This document discusses using microtask crowdsourcing to enhance linked data applications. It describes how crowdsourcing can be used in various components of the linked data integration process, including data cleansing, vocabulary mapping, and entity interlinking. Specific crowdsourcing applications and systems are discussed that address tasks like assessing the quality of DBpedia triples, entity linking with ZenCrowd, and understanding natural language queries with CrowdQ. The results show that crowdsourcing can often improve the results of automated techniques for various linked data tasks and help integrate and enhance large linked data sources.