SlideShare a Scribd company logo
MongoDB .local Houston 2019: MongoDB Atlas Data Lake Technical Deep Dive
Atlas Data Lake
Technical Deep-Dive
Subhead for the presentation goes here
Craig Wilson, Senior Staff Engineer, MongoDB
State of Affairs
Businesses have a humongous amount of data
• IDC predicts that by 2025 global data will reach 175 Zettabytes and 49% of it will reside in the public
cloud.
Cloud storage is cost-effective
Cloud storage is hard to operationalize
A New Service Offered by MongoDB Atlas
Access long-term data
Query long-term data
Analyze long-term data
Requirements
Look and act like MongoDB
Access customer’s data securely
Handle queries over vast amounts of data
Handle long-running queries
Efficient use of resources
Emulating MongoDB
Language
Must be able to communicate with our drivers
Written in Go
Implemented a TCP server
Used mongo-go-driver’s wireprotocol package
Used mongo-go-driver's bson package
Security
Must have the same security as MongoDB
Users configured in Atlas
Implemented MongoDB’s security model
Require the use of TLS + SNI(Server Name Indicator)
Behavior
Must behave like MongoDB
Implemented commands for a read-only server
Used the server’s aggregation engine
Customer’s Data
Security: Customers
Customers have complete control
Provide us with an IAM Role
Configure your buckets
Configure your users in Atlas
Security: Atlas
Atlas controls access to your data
Storage of IAM Role
Temporary Credentials
Configuration
Customers control their data layout
Stores
Databases, Collections
DataSources
CollectionCollection
Store Store
DataSource DataSource
DataSource
Configuration: File Formats
• BSON (gzipped)
• JSON (gzipped)
• Avro (gzipped)
• CSV/TSV (gzipped)
• Parquet
• XLSX
Configuration (S3 Bucket): ent-archive
/archive/customers
- a-m.json
- n-z.json
/archive/invoices
- 2019
- 1.parquet
- 2.parquet
- 2018
- 1.parquet
- 2017.json.gz
- 2016.json.gz
Configuration: Store
s3 : {
name: "ent-archive",
bucket: "ent-archive",
region: "us-east-1",
prefix: "/archive/"
}
Configuration: Data
history: {
customers: [{
store: "ent-archive",
definition: "/customers/*"
}],
invoices: [{
store: "ent-archive",
definition: "/invoices/{year int}/*"
}, {
store: "ent-archive",
definition: "/invoices/{year int}.json.gz"
}]
}
Configuration: Data (Future)
history: {
invoices: [{
store: "ent-archive",
definition: "/invoices/{year int}/*"
}, {
store: "ent-archive",
definition : "/invoices/{year int}.json.gz
}, {
store: "atlas",
db: "customers",
collection: "invoices"
}]
}
Queries
Processing
MQL à Distributed MQL
Parse
Parallelize
Distribute
Architecture
Atlas
Control
Control
Plane
Compute
Plane
Data
Plane
DataLake
Frontend
DataLake
Agent
Load Balancer
Load Balancer
DataLake
Frontend
DataLake
Agent
Load Balancer
Load Balancer
DataLake
Frontend
DataLake
Agent
Load Balancer
Load Balancer
Architecture
Atlas
Control
Control
Plane
Compute
Plane
Data
Plane
DataLake
Frontend
DataLake
Agent
DataLake
Agent
DataLake
Agent
DataLake
Agent
DataLake
Agent
DataLake
Agent
DataLake
Agent
DataLake
Agent
DataLake
Agent
Query Example: $limit
Map:
{ $match: { year: { $gt: 2000 } } }
{ $limit: 10 }
Reduce:
{ $limit: 10 }
{ $match: { year: { $gt: 2000 } } }
{ $limit: 10 }
Query Example: $group
Map:
{ $group: { _id: "$year",
totalAvg_sum: { $sum: "$amount" },
totalAvg_count: { $sum: 1 }
} }
Reduce:
{ $group: { _id: "$_id",
totalAvg_sum: { $sum: "$totalAvg_sum" },
totalAvg_count: { $sum: "$totalAvg_count" }
} }
Finalize:
{ $project: { _id: "$_id", totalAvg: { $divide: ["$totalAvg_sum", "$totalAvg_count"] } } }
{ $group: { _id: "$year", totalAvg: { $avg: "amount" } } }
Future
Future
More supported MongoDB operators.
$out
$merge
Geo operators
Full Text Search
Future
Optimizations
Indexes
Statistics
Future
File Formats
ORC
PDF
Future
Integrations
Atlas
Microsoft Azure
Google Cloud
Hiring
Lots to do
mongodb.com/careers
Craig Wilson
Senior Staff Engineer, MongoDB
Thank You!
MongoDB .local Houston 2019: MongoDB Atlas Data Lake Technical Deep Dive
Ad

More Related Content

What's hot (20)

Kafka as an Eventing System to Replatform a Monolith into Microservices
Kafka as an Eventing System to Replatform a Monolith into Microservices Kafka as an Eventing System to Replatform a Monolith into Microservices
Kafka as an Eventing System to Replatform a Monolith into Microservices
confluent
 
Redis Overview
Redis OverviewRedis Overview
Redis Overview
Hoang Long
 
.NET Fest 2017. Константин Проскурдин. Marten как хранилище документов для .N...
.NET Fest 2017. Константин Проскурдин. Marten как хранилище документов для .N....NET Fest 2017. Константин Проскурдин. Marten как хранилище документов для .N...
.NET Fest 2017. Константин Проскурдин. Marten как хранилище документов для .N...
NETFest
 
MongoDB + Spring
MongoDB + SpringMongoDB + Spring
MongoDB + Spring
Norberto Leite
 
A Cheapskates Guide to AWS v2.0
A Cheapskates Guide to AWS v2.0A Cheapskates Guide to AWS v2.0
A Cheapskates Guide to AWS v2.0
Michael Soh
 
Cloud talk
Cloud talkCloud talk
Cloud talk
UTD Computer Security Group
 
.Net Distributed Caching
.Net Distributed Caching.Net Distributed Caching
.Net Distributed Caching
Paul Fryer
 
Iceberg: a fast table format for S3
Iceberg: a fast table format for S3Iceberg: a fast table format for S3
Iceberg: a fast table format for S3
DataWorks Summit
 
A Cheapskates Guide to AWS
A Cheapskates Guide to AWSA Cheapskates Guide to AWS
A Cheapskates Guide to AWS
Michael Soh
 
Using MongoDB For BigData in 20 Minutes
Using MongoDB For BigData in 20 MinutesUsing MongoDB For BigData in 20 Minutes
Using MongoDB For BigData in 20 Minutes
András Fehér
 
Building Pinterest Real-Time Ads Platform Using Kafka Streams
Building Pinterest Real-Time Ads Platform Using Kafka Streams Building Pinterest Real-Time Ads Platform Using Kafka Streams
Building Pinterest Real-Time Ads Platform Using Kafka Streams
confluent
 
Python and MongoDB as a Market Data Platform by James Blackburn
Python and MongoDB as a Market Data Platform by James BlackburnPython and MongoDB as a Market Data Platform by James Blackburn
Python and MongoDB as a Market Data Platform by James Blackburn
PyData
 
AmazonRedshift
AmazonRedshiftAmazonRedshift
AmazonRedshift
Ahasan Habib
 
Big Data at Tube: Events to Insights to Action
Big Data at Tube: Events to Insights to ActionBig Data at Tube: Events to Insights to Action
Big Data at Tube: Events to Insights to Action
Murtaza Doctor
 
GraphTalk München - Einführung in Graphdatenbanken
GraphTalk München - Einführung in GraphdatenbankenGraphTalk München - Einführung in Graphdatenbanken
GraphTalk München - Einführung in Graphdatenbanken
Neo4j
 
Introduction to Azure DocumentDB
Introduction to Azure DocumentDBIntroduction to Azure DocumentDB
Introduction to Azure DocumentDB
Radenko Zec
 
Introduction to new high performance storage engines in mongodb 3.0
Introduction to new high performance storage engines in mongodb 3.0Introduction to new high performance storage engines in mongodb 3.0
Introduction to new high performance storage engines in mongodb 3.0
Henrik Ingo
 
Redis Day TLV 2018 - RediSearch Aggregations
Redis Day TLV 2018 - RediSearch AggregationsRedis Day TLV 2018 - RediSearch Aggregations
Redis Day TLV 2018 - RediSearch Aggregations
Redis Labs
 
Exploring the replication and sharding in MongoDB
Exploring the replication and sharding in MongoDBExploring the replication and sharding in MongoDB
Exploring the replication and sharding in MongoDB
Igor Donchovski
 
The Next Generation Software Stack: Meteor
The Next Generation Software Stack: MeteorThe Next Generation Software Stack: Meteor
The Next Generation Software Stack: Meteor
MongoDB
 
Kafka as an Eventing System to Replatform a Monolith into Microservices
Kafka as an Eventing System to Replatform a Monolith into Microservices Kafka as an Eventing System to Replatform a Monolith into Microservices
Kafka as an Eventing System to Replatform a Monolith into Microservices
confluent
 
Redis Overview
Redis OverviewRedis Overview
Redis Overview
Hoang Long
 
.NET Fest 2017. Константин Проскурдин. Marten как хранилище документов для .N...
.NET Fest 2017. Константин Проскурдин. Marten как хранилище документов для .N....NET Fest 2017. Константин Проскурдин. Marten как хранилище документов для .N...
.NET Fest 2017. Константин Проскурдин. Marten как хранилище документов для .N...
NETFest
 
A Cheapskates Guide to AWS v2.0
A Cheapskates Guide to AWS v2.0A Cheapskates Guide to AWS v2.0
A Cheapskates Guide to AWS v2.0
Michael Soh
 
.Net Distributed Caching
.Net Distributed Caching.Net Distributed Caching
.Net Distributed Caching
Paul Fryer
 
Iceberg: a fast table format for S3
Iceberg: a fast table format for S3Iceberg: a fast table format for S3
Iceberg: a fast table format for S3
DataWorks Summit
 
A Cheapskates Guide to AWS
A Cheapskates Guide to AWSA Cheapskates Guide to AWS
A Cheapskates Guide to AWS
Michael Soh
 
Using MongoDB For BigData in 20 Minutes
Using MongoDB For BigData in 20 MinutesUsing MongoDB For BigData in 20 Minutes
Using MongoDB For BigData in 20 Minutes
András Fehér
 
Building Pinterest Real-Time Ads Platform Using Kafka Streams
Building Pinterest Real-Time Ads Platform Using Kafka Streams Building Pinterest Real-Time Ads Platform Using Kafka Streams
Building Pinterest Real-Time Ads Platform Using Kafka Streams
confluent
 
Python and MongoDB as a Market Data Platform by James Blackburn
Python and MongoDB as a Market Data Platform by James BlackburnPython and MongoDB as a Market Data Platform by James Blackburn
Python and MongoDB as a Market Data Platform by James Blackburn
PyData
 
Big Data at Tube: Events to Insights to Action
Big Data at Tube: Events to Insights to ActionBig Data at Tube: Events to Insights to Action
Big Data at Tube: Events to Insights to Action
Murtaza Doctor
 
GraphTalk München - Einführung in Graphdatenbanken
GraphTalk München - Einführung in GraphdatenbankenGraphTalk München - Einführung in Graphdatenbanken
GraphTalk München - Einführung in Graphdatenbanken
Neo4j
 
Introduction to Azure DocumentDB
Introduction to Azure DocumentDBIntroduction to Azure DocumentDB
Introduction to Azure DocumentDB
Radenko Zec
 
Introduction to new high performance storage engines in mongodb 3.0
Introduction to new high performance storage engines in mongodb 3.0Introduction to new high performance storage engines in mongodb 3.0
Introduction to new high performance storage engines in mongodb 3.0
Henrik Ingo
 
Redis Day TLV 2018 - RediSearch Aggregations
Redis Day TLV 2018 - RediSearch AggregationsRedis Day TLV 2018 - RediSearch Aggregations
Redis Day TLV 2018 - RediSearch Aggregations
Redis Labs
 
Exploring the replication and sharding in MongoDB
Exploring the replication and sharding in MongoDBExploring the replication and sharding in MongoDB
Exploring the replication and sharding in MongoDB
Igor Donchovski
 
The Next Generation Software Stack: Meteor
The Next Generation Software Stack: MeteorThe Next Generation Software Stack: Meteor
The Next Generation Software Stack: Meteor
MongoDB
 

Similar to MongoDB .local Houston 2019: MongoDB Atlas Data Lake Technical Deep Dive (20)

MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB World 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB World 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB World 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB World 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local London 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local London 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local London 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local London 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
IBM THINK 2018 - IBM Cloud SQL Query Introduction
IBM THINK 2018 - IBM Cloud SQL Query IntroductionIBM THINK 2018 - IBM Cloud SQL Query Introduction
IBM THINK 2018 - IBM Cloud SQL Query Introduction
Torsten Steinbach
 
Mongodb
MongodbMongodb
Mongodb
Thiago Veiga
 
Developing hybrid applications with informix
Developing hybrid applications with informixDeveloping hybrid applications with informix
Developing hybrid applications with informix
IBM_Info_Management
 
Webinar: The Anatomy of the Cloudant Data Layer
Webinar: The Anatomy of the Cloudant Data LayerWebinar: The Anatomy of the Cloudant Data Layer
Webinar: The Anatomy of the Cloudant Data Layer
IBM Cloud Data Services
 
Instrumenting and Scaling Databases with Envoy
Instrumenting and Scaling Databases with EnvoyInstrumenting and Scaling Databases with Envoy
Instrumenting and Scaling Databases with Envoy
Daniel Hochman
 
Lessons learned mongodb to redhsift - meetup July 1st Tel Aviv
Lessons learned   mongodb to redhsift - meetup July 1st Tel AvivLessons learned   mongodb to redhsift - meetup July 1st Tel Aviv
Lessons learned mongodb to redhsift - meetup July 1st Tel Aviv
Roie Shavit
 
AWS Well Architected-Info Session WeCloudData
AWS Well Architected-Info Session WeCloudDataAWS Well Architected-Info Session WeCloudData
AWS Well Architected-Info Session WeCloudData
WeCloudData
 
Virtual training intro to InfluxDB - June 2021
Virtual training  intro to InfluxDB  - June 2021Virtual training  intro to InfluxDB  - June 2021
Virtual training intro to InfluxDB - June 2021
InfluxData
 
Solving enterprise challenges through scale out storage & big compute final
Solving enterprise challenges through scale out storage & big compute finalSolving enterprise challenges through scale out storage & big compute final
Solving enterprise challenges through scale out storage & big compute final
Avere Systems
 
MongoDB World 2018: Bumps and Breezes: Our Journey from RDBMS to MongoDB
MongoDB World 2018: Bumps and Breezes: Our Journey from RDBMS to MongoDBMongoDB World 2018: Bumps and Breezes: Our Journey from RDBMS to MongoDB
MongoDB World 2018: Bumps and Breezes: Our Journey from RDBMS to MongoDB
MongoDB
 
Cloud-based Data Lake for Analytics and AI
Cloud-based Data Lake for Analytics and AICloud-based Data Lake for Analytics and AI
Cloud-based Data Lake for Analytics and AI
Torsten Steinbach
 
MongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB Evenings DC: Get MEAN and Lean with Docker and KubernetesMongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB
 
Data Analytics Service Company and Its Ruby Usage
Data Analytics Service Company and Its Ruby UsageData Analytics Service Company and Its Ruby Usage
Data Analytics Service Company and Its Ruby Usage
SATOSHI TAGOMORI
 
IBM THINK 2019 - Self-Service Cloud Data Management with SQL
IBM THINK 2019 - Self-Service Cloud Data Management with SQL IBM THINK 2019 - Self-Service Cloud Data Management with SQL
IBM THINK 2019 - Self-Service Cloud Data Management with SQL
Torsten Steinbach
 
MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Chicago 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB World 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB World 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB World 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB World 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Bengaluru 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local London 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local London 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local London 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local London 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
IBM THINK 2018 - IBM Cloud SQL Query Introduction
IBM THINK 2018 - IBM Cloud SQL Query IntroductionIBM THINK 2018 - IBM Cloud SQL Query Introduction
IBM THINK 2018 - IBM Cloud SQL Query Introduction
Torsten Steinbach
 
Developing hybrid applications with informix
Developing hybrid applications with informixDeveloping hybrid applications with informix
Developing hybrid applications with informix
IBM_Info_Management
 
Webinar: The Anatomy of the Cloudant Data Layer
Webinar: The Anatomy of the Cloudant Data LayerWebinar: The Anatomy of the Cloudant Data Layer
Webinar: The Anatomy of the Cloudant Data Layer
IBM Cloud Data Services
 
Instrumenting and Scaling Databases with Envoy
Instrumenting and Scaling Databases with EnvoyInstrumenting and Scaling Databases with Envoy
Instrumenting and Scaling Databases with Envoy
Daniel Hochman
 
Lessons learned mongodb to redhsift - meetup July 1st Tel Aviv
Lessons learned   mongodb to redhsift - meetup July 1st Tel AvivLessons learned   mongodb to redhsift - meetup July 1st Tel Aviv
Lessons learned mongodb to redhsift - meetup July 1st Tel Aviv
Roie Shavit
 
AWS Well Architected-Info Session WeCloudData
AWS Well Architected-Info Session WeCloudDataAWS Well Architected-Info Session WeCloudData
AWS Well Architected-Info Session WeCloudData
WeCloudData
 
Virtual training intro to InfluxDB - June 2021
Virtual training  intro to InfluxDB  - June 2021Virtual training  intro to InfluxDB  - June 2021
Virtual training intro to InfluxDB - June 2021
InfluxData
 
Solving enterprise challenges through scale out storage & big compute final
Solving enterprise challenges through scale out storage & big compute finalSolving enterprise challenges through scale out storage & big compute final
Solving enterprise challenges through scale out storage & big compute final
Avere Systems
 
MongoDB World 2018: Bumps and Breezes: Our Journey from RDBMS to MongoDB
MongoDB World 2018: Bumps and Breezes: Our Journey from RDBMS to MongoDBMongoDB World 2018: Bumps and Breezes: Our Journey from RDBMS to MongoDB
MongoDB World 2018: Bumps and Breezes: Our Journey from RDBMS to MongoDB
MongoDB
 
Cloud-based Data Lake for Analytics and AI
Cloud-based Data Lake for Analytics and AICloud-based Data Lake for Analytics and AI
Cloud-based Data Lake for Analytics and AI
Torsten Steinbach
 
MongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB Evenings DC: Get MEAN and Lean with Docker and KubernetesMongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB
 
Data Analytics Service Company and Its Ruby Usage
Data Analytics Service Company and Its Ruby UsageData Analytics Service Company and Its Ruby Usage
Data Analytics Service Company and Its Ruby Usage
SATOSHI TAGOMORI
 
IBM THINK 2019 - Self-Service Cloud Data Management with SQL
IBM THINK 2019 - Self-Service Cloud Data Management with SQL IBM THINK 2019 - Self-Service Cloud Data Management with SQL
IBM THINK 2019 - Self-Service Cloud Data Management with SQL
Torsten Steinbach
 
Ad

More from MongoDB (20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDBMongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDBMongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB .local Paris 2020: Les bonnes pratiques pour sécuriser MongoDB
MongoDB
 
Ad

Recently uploaded (20)

Agentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community MeetupAgentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community Meetup
Manoj Batra (1600 + Connections)
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
AI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamsonAI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamson
UXPA Boston
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?
Eric Torreborre
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
AI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamsonAI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamson
UXPA Boston
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?
Eric Torreborre
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 

MongoDB .local Houston 2019: MongoDB Atlas Data Lake Technical Deep Dive

  翻译: