Apriori is one of the key algorithms to generate frequent itemsets. Analysing frequent itemset is a crucial
step in analysing structured data and in finding association relationship between items. This stands as an
elementary foundation to supervised learning, which encompasses classifier and feature extraction
methods. Applying this algorithm is crucial to understand the behaviour of structured data. Most of the
structured data in scientific domain are voluminous. Processing such kind of data requires state of the art
computing machines. Setting up such an infrastructure is expensive. Hence a distributed environment
such as a clustered setup is employed for tackling such scenarios. Apache Hadoop distribution is one of
the cluster frameworks in distributed environment that helps by distributing voluminous data across a
number of nodes in the framework. This paper focuses on map/reduce design and implementation of
Apriori algorithm for structured data analysis.