (Stefano Markidi...Introduction to HPC Programming Models - EUDAT Summer School (Stefano Markidi...
Introduction to HPC Programming Models - EUDAT Summer School (Stefano Markidi...
EUDAT
 
Available platforms for Big Data 2.0
Available platforms for Big Data 2.0Available platforms for Big Data 2.0
Available platforms for Big Data 2.0
Petr Novotný
 
The road ahead for scientific computing with Python
The road ahead for scientific computing with PythonThe road ahead for scientific computing with Python
The road ahead for scientific computing with Python
Ralf Gommers
 
Hadoop a Natural Choice for Data Intensive Log Processing
Hadoop a Natural Choice for Data Intensive Log ProcessingHadoop a Natural Choice for Data Intensive Log Processing
Hadoop a Natural Choice for Data Intensive Log Processing
Hitendra Kumar
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Unified Batch and Real-Time Stream Processing Using Apache Flink
Unified Batch and Real-Time Stream Processing Using Apache FlinkUnified Batch and Real-Time Stream Processing Using Apache Flink
Unified Batch and Real-Time Stream Processing Using Apache Flink
Slim Baltagi
 
Introduction to apache horn (incubating)
Introduction to apache horn (incubating)Introduction to apache horn (incubating)
Introduction to apache horn (incubating)
Edward Yoon
 
Keynote at Converge 2019
Keynote at Converge 2019Keynote at Converge 2019
Keynote at Converge 2019
Travis Oliphant
 
Architecting the Future of Big Data and Search
Architecting the Future of Big Data and SearchArchitecting the Future of Big Data and Search
Architecting the Future of Big Data and Search
Hortonworks
 
Ad

MPI Raspberry pi 3 cluster

  • 1. MPI Raspberry pi 3 & Hadoop cluster 4 nodes
  • 2. MPI Raspberry pi cluster  Why MPI  Hardware Needed  Software Needed  Machine File  MPI Code  Python Code  Output  Finished product
  • 3. Why MPI?  Scientist during World War II used the same method of Parallel Computing to solve mathematical problems in the Manhattan Project.  reduce the amount of time it took to solve a large mathematical problem.  the people who performed these calculations were called computers.  How far can you go with MPI?
  • 4. Hardware you need X4 Raspberry pi 3 X5 Ethernet cat 5 cables X4 micro USB cables X4 8 GB micro SD One 5 port Ethernet switch Option but recommended one 4 port USB power hub
  • 5. Software Needed  MPICH  MPI4PY  Python to MPI interpreter
  • 11. Hadoop  Hadoop is a framework of tools based on Java that supports running Big Data.  Inspired from Google’s GFS and MapReduce.  It is open source.  Relatively cheap to build.  Has Fault Tolerant System.
  • 12. Parts of Hadoop  Hadoop consists of two main elements,  HDFS (Hadoop Distributed File System)  Name Node (Store the directories of all files in the cluster)  Data Node (Store Data)  MapReduce  Job Tracker(Responsible for taking requests from client and assign to TaskTracker)  Task Tracker(Perform MapReduce in DataNodes/Slave)
  • 13. HDFS (Hadoop Distributed File System)
  • 15. Use of Hadoop in Tech World  Amazon  Facebook  Netflix  eBay  Twitter etc.
  翻译: