SlideShare a Scribd company logo
MongoDB at
Medtronic
Jeff Lemmerman
Matt Chimento
1
Medtronic Energy and Component Center
*Disclaimer: We are not currently managing any Device Patient Data in MongoDB
Agenda
• Intro
• Challenge
• Approach
• Opportunities
• Takeaways
| MDT Confidential2
3
Medtronic Energy and Component Center
• MECC est. 1976
• Manufacture components for devices
• Census – 1200 Employees
• Plant Size – 190,000 Square Feet
40,000 Manufacturing
15,000 R&D Labs
38,000 Office
97,000 Common, Support,
Warehouse
| MDT Confidential4
Every 3 Seconds…
Where does our data come from?
Where stored?
6
Big Data: Volume, Variety, Velocity
| MDT Confidential7
Without MongoDB
Data Management Vision
| MDT Confidential8
| MDT Confidential9
Reporting and Analytics Variety
Operations Dashboards SPC Charts
Component Summary Time Series
| MDT Confidential10
Component Dataset In Excel
How Is Data Retrieved?
11
Loading Data Into Central Repository
12
13
Component Dataset in RDBMS
Ideal Future State
Medtronic Confidential14
Loading Components Into MongoDB
15
Ideal Future State
Medtronic Confidential16
| MDT Confidential17
| MDT Confidential18
Simple, Fast Queries – Complete History
Medtronic Confidential
19
Component Time Series Data
Collect and Store Raw Time Series Data
Medtronic Confidential
20
Our experience with MongoDB
• Consulting/Training has been excellent
• Support agreement has been under-utilized
– Emails for security updates etc. are prompt
– Release cycle is frequent
• MongoDB Monitoring Service
– Potential concerns storing db stats externally
– MMS can now be hosted locally
• MongoDB Certification now available
– Udacity course, “Data Wrangling with MongoDB”
Gaps
• Enterprise acceptance of “new” approach
• Integration with off-the-shelf reporting and
analytics tools
• User interface for managing MongoDB cluster
• Developer familiarity with JSON and MongoDB
• 21 CFR Part 11 Compliance – Audit Tracing
Thank You
Questions?
23
| MDT Confidential24
Key Features
• Data stored as documents (JSON-like BSON)
– Flexible-schema
– In schema design, think about optimizing for read vs. storage
• Full CRUD support (Create, Read, Update, Delete)
– Atomic in-place updates
– Ad-hoc queries: Equality, RegEx, Ranges, Geospatial
• Secondary indexes
• Replication – redundancy, failover
• Sharding – partitioning for read/write scalability
• Terminology
– Collection = Table
– Index = Index
– Document = Row
– Column = Field
– Joining = Embedding & Linking
Creating Components
• .insert() will always try to create new document
• .save() if _id already exists will update
• If document doesn’t have _id field it is added
26
Reading Components
27
Reading Components
28
Returns Null
Updating Components
• $set keyword used for partial updates
• Without $set keyword entire document is replaced
• {multi : true} to update multiple documents
29
Deleting Components
30
Works like .find()
Drops collection
Drops database
Creating Components – Add()
31
Reading Components
32
Updating Components – Save()
33
Save sends entire document back to server
Updating Components – Update()
34
Update only sends changes
Deleting Components
35
Needed to add reference to Repo class
Automapping
36
37
Ad

More Related Content

What's hot (20)

Improve your SQL workload with observability
Improve your SQL workload with observabilityImprove your SQL workload with observability
Improve your SQL workload with observability
OVHcloud
 
Data platform architecture principles - ieee infrastructure 2020
Data platform architecture principles - ieee infrastructure 2020Data platform architecture principles - ieee infrastructure 2020
Data platform architecture principles - ieee infrastructure 2020
Julien Le Dem
 
When to Use MongoDB
When to Use MongoDBWhen to Use MongoDB
When to Use MongoDB
MongoDB
 
Benefits of Using MongoDB Over RDBMSs
Benefits of Using MongoDB Over RDBMSsBenefits of Using MongoDB Over RDBMSs
Benefits of Using MongoDB Over RDBMSs
MongoDB
 
Webinar: An Enterprise Architect’s View of MongoDB
Webinar: An Enterprise Architect’s View of MongoDBWebinar: An Enterprise Architect’s View of MongoDB
Webinar: An Enterprise Architect’s View of MongoDB
MongoDB
 
Architecting Data in the AWS Ecosystem
Architecting Data in the AWS EcosystemArchitecting Data in the AWS Ecosystem
Architecting Data in the AWS Ecosystem
SingleStore
 
Дмитрий Лавриненко "Blockchain for Identity Management, based on Fast Big Data"
Дмитрий Лавриненко "Blockchain for Identity Management, based on Fast Big Data"Дмитрий Лавриненко "Blockchain for Identity Management, based on Fast Big Data"
Дмитрий Лавриненко "Blockchain for Identity Management, based on Fast Big Data"
Fwdays
 
Building Pinterest Real-Time Ads Platform Using Kafka Streams
Building Pinterest Real-Time Ads Platform Using Kafka Streams Building Pinterest Real-Time Ads Platform Using Kafka Streams
Building Pinterest Real-Time Ads Platform Using Kafka Streams
confluent
 
MongoDB Operations for Developers
MongoDB Operations for DevelopersMongoDB Operations for Developers
MongoDB Operations for Developers
MongoDB
 
MongoDB on Azure
MongoDB on AzureMongoDB on Azure
MongoDB on Azure
Norberto Leite
 
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDB
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDBIntroducing MongoDB Stitch, Backend-as-a-Service from MongoDB
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDB
MongoDB
 
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor ManagementMongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB
 
Cignex mongodb-sharding-mongodbdays
Cignex mongodb-sharding-mongodbdaysCignex mongodb-sharding-mongodbdays
Cignex mongodb-sharding-mongodbdays
MongoDB APAC
 
Data Pipline Observability meetup
Data Pipline Observability meetup Data Pipline Observability meetup
Data Pipline Observability meetup
Omid Vahdaty
 
MongoDB & Hadoop - Understanding Your Big Data
MongoDB & Hadoop - Understanding Your Big DataMongoDB & Hadoop - Understanding Your Big Data
MongoDB & Hadoop - Understanding Your Big Data
MongoDB
 
An afternoon with mongo db new delhi
An afternoon with mongo db new delhiAn afternoon with mongo db new delhi
An afternoon with mongo db new delhi
Rajnish Verma
 
Sizing Your MongoDB Cluster
Sizing Your MongoDB ClusterSizing Your MongoDB Cluster
Sizing Your MongoDB Cluster
MongoDB
 
"Introduction to Kx Technology", James Corcoran, Head of Engineering EMEA at ...
"Introduction to Kx Technology", James Corcoran, Head of Engineering EMEA at ..."Introduction to Kx Technology", James Corcoran, Head of Engineering EMEA at ...
"Introduction to Kx Technology", James Corcoran, Head of Engineering EMEA at ...
Dataconomy Media
 
MongoDB and the Internet of Things
MongoDB and the Internet of ThingsMongoDB and the Internet of Things
MongoDB and the Internet of Things
MongoDB
 
MongoDB San Francisco 2013: Storing eBay's Media Metadata on MongoDB present...
MongoDB San Francisco 2013: Storing eBay's Media Metadata on MongoDB  present...MongoDB San Francisco 2013: Storing eBay's Media Metadata on MongoDB  present...
MongoDB San Francisco 2013: Storing eBay's Media Metadata on MongoDB present...
MongoDB
 
Improve your SQL workload with observability
Improve your SQL workload with observabilityImprove your SQL workload with observability
Improve your SQL workload with observability
OVHcloud
 
Data platform architecture principles - ieee infrastructure 2020
Data platform architecture principles - ieee infrastructure 2020Data platform architecture principles - ieee infrastructure 2020
Data platform architecture principles - ieee infrastructure 2020
Julien Le Dem
 
When to Use MongoDB
When to Use MongoDBWhen to Use MongoDB
When to Use MongoDB
MongoDB
 
Benefits of Using MongoDB Over RDBMSs
Benefits of Using MongoDB Over RDBMSsBenefits of Using MongoDB Over RDBMSs
Benefits of Using MongoDB Over RDBMSs
MongoDB
 
Webinar: An Enterprise Architect’s View of MongoDB
Webinar: An Enterprise Architect’s View of MongoDBWebinar: An Enterprise Architect’s View of MongoDB
Webinar: An Enterprise Architect’s View of MongoDB
MongoDB
 
Architecting Data in the AWS Ecosystem
Architecting Data in the AWS EcosystemArchitecting Data in the AWS Ecosystem
Architecting Data in the AWS Ecosystem
SingleStore
 
Дмитрий Лавриненко "Blockchain for Identity Management, based on Fast Big Data"
Дмитрий Лавриненко "Blockchain for Identity Management, based on Fast Big Data"Дмитрий Лавриненко "Blockchain for Identity Management, based on Fast Big Data"
Дмитрий Лавриненко "Blockchain for Identity Management, based on Fast Big Data"
Fwdays
 
Building Pinterest Real-Time Ads Platform Using Kafka Streams
Building Pinterest Real-Time Ads Platform Using Kafka Streams Building Pinterest Real-Time Ads Platform Using Kafka Streams
Building Pinterest Real-Time Ads Platform Using Kafka Streams
confluent
 
MongoDB Operations for Developers
MongoDB Operations for DevelopersMongoDB Operations for Developers
MongoDB Operations for Developers
MongoDB
 
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDB
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDBIntroducing MongoDB Stitch, Backend-as-a-Service from MongoDB
Introducing MongoDB Stitch, Backend-as-a-Service from MongoDB
MongoDB
 
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor ManagementMongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB
 
Cignex mongodb-sharding-mongodbdays
Cignex mongodb-sharding-mongodbdaysCignex mongodb-sharding-mongodbdays
Cignex mongodb-sharding-mongodbdays
MongoDB APAC
 
Data Pipline Observability meetup
Data Pipline Observability meetup Data Pipline Observability meetup
Data Pipline Observability meetup
Omid Vahdaty
 
MongoDB & Hadoop - Understanding Your Big Data
MongoDB & Hadoop - Understanding Your Big DataMongoDB & Hadoop - Understanding Your Big Data
MongoDB & Hadoop - Understanding Your Big Data
MongoDB
 
An afternoon with mongo db new delhi
An afternoon with mongo db new delhiAn afternoon with mongo db new delhi
An afternoon with mongo db new delhi
Rajnish Verma
 
Sizing Your MongoDB Cluster
Sizing Your MongoDB ClusterSizing Your MongoDB Cluster
Sizing Your MongoDB Cluster
MongoDB
 
"Introduction to Kx Technology", James Corcoran, Head of Engineering EMEA at ...
"Introduction to Kx Technology", James Corcoran, Head of Engineering EMEA at ..."Introduction to Kx Technology", James Corcoran, Head of Engineering EMEA at ...
"Introduction to Kx Technology", James Corcoran, Head of Engineering EMEA at ...
Dataconomy Media
 
MongoDB and the Internet of Things
MongoDB and the Internet of ThingsMongoDB and the Internet of Things
MongoDB and the Internet of Things
MongoDB
 
MongoDB San Francisco 2013: Storing eBay's Media Metadata on MongoDB present...
MongoDB San Francisco 2013: Storing eBay's Media Metadata on MongoDB  present...MongoDB San Francisco 2013: Storing eBay's Media Metadata on MongoDB  present...
MongoDB San Francisco 2013: Storing eBay's Media Metadata on MongoDB present...
MongoDB
 

Viewers also liked (20)

MongoDB at Medtronic
MongoDB at MedtronicMongoDB at Medtronic
MongoDB at Medtronic
MongoDB
 
RDBMS
RDBMS RDBMS
RDBMS
RamSon Queen
 
The Best of Both Worlds: Speeding Up Drug Research with MongoDB & Oracle (Gen...
The Best of Both Worlds: Speeding Up Drug Research with MongoDB & Oracle (Gen...The Best of Both Worlds: Speeding Up Drug Research with MongoDB & Oracle (Gen...
The Best of Both Worlds: Speeding Up Drug Research with MongoDB & Oracle (Gen...
MongoDB
 
Practice Fusion & MongoDB: Transitioning a 4 TB Audit Log from SQL Server to ...
Practice Fusion & MongoDB: Transitioning a 4 TB Audit Log from SQL Server to ...Practice Fusion & MongoDB: Transitioning a 4 TB Audit Log from SQL Server to ...
Practice Fusion & MongoDB: Transitioning a 4 TB Audit Log from SQL Server to ...
MongoDB
 
MongoDB and the Connectivity Map: Making Connections Between Genetics and Dis...
MongoDB and the Connectivity Map: Making Connections Between Genetics and Dis...MongoDB and the Connectivity Map: Making Connections Between Genetics and Dis...
MongoDB and the Connectivity Map: Making Connections Between Genetics and Dis...
MongoDB
 
Webinar: Electronic Health Records (EHRs) and MongoDB - Advancing the Data Pl...
Webinar: Electronic Health Records (EHRs) and MongoDB - Advancing the Data Pl...Webinar: Electronic Health Records (EHRs) and MongoDB - Advancing the Data Pl...
Webinar: Electronic Health Records (EHRs) and MongoDB - Advancing the Data Pl...
MongoDB
 
Michael Poremba, Director, Data Architecture at Practice Fusion
Michael Poremba, Director, Data Architecture at Practice FusionMichael Poremba, Director, Data Architecture at Practice Fusion
Michael Poremba, Director, Data Architecture at Practice Fusion
MongoDB
 
A Translational Medicine Platform at Sanofi
A Translational Medicine Platform at SanofiA Translational Medicine Platform at Sanofi
A Translational Medicine Platform at Sanofi
MongoDB
 
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQueryMongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB
 
IMPLEMENTASI DATA WAREHOUSE GUNA MEMBANTU PETERNAK SAPI DAN KUD DALAM MENGELO...
IMPLEMENTASI DATA WAREHOUSE GUNA MEMBANTU PETERNAK SAPI DAN KUD DALAM MENGELO...IMPLEMENTASI DATA WAREHOUSE GUNA MEMBANTU PETERNAK SAPI DAN KUD DALAM MENGELO...
IMPLEMENTASI DATA WAREHOUSE GUNA MEMBANTU PETERNAK SAPI DAN KUD DALAM MENGELO...
Udayana University
 
Accelerate Pharmaceutical R&D with Big Data and MongoDB
Accelerate Pharmaceutical R&D with Big Data and MongoDBAccelerate Pharmaceutical R&D with Big Data and MongoDB
Accelerate Pharmaceutical R&D with Big Data and MongoDB
MongoDB
 
Attacking MongoDB
Attacking MongoDBAttacking MongoDB
Attacking MongoDB
Михаил Фирстов
 
MongoDB at eBay
MongoDB at eBayMongoDB at eBay
MongoDB at eBay
MongoDB
 
MongoDB basics in Russian
MongoDB basics in RussianMongoDB basics in Russian
MongoDB basics in Russian
Oleg Kachan
 
Storing eBay's Media Metadata on MongoDB, by Yuri Finkelstein, Architect, eBay
Storing eBay's Media Metadata on MongoDB, by Yuri Finkelstein, Architect, eBayStoring eBay's Media Metadata on MongoDB, by Yuri Finkelstein, Architect, eBay
Storing eBay's Media Metadata on MongoDB, by Yuri Finkelstein, Architect, eBay
MongoDB
 
Migrating from RDBMS to MongoDB
Migrating from RDBMS to MongoDBMigrating from RDBMS to MongoDB
Migrating from RDBMS to MongoDB
MongoDB
 
Creating an E-Commerce Scorecard
Creating an E-Commerce ScorecardCreating an E-Commerce Scorecard
Creating an E-Commerce Scorecard
SAP Ariba
 
Webinar: MongoDB and Analytics: Building Solutions with the MongoDB BI Connector
Webinar: MongoDB and Analytics: Building Solutions with the MongoDB BI ConnectorWebinar: MongoDB and Analytics: Building Solutions with the MongoDB BI Connector
Webinar: MongoDB and Analytics: Building Solutions with the MongoDB BI Connector
MongoDB
 
Hadoop Summit 2013 : Continuous Integration on top of hadoop
Hadoop Summit 2013 : Continuous Integration on top of hadoopHadoop Summit 2013 : Continuous Integration on top of hadoop
Hadoop Summit 2013 : Continuous Integration on top of hadoop
Wisely chen
 
Building a Scalable and Modern Infrastructure at CARFAX
Building a Scalable and Modern Infrastructure at CARFAXBuilding a Scalable and Modern Infrastructure at CARFAX
Building a Scalable and Modern Infrastructure at CARFAX
MongoDB
 
MongoDB at Medtronic
MongoDB at MedtronicMongoDB at Medtronic
MongoDB at Medtronic
MongoDB
 
The Best of Both Worlds: Speeding Up Drug Research with MongoDB & Oracle (Gen...
The Best of Both Worlds: Speeding Up Drug Research with MongoDB & Oracle (Gen...The Best of Both Worlds: Speeding Up Drug Research with MongoDB & Oracle (Gen...
The Best of Both Worlds: Speeding Up Drug Research with MongoDB & Oracle (Gen...
MongoDB
 
Practice Fusion & MongoDB: Transitioning a 4 TB Audit Log from SQL Server to ...
Practice Fusion & MongoDB: Transitioning a 4 TB Audit Log from SQL Server to ...Practice Fusion & MongoDB: Transitioning a 4 TB Audit Log from SQL Server to ...
Practice Fusion & MongoDB: Transitioning a 4 TB Audit Log from SQL Server to ...
MongoDB
 
MongoDB and the Connectivity Map: Making Connections Between Genetics and Dis...
MongoDB and the Connectivity Map: Making Connections Between Genetics and Dis...MongoDB and the Connectivity Map: Making Connections Between Genetics and Dis...
MongoDB and the Connectivity Map: Making Connections Between Genetics and Dis...
MongoDB
 
Webinar: Electronic Health Records (EHRs) and MongoDB - Advancing the Data Pl...
Webinar: Electronic Health Records (EHRs) and MongoDB - Advancing the Data Pl...Webinar: Electronic Health Records (EHRs) and MongoDB - Advancing the Data Pl...
Webinar: Electronic Health Records (EHRs) and MongoDB - Advancing the Data Pl...
MongoDB
 
Michael Poremba, Director, Data Architecture at Practice Fusion
Michael Poremba, Director, Data Architecture at Practice FusionMichael Poremba, Director, Data Architecture at Practice Fusion
Michael Poremba, Director, Data Architecture at Practice Fusion
MongoDB
 
A Translational Medicine Platform at Sanofi
A Translational Medicine Platform at SanofiA Translational Medicine Platform at Sanofi
A Translational Medicine Platform at Sanofi
MongoDB
 
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQueryMongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB
 
IMPLEMENTASI DATA WAREHOUSE GUNA MEMBANTU PETERNAK SAPI DAN KUD DALAM MENGELO...
IMPLEMENTASI DATA WAREHOUSE GUNA MEMBANTU PETERNAK SAPI DAN KUD DALAM MENGELO...IMPLEMENTASI DATA WAREHOUSE GUNA MEMBANTU PETERNAK SAPI DAN KUD DALAM MENGELO...
IMPLEMENTASI DATA WAREHOUSE GUNA MEMBANTU PETERNAK SAPI DAN KUD DALAM MENGELO...
Udayana University
 
Accelerate Pharmaceutical R&D with Big Data and MongoDB
Accelerate Pharmaceutical R&D with Big Data and MongoDBAccelerate Pharmaceutical R&D with Big Data and MongoDB
Accelerate Pharmaceutical R&D with Big Data and MongoDB
MongoDB
 
MongoDB at eBay
MongoDB at eBayMongoDB at eBay
MongoDB at eBay
MongoDB
 
MongoDB basics in Russian
MongoDB basics in RussianMongoDB basics in Russian
MongoDB basics in Russian
Oleg Kachan
 
Storing eBay's Media Metadata on MongoDB, by Yuri Finkelstein, Architect, eBay
Storing eBay's Media Metadata on MongoDB, by Yuri Finkelstein, Architect, eBayStoring eBay's Media Metadata on MongoDB, by Yuri Finkelstein, Architect, eBay
Storing eBay's Media Metadata on MongoDB, by Yuri Finkelstein, Architect, eBay
MongoDB
 
Migrating from RDBMS to MongoDB
Migrating from RDBMS to MongoDBMigrating from RDBMS to MongoDB
Migrating from RDBMS to MongoDB
MongoDB
 
Creating an E-Commerce Scorecard
Creating an E-Commerce ScorecardCreating an E-Commerce Scorecard
Creating an E-Commerce Scorecard
SAP Ariba
 
Webinar: MongoDB and Analytics: Building Solutions with the MongoDB BI Connector
Webinar: MongoDB and Analytics: Building Solutions with the MongoDB BI ConnectorWebinar: MongoDB and Analytics: Building Solutions with the MongoDB BI Connector
Webinar: MongoDB and Analytics: Building Solutions with the MongoDB BI Connector
MongoDB
 
Hadoop Summit 2013 : Continuous Integration on top of hadoop
Hadoop Summit 2013 : Continuous Integration on top of hadoopHadoop Summit 2013 : Continuous Integration on top of hadoop
Hadoop Summit 2013 : Continuous Integration on top of hadoop
Wisely chen
 
Building a Scalable and Modern Infrastructure at CARFAX
Building a Scalable and Modern Infrastructure at CARFAXBuilding a Scalable and Modern Infrastructure at CARFAX
Building a Scalable and Modern Infrastructure at CARFAX
MongoDB
 
Ad

Similar to MongoDB as a Data Warehouse: Time Series and Device History Data (Medtronic) (20)

Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
Webinar: Introducing the MongoDB Connector for BI 2.0 with TableauWebinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
MongoDB
 
Getting Started with MongoDB Using the Microsoft Stack
Getting Started with MongoDB Using the Microsoft Stack Getting Started with MongoDB Using the Microsoft Stack
Getting Started with MongoDB Using the Microsoft Stack
MongoDB
 
Mongo db 3.4 Overview
Mongo db 3.4 OverviewMongo db 3.4 Overview
Mongo db 3.4 Overview
Norberto Leite
 
MongoDB Administration 101
MongoDB Administration 101MongoDB Administration 101
MongoDB Administration 101
MongoDB
 
Enterprise architectsview 2015-apr
Enterprise architectsview 2015-aprEnterprise architectsview 2015-apr
Enterprise architectsview 2015-apr
MongoDB
 
RedHat MRG and Infinispan for Large Scale Integration
RedHat MRG and Infinispan for Large Scale IntegrationRedHat MRG and Infinispan for Large Scale Integration
RedHat MRG and Infinispan for Large Scale Integration
prajods
 
Introduction to MongoDB Basics from SQL to NoSQL
Introduction to MongoDB Basics from SQL to NoSQLIntroduction to MongoDB Basics from SQL to NoSQL
Introduction to MongoDB Basics from SQL to NoSQL
Mayur Patil
 
Webinar: What's New in MongoDB 3.2
Webinar: What's New in MongoDB 3.2Webinar: What's New in MongoDB 3.2
Webinar: What's New in MongoDB 3.2
MongoDB
 
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce PlatformMongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB
 
MongoDB Evening Austin, TX 2017
MongoDB Evening Austin, TX 2017MongoDB Evening Austin, TX 2017
MongoDB Evening Austin, TX 2017
MongoDB
 
Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
 Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
MongoDB
 
Government GraphSummit: And Then There Were 15 Standards
Government GraphSummit: And Then There Were 15 StandardsGovernment GraphSummit: And Then There Were 15 Standards
Government GraphSummit: And Then There Were 15 Standards
Neo4j
 
Neo4j: What's Under the Hood & How Knowing This Can Help You
Neo4j: What's Under the Hood & How Knowing This Can Help You Neo4j: What's Under the Hood & How Knowing This Can Help You
Neo4j: What's Under the Hood & How Knowing This Can Help You
Neo4j
 
ICIECA 2014 Paper 05
ICIECA 2014 Paper 05ICIECA 2014 Paper 05
ICIECA 2014 Paper 05
Association of Scientists, Developers and Faculties
 
EM12c: Capacity Planning with OEM Metrics
EM12c: Capacity Planning with OEM MetricsEM12c: Capacity Planning with OEM Metrics
EM12c: Capacity Planning with OEM Metrics
Maaz Anjum
 
Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101
MongoDB
 
Chromatography Data System: Chromeleon Goes Mass Spectrometry
Chromatography Data System: Chromeleon Goes Mass SpectrometryChromatography Data System: Chromeleon Goes Mass Spectrometry
Chromatography Data System: Chromeleon Goes Mass Spectrometry
Chromatography & Mass Spectrometry Solutions
 
Data Discovery and Metadata
Data Discovery and MetadataData Discovery and Metadata
Data Discovery and Metadata
markgrover
 
MongoDB Evenings Chicago - Find Your Way in MongoDB 3.2: Compass and Beyond
MongoDB Evenings Chicago - Find Your Way in MongoDB 3.2: Compass and BeyondMongoDB Evenings Chicago - Find Your Way in MongoDB 3.2: Compass and Beyond
MongoDB Evenings Chicago - Find Your Way in MongoDB 3.2: Compass and Beyond
MongoDB
 
Budapest Spring MUG 2016 - MongoDB User Group
Budapest Spring MUG 2016 - MongoDB User GroupBudapest Spring MUG 2016 - MongoDB User Group
Budapest Spring MUG 2016 - MongoDB User Group
Marc Schwering
 
Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
Webinar: Introducing the MongoDB Connector for BI 2.0 with TableauWebinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
MongoDB
 
Getting Started with MongoDB Using the Microsoft Stack
Getting Started with MongoDB Using the Microsoft Stack Getting Started with MongoDB Using the Microsoft Stack
Getting Started with MongoDB Using the Microsoft Stack
MongoDB
 
MongoDB Administration 101
MongoDB Administration 101MongoDB Administration 101
MongoDB Administration 101
MongoDB
 
Enterprise architectsview 2015-apr
Enterprise architectsview 2015-aprEnterprise architectsview 2015-apr
Enterprise architectsview 2015-apr
MongoDB
 
RedHat MRG and Infinispan for Large Scale Integration
RedHat MRG and Infinispan for Large Scale IntegrationRedHat MRG and Infinispan for Large Scale Integration
RedHat MRG and Infinispan for Large Scale Integration
prajods
 
Introduction to MongoDB Basics from SQL to NoSQL
Introduction to MongoDB Basics from SQL to NoSQLIntroduction to MongoDB Basics from SQL to NoSQL
Introduction to MongoDB Basics from SQL to NoSQL
Mayur Patil
 
Webinar: What's New in MongoDB 3.2
Webinar: What's New in MongoDB 3.2Webinar: What's New in MongoDB 3.2
Webinar: What's New in MongoDB 3.2
MongoDB
 
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce PlatformMongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB
 
MongoDB Evening Austin, TX 2017
MongoDB Evening Austin, TX 2017MongoDB Evening Austin, TX 2017
MongoDB Evening Austin, TX 2017
MongoDB
 
Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
 Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
MongoDB
 
Government GraphSummit: And Then There Were 15 Standards
Government GraphSummit: And Then There Were 15 StandardsGovernment GraphSummit: And Then There Were 15 Standards
Government GraphSummit: And Then There Were 15 Standards
Neo4j
 
Neo4j: What's Under the Hood & How Knowing This Can Help You
Neo4j: What's Under the Hood & How Knowing This Can Help You Neo4j: What's Under the Hood & How Knowing This Can Help You
Neo4j: What's Under the Hood & How Knowing This Can Help You
Neo4j
 
EM12c: Capacity Planning with OEM Metrics
EM12c: Capacity Planning with OEM MetricsEM12c: Capacity Planning with OEM Metrics
EM12c: Capacity Planning with OEM Metrics
Maaz Anjum
 
Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101Ops Jumpstart: MongoDB Administration 101
Ops Jumpstart: MongoDB Administration 101
MongoDB
 
Data Discovery and Metadata
Data Discovery and MetadataData Discovery and Metadata
Data Discovery and Metadata
markgrover
 
MongoDB Evenings Chicago - Find Your Way in MongoDB 3.2: Compass and Beyond
MongoDB Evenings Chicago - Find Your Way in MongoDB 3.2: Compass and BeyondMongoDB Evenings Chicago - Find Your Way in MongoDB 3.2: Compass and Beyond
MongoDB Evenings Chicago - Find Your Way in MongoDB 3.2: Compass and Beyond
MongoDB
 
Budapest Spring MUG 2016 - MongoDB User Group
Budapest Spring MUG 2016 - MongoDB User GroupBudapest Spring MUG 2016 - MongoDB User Group
Budapest Spring MUG 2016 - MongoDB User Group
Marc Schwering
 
Ad

More from MongoDB (20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 

Recently uploaded (20)

Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
AI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamsonAI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamson
UXPA Boston
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?
Eric Torreborre
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
Build With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdfBuild With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdf
Google Developer Group - Harare
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
CSUC - Consorci de Serveis Universitaris de Catalunya
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Dark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanizationDark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanization
Jakub Šimek
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
AI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamsonAI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamson
UXPA Boston
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?
Eric Torreborre
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Dark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanizationDark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanization
Jakub Šimek
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 

MongoDB as a Data Warehouse: Time Series and Device History Data (Medtronic)

Editor's Notes

  • #4: Our roles and how long we’ve been at the company, how long we’ve faced the problem How the project came to be The project team
  • #5: Last year, more than 9 million people around the world benefitted from Medtronic products or therapies. Its our job to demonstrate the quality and reliability of the components we manufacture Approx 2.75M Batteries, 19M Feedthroughs, 2M Capacitors, 2.7M Headers, 1.1M SPC Samples/Day 30M Lifetest Samples/Day FY15+
  • #7: Current State -- Systems generating discrete data sources “raw” data in one source, Metadata in a difference source, Event and process data in yet another source Each system has a different format Different types of components with different models 1.1M SPC Samples/Day 30M Lifetest Samples/Day FY15+ and We NEVER delete the data Enterprise acceptance of new Technology/Solution on top of existing is even more challenging
  • #8: 80% Wrangling, 20% Analyzing
  • #9: Transformation of Data to Knowledge
  • #10: Leveraging enterprise tools and enabling new tools SPACE Spotfire Excel JMP Business Objects
  • #11: Each row is a component and the columns are the things we know about each component
  • #12: Merge history of component at report time Report could be user driven or off-line reporting, both still slow Ad-hoc reporting is complex queries and still slow Hours to get part of the component history Days to get a more complete history
  • #13: Pre-Load Data From Discrete Sources Into Central Repo Repo could be enterprise data warehouse (EDW), RDBMS, or MongoDB
  • #14: Difficult to store uncontrolled data formats Scaling via big iron or custom data marts/partitioning schemes Schema must be known at design time Impedance mismatch with agile development and deployment techniques Doesn’t map well to native language constructs Data is optimized for storage Data stored is very compact Rigid schemas have led to powerful query capabilities (very complex queries, consequences of left/right/inner joins) Generic data types make queries less effective Robust ecosystem of tools, libraries, integrations 40+ years old!
  • #15: Ideal Future State
  • #17: Ideal Future State
  • #18: 5+ tables in a single Mongo document 20 Production Steps 30 Subcomponents 150 Facts
  • #19: Data storage is optimized for read/write and not space on disk
  • #22: Udacity course is part of Data Science track Download and use third party tools (MongoVUE, JSON Studio, etc.) Still learning about more advanced analytics possibilities
  • #29: .explain() will give stats on command
  • #33: Do not convert query results to List() here or from calling method, just iterate through enumerable
  • #38: MongoDB domain class options
  翻译: