SlideShare a Scribd company logo
LINEARIZATION OF FUNCTIONS OF TWO OR
MORE VARIABLES & THERMAL PROCESS
EXAMPLE
1
CONTROL PROCESS
FIRST-ORDERDYNAMICSYSTEMS
"Good, better, best. Never let it rest. 'Til your good is better and your better is best." - St. Jerome
LINEARIZATION OF FUNCTIONS OF TWO OR MORE
VARIABLES & THERMAL PROCESS EXAMPLE
IRIS BUSTAMANTE PÁJARO*
ANGIE CASTILLO GUEVARA*
ALVARO JOSE GARCÍA PADILLA *
KARIANA ANDREA MORENO SADDER*
LUIS ALBERTO PATERNINA NUÑEZ*
CHEMICAL ENGINEERING PROGRAM
UNIVERSITY OF CARTAGENA
2
CONTROL PROCESS
FIRST-ORDERDYNAMICSYSTEMS
3
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
FUNCTIONS OF TWO OR MORE VARIABLES
Rate of a chemical reactionEquation of state Raoult’s law
𝑘 𝑐 𝐴
2
𝑡 𝑐 𝐵(𝑡)
𝑟 𝑐 𝐴 𝑡 , 𝑐 𝐵(𝑡) ) 𝑦 𝑇 𝑡 , 𝑝 𝑡 , 𝑥(𝑡)
𝑝0
𝑇 𝑡
𝑝 𝑡
𝑥(𝑡)
𝜌 𝑝 𝑡 , 𝑇(𝑡)
𝑀 𝑝(𝑡)
𝑅 𝑇(𝑡)
Smith & Corripio, 2005
4
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
Smith & Corripio, 2005
LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES
Taylor series expansion
𝑓 𝑥1 𝑡 , 𝑥2 𝑡 , … ≈ 𝑓 𝑥1, 𝑥2, … +
𝜕𝑓
𝜕𝑥1
𝑥1 𝑡 − 𝑥1 +
𝜕𝑓
𝜕𝑥2
𝑥2 𝑡 − 𝑥2 + ⋯
𝜕𝑓
𝜕𝑥 𝑘
=
𝜕𝑓
𝜕𝑥 𝑘 𝑥1, 𝑥2,…
Where,
𝑥1, 𝑥2, … basic values of each variable.
5
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
Smith & Corripio, 2005
EXAMPLE 2-6.2
FUNCTION
𝑎 𝑤 𝑡 , ℎ(𝑡) = 𝑤 𝑡 ℎ(𝑡)
Area of a rectangle
𝑤 𝑡
ℎ 𝑡
𝑎 𝑤 𝑡 , ℎ(𝑡) ≈ 𝑎 𝑤, ℎ +
𝜕𝑎
𝜕𝑤
𝑤 𝑡 − 𝑤 +
𝜕𝑎
𝜕ℎ
ℎ 𝑡 − ℎ
How to linearize?
𝑎 𝑤 𝑡 , ℎ(𝑡) ≈ 𝑎 𝑤, ℎ + ℎ 𝑤 𝑡 − 𝑤 + 𝑤 ℎ 𝑡 − ℎ
𝑎 𝑤, ℎ
𝑤
ℎ
𝑤 ℎ 𝑡 − ℎ
ℎ𝑤𝑡−𝑤
Error
Small
error
6
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
Smith & Corripio, 2005
EXAMPLE 2-6.3
T
p
Density of an ideal gas as function of
pressure and temperature:
𝜌 𝑝 𝑡 , 𝑇(𝑡) =
𝑀 𝑝(𝑡)
𝑅 𝑇(𝑡)
Linear approximation?
Additional information
𝑀 = 20
𝑘𝑔
𝑘𝑚𝑜𝑙 𝑇 = 300 𝐾
𝑃 = 101.3 𝑘𝑃𝑎 𝑅 = 8.314
𝑘𝑃𝑎 ∙ 𝑚3
𝑘𝑚𝑜𝑙 ∙ 𝐾
7
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
Smith & Corripio, 2005
How to linearize?
𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈ 𝜌 𝑝, 𝑇 +
𝜕𝜌
𝜕𝑝
𝑝 𝑡 − 𝑝 +
𝜕𝜌
𝜕𝑇
𝑇 𝑡 − 𝑇
𝜕𝜌
𝜕𝑝
=
𝜕𝜌
𝜕𝑝 𝑝, 𝑇
=
𝜕
𝜕𝑝
𝑀 𝑝(𝑡)
𝑅 𝑇(𝑡) 𝑝, 𝑇
=
𝑀
𝑅 𝑇(𝑡) 𝑝, 𝑇
=
𝑀
𝑅 𝑇
𝜕𝜌
𝜕𝑇
=
𝜕𝜌
𝜕𝑇 𝑝, 𝑇
=
𝜕
𝜕𝑇
𝑀 𝑝(𝑡)
𝑅 𝑇(𝑡) 𝑝, 𝑇
= −
𝑀𝑝 𝑡
𝑅 𝑇2 𝑡 𝑝, 𝑇
= −
𝑀 𝑝
𝑅 𝑇2
𝜌 𝑝, 𝑇 =
𝑀 𝑝
𝑅 𝑇
8
MATHEMATICALTOOLSFORCONTROLSYSTEMS
LINEARIZATION
Smith & Corripio, 2005
Linearized function
𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈
𝑀 𝑝
𝑅 𝑇
+
𝑀
𝑅 𝑇
𝑝 𝑡 − 𝑝 −
𝑀 𝑝
𝑅 𝑇2
𝑇 𝑡 − 𝑇
Numerically
𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈ 1.178 + 0.01163 𝑝 𝑡 − 101.3 − 0.00393 𝑇 𝑡 − 300
𝜌 =
𝑘𝑔
𝑚3
; 𝑇 = 𝐾; 𝑝 = 𝑘𝑃𝑎
Where,
9
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝐹𝑖, 𝑇𝑖
𝐹𝑜, 𝑇𝑜
Assumptions
Control volume
Liquid is well mixed
Tank is well insulated
Energy input by the stirrer is
negligible
Constant and equal inlet and outlet
volumetric flow, liquid densities and
heat capacity
Question
Mathematical model, 𝑇𝑜 response
to changes in 𝑇𝑖
Case 1: Adiabatic
10
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
Energy balance:
𝐹𝑖 𝜌𝑖ℎ𝑖 𝑡 − 𝐹𝑜 𝜌 𝑜ℎ 𝑜 𝑡 =
𝑑 𝑉 𝜌 𝑢 𝑡
𝑑𝑡
Rate of energy into
control volume
Rate of energy out
of control volume
Rate of change of
energy accumulated in
control volume
𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
Replacing internal energy 𝑢(𝑡) and enthalpy ℎ(𝑡)
𝑢 𝑡 = 𝑐 𝑣 𝑇 𝑡 − 𝑇𝑟𝑒𝑓 ℎ 𝑡 = 𝑐 𝑝 𝑇 𝑡 − 𝑇𝑟𝑒𝑓
Eq. 1
11
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝐹𝜌𝑐 𝑝 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇𝑠𝑠 = 0
Deviation
Subtracting Eq. 1 & 2
Stable State (SS): Eq. 2
𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑇𝑠𝑠 = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
𝑇𝑖(𝑡) = 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 𝑇(𝑡) = 𝑇 𝑡 − 𝑇𝑠𝑠
𝐹𝜌𝑐 𝑝 𝑇𝑖(𝑡) − 𝐹𝜌𝑐 𝑝 𝑇(𝑡) = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
𝑇𝑖(𝑡) =
𝑉 𝜌𝑐 𝑣
𝐹𝜌𝑐 𝑝
𝑑 𝑇 𝑡
𝑑𝑡
+ 𝑇(𝑡)
𝝉
12
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
Use of Laplace transform yields
ℒ 𝑇𝑖(𝑡) = 𝜏 ℒ
𝑑 𝑇 𝑡
𝑑𝑡
+ ℒ 𝑇(𝑡) ℒ
𝑑 𝑦 𝑡
𝑑𝑡
= 𝑠𝑦 𝑠 − 𝑦(0)
𝑇𝑖(𝑠) = 𝜏 𝑠 𝑇 𝑠 − 𝑇 0 + 𝑇(𝑠) 𝑇 0 = 𝑇 0 − 𝑇𝑠𝑠 = 0
𝑇 𝑠 =
1
(𝜏𝑠 + 1)
𝑇𝑖 (𝑠) Transfer function first-order processes
Assuming inlet
temperature increases of
M degrees in magnitude
𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠
𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 + 𝑀
𝑡 < 0
𝑡 ≥ 0
13
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑇𝑖 𝑡 = 𝑀 𝑢(𝑡) 𝑇𝑖 𝑠 =
𝑀
𝑠
Unit step function
𝑇 𝑠 =
1
(𝜏𝑠 + 1)
𝑀
𝑠
Partial fractions method
𝑇 𝑠 =
𝑀
𝑠 𝜏𝑠 + 1
=
𝐴
𝑠
+
𝐵
𝜏𝑠 + 1
𝐴 𝜏𝑠 + 1 + 𝐵𝑠 = 𝑀
𝑇 𝑠 =
𝑀
𝑠
+
−𝑀𝜏
𝜏𝑠 + 1
ℒ−1
1
𝑠 + 𝑎
= 𝑒−𝑎𝑡
ℒ−1
1
𝑠
= 𝑒−0𝑡
= 1ℒ−1
𝑇 𝑠 = ℒ−1
𝑀
𝑠
+ ℒ−1
−𝑀𝜏
𝜏𝑠 + 1
Laplace transform inverse
14
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑇 𝑡 = 𝑀 (1 − 𝑒−𝑡/𝜏) 𝑇 𝑡 = 𝑇𝑠𝑠 + 𝑀 (1 − 𝑒−𝑡/𝜏)or
0
M
𝑇 𝑡 , °C
𝑇
𝑇 + 𝑀
𝜏 Time
0.632 𝑀
Figure. Response of a first-order process to a step change in input variable
15
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
Case 2: Non adiabatic
𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑞 𝑡 = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
𝑞 𝑡 = 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠(𝑡)Assumption: U constant
𝐹𝜌𝑐 𝑝 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇𝑠𝑠 − 𝑈𝐴 𝑇𝑠𝑠 − 𝑇𝑠,𝑠𝑠 = 0
Stable State (SS):
Eq. 2
Eq. 1𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠(𝑡) = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
Subtracting Eq. 1 & 2
16
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑇𝑠𝑠 − 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠𝑠 − (𝑇𝑠 𝑡 − 𝑇𝑠,𝑠𝑠) = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
𝑇𝑖(𝑡) = 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠
𝑇(𝑡) = 𝑇 𝑡 − 𝑇𝑠𝑠
𝑇𝑠(𝑡) = 𝑇𝑠 𝑡 − 𝑇𝑠,𝑠𝑠
𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑈𝐴 𝑇(𝑡) − 𝑇𝑠(𝑡) = 𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
𝑉 𝜌𝑐 𝑣
𝑑 𝑇 𝑡
𝑑𝑡
+ 𝐹𝜌𝑐 𝑝 + 𝑈𝐴 𝑇 𝑡 = 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 + 𝑈𝐴 𝑇𝑠(𝑡)
17
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑉 𝜌𝑐 𝑣
𝐹𝜌𝑐 𝑝 + 𝑈𝐴
𝑑 𝑇 𝑡
𝑑𝑡
+ 𝑇 𝑡 =
𝐹𝜌𝑐 𝑝
𝐹𝜌𝑐 𝑝 + 𝑈𝐴
𝑇𝑖 𝑡 +
𝑈𝐴
𝐹𝜌𝑐 𝑝 + 𝑈𝐴
𝑇𝑠 (𝑡)
𝝉 𝑲 𝟏 𝑲 𝟐
Use of Laplace transform yields
𝜏 𝑠 𝑇 𝑠 − 𝑇 0 + 𝑇 𝑠 = 𝐾1 𝑇𝑖 𝑠 + 𝐾2 𝑇𝑠 𝑠
𝑇 𝑠 =
𝐾1
𝜏𝑠 + 1
𝑇𝑖 𝑠 +
𝐾2
𝜏𝑠 + 1
𝑇𝑠 𝑠
𝐾 =
∆𝑂
∆𝐼
=
∆ output variable
∆ input variable
18
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑇 𝑠 =
𝐾2
𝜏𝑠 + 1
𝑇𝑠 𝑠
Constant: surrounding temperature
Constant: liquid temperature
𝑇 𝑠 =
𝐾1
𝜏𝑠 + 1
𝑇𝑖 𝑠 𝑇𝑠 𝑡 = 𝑇𝑠,𝑠𝑠; 𝑇𝑠 𝑠 = 0
𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠; 𝑇𝑖 𝑠 = 0
Assuming inlet
temperature increases of
M degrees in magnitude
𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠
𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 + 𝑀
𝑡 < 0
𝑡 ≥ 0
19
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑇𝑖 𝑡 = 𝑀 𝑢(𝑡) 𝑇𝑖 𝑠 =
𝑀
𝑠
Unit step function
𝑇 𝑠 =
𝐾1
(𝜏𝑠 + 1)
𝑀
𝑠
Partial fractions method
𝑇 𝑠 =
𝐾1 𝑀
𝑠 𝜏𝑠 + 1
=
𝐴
𝑠
+
𝐵
𝜏𝑠 + 1
𝐴 𝜏𝑠 + 1 + 𝐵𝑠 = 𝐾1 𝑀
𝑇 𝑠 =
𝐾1 𝑀
𝑠
+
−𝐾1 𝑀𝜏
𝜏𝑠 + 1
ℒ−1
1
𝑠 + 𝑎
= 𝑒−𝑎𝑡
ℒ−1
1
𝑠
= 𝑒−0𝑡
= 1ℒ−1
𝑇 𝑠 = ℒ−1
𝐾1 𝑀
𝑠
+ ℒ−1
−𝐾1 𝑀𝜏
𝜏𝑠 + 1
Laplace transform inverse
20
FIRST-ORDERDYNAMICSYSTEMS
THERMAL PROCESS EXAMPLE
Smith & Corripio, 2005
THERMAL PROCESS
𝑇 𝑡 = 𝐾1 𝑀 (1 − 𝑒−𝑡/𝜏) 𝑇 𝑡 = 𝑇𝑠𝑠 + 𝐾1 𝑀 (1 − 𝑒−𝑡/𝜏)or
0
M
𝑇 𝑡 , °C
𝑇
𝑇 + 𝐾1 𝑀
Time
𝐾1 𝑀
Figure. Response of a first-order process to a step change in input variable
THANKS !
21
Ad

More Related Content

What's hot (20)

Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Chemical Engineering Guy
 
Che 412 cre 1 notes
Che 412 cre 1 notesChe 412 cre 1 notes
Che 412 cre 1 notes
Khaemba stephen
 
Integración numérica Parte 2
Integración numérica Parte 2Integración numérica Parte 2
Integración numérica Parte 2
Kike Prieto
 
Design of imc based controller for industrial purpose
Design of imc based controller for industrial purposeDesign of imc based controller for industrial purpose
Design of imc based controller for industrial purpose
375ankit
 
TERMODINAMICA 3: FUGACIDAD Y SOLUCIONES REALES
TERMODINAMICA 3:  FUGACIDAD Y SOLUCIONES REALESTERMODINAMICA 3:  FUGACIDAD Y SOLUCIONES REALES
TERMODINAMICA 3: FUGACIDAD Y SOLUCIONES REALES
Domenico Venezia
 
4 turbulent flow
4 turbulent flow4 turbulent flow
4 turbulent flow
Xavier Rodríguez
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 13
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 13Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 13
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 13
Grey Enterprise Holdings, Inc.
 
Reactor PFR con Recirculacion.pptx
Reactor PFR con Recirculacion.pptxReactor PFR con Recirculacion.pptx
Reactor PFR con Recirculacion.pptx
ALDOMORALES37
 
Welty solutions-manual-1
Welty solutions-manual-1Welty solutions-manual-1
Welty solutions-manual-1
ErIka Morales
 
Ejercicio de Flujo en Tuberías (Examen Final, Noviembre 2017)
Ejercicio de Flujo en Tuberías (Examen Final, Noviembre 2017)Ejercicio de Flujo en Tuberías (Examen Final, Noviembre 2017)
Ejercicio de Flujo en Tuberías (Examen Final, Noviembre 2017)
Miguel Antonio Bula Picon
 
4. fs buoyancy class 4
4. fs buoyancy class 44. fs buoyancy class 4
4. fs buoyancy class 4
Zaza Eureka
 
Shell Momentum Balances in heat transfer
Shell Momentum Balances in heat transferShell Momentum Balances in heat transfer
Shell Momentum Balances in heat transfer
Usman Shah
 
10.0 ciclo rankine
10.0 ciclo rankine10.0 ciclo rankine
10.0 ciclo rankine
Esteban Llanos
 
Transport Phenomena Solutions Manual (R. byron bird,_warren_e._stewart,_edwin...
Transport Phenomena Solutions Manual (R. byron bird,_warren_e._stewart,_edwin...Transport Phenomena Solutions Manual (R. byron bird,_warren_e._stewart,_edwin...
Transport Phenomena Solutions Manual (R. byron bird,_warren_e._stewart,_edwin...
mehtakareena21
 
Excess gibbs free energy models
Excess gibbs free energy modelsExcess gibbs free energy models
Excess gibbs free energy models
Sunny Chauhan
 
Space time and Space velocity, CSTR
Space time and Space velocity, CSTRSpace time and Space velocity, CSTR
Space time and Space velocity, CSTR
Mujeeb UR Rahman
 
Skirt support for vertical vessal 16 06,07,08,09
Skirt support for vertical vessal 16 06,07,08,09Skirt support for vertical vessal 16 06,07,08,09
Skirt support for vertical vessal 16 06,07,08,09
Shahrukh Vahora
 
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...Vector mechanics for engineers statics and dynamics 11th edition beer solutio...
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...
KrisWu321
 
Fluid machine book
Fluid machine bookFluid machine book
Fluid machine book
TalemaTesfaw
 
02 part5 energy balance
02 part5 energy balance02 part5 energy balance
02 part5 energy balance
gunabalan sellan
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Chemical Engineering Guy
 
Integración numérica Parte 2
Integración numérica Parte 2Integración numérica Parte 2
Integración numérica Parte 2
Kike Prieto
 
Design of imc based controller for industrial purpose
Design of imc based controller for industrial purposeDesign of imc based controller for industrial purpose
Design of imc based controller for industrial purpose
375ankit
 
TERMODINAMICA 3: FUGACIDAD Y SOLUCIONES REALES
TERMODINAMICA 3:  FUGACIDAD Y SOLUCIONES REALESTERMODINAMICA 3:  FUGACIDAD Y SOLUCIONES REALES
TERMODINAMICA 3: FUGACIDAD Y SOLUCIONES REALES
Domenico Venezia
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 13
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 13Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 13
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 13
Grey Enterprise Holdings, Inc.
 
Reactor PFR con Recirculacion.pptx
Reactor PFR con Recirculacion.pptxReactor PFR con Recirculacion.pptx
Reactor PFR con Recirculacion.pptx
ALDOMORALES37
 
Welty solutions-manual-1
Welty solutions-manual-1Welty solutions-manual-1
Welty solutions-manual-1
ErIka Morales
 
Ejercicio de Flujo en Tuberías (Examen Final, Noviembre 2017)
Ejercicio de Flujo en Tuberías (Examen Final, Noviembre 2017)Ejercicio de Flujo en Tuberías (Examen Final, Noviembre 2017)
Ejercicio de Flujo en Tuberías (Examen Final, Noviembre 2017)
Miguel Antonio Bula Picon
 
4. fs buoyancy class 4
4. fs buoyancy class 44. fs buoyancy class 4
4. fs buoyancy class 4
Zaza Eureka
 
Shell Momentum Balances in heat transfer
Shell Momentum Balances in heat transferShell Momentum Balances in heat transfer
Shell Momentum Balances in heat transfer
Usman Shah
 
Transport Phenomena Solutions Manual (R. byron bird,_warren_e._stewart,_edwin...
Transport Phenomena Solutions Manual (R. byron bird,_warren_e._stewart,_edwin...Transport Phenomena Solutions Manual (R. byron bird,_warren_e._stewart,_edwin...
Transport Phenomena Solutions Manual (R. byron bird,_warren_e._stewart,_edwin...
mehtakareena21
 
Excess gibbs free energy models
Excess gibbs free energy modelsExcess gibbs free energy models
Excess gibbs free energy models
Sunny Chauhan
 
Space time and Space velocity, CSTR
Space time and Space velocity, CSTRSpace time and Space velocity, CSTR
Space time and Space velocity, CSTR
Mujeeb UR Rahman
 
Skirt support for vertical vessal 16 06,07,08,09
Skirt support for vertical vessal 16 06,07,08,09Skirt support for vertical vessal 16 06,07,08,09
Skirt support for vertical vessal 16 06,07,08,09
Shahrukh Vahora
 
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...Vector mechanics for engineers statics and dynamics 11th edition beer solutio...
Vector mechanics for engineers statics and dynamics 11th edition beer solutio...
KrisWu321
 
Fluid machine book
Fluid machine bookFluid machine book
Fluid machine book
TalemaTesfaw
 

Similar to LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE (20)

Presentation1
Presentation1Presentation1
Presentation1
Engr. Rabia ijaz
 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Burdwan University
 
Capitulo 9
Capitulo 9Capitulo 9
Capitulo 9
RODERICKALONSOCACHAR
 
EE-433-L4discrete_control_kfupm____.pptx
EE-433-L4discrete_control_kfupm____.pptxEE-433-L4discrete_control_kfupm____.pptx
EE-433-L4discrete_control_kfupm____.pptx
ahmedtaibech
 
Chemical Bonding
Chemical BondingChemical Bonding
Chemical Bonding
BinusreeJayan
 
SDF Hysteretic System 1 - Analytical Vaiana Rosati Model
SDF Hysteretic System 1 - Analytical Vaiana Rosati ModelSDF Hysteretic System 1 - Analytical Vaiana Rosati Model
SDF Hysteretic System 1 - Analytical Vaiana Rosati Model
University of Naples Federico II
 
Passivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulatorPassivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulator
Hancheol Choi
 
schluter_presentation (1).pdf
schluter_presentation (1).pdfschluter_presentation (1).pdf
schluter_presentation (1).pdf
soukat2
 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
SHREDHAPRASAD
 
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
University of Naples Federico II
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
HebaEng
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
AYMENGOODKid
 
14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx
buttshaheemsoci77
 
Examen termo final
Examen termo finalExamen termo final
Examen termo final
HugoPalCastillo
 
10). thermodynamics (finished)
10). thermodynamics (finished)10). thermodynamics (finished)
10). thermodynamics (finished)
PhysicsLover
 
Analysis Of A Binary Outcome Variable
Analysis Of A Binary Outcome VariableAnalysis Of A Binary Outcome Variable
Analysis Of A Binary Outcome Variable
Arthur8898
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
kesava2004010
 
2014_12_Sierra
2014_12_Sierra2014_12_Sierra
2014_12_Sierra
Carlos Sierra
 
Integral indefinida
Integral indefinidaIntegral indefinida
Integral indefinida
Gregory Zuñiga
 
Sistemas de primer orden, segundo orden y de orden superior
Sistemas de primer orden, segundo orden y de orden superiorSistemas de primer orden, segundo orden y de orden superior
Sistemas de primer orden, segundo orden y de orden superior
Jhon D'Lozxo
 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Burdwan University
 
EE-433-L4discrete_control_kfupm____.pptx
EE-433-L4discrete_control_kfupm____.pptxEE-433-L4discrete_control_kfupm____.pptx
EE-433-L4discrete_control_kfupm____.pptx
ahmedtaibech
 
Passivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulatorPassivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulator
Hancheol Choi
 
schluter_presentation (1).pdf
schluter_presentation (1).pdfschluter_presentation (1).pdf
schluter_presentation (1).pdf
soukat2
 
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
University of Naples Federico II
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
HebaEng
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
AYMENGOODKid
 
14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx14th_Class_19-03-2024 Control systems.pptx
14th_Class_19-03-2024 Control systems.pptx
buttshaheemsoci77
 
10). thermodynamics (finished)
10). thermodynamics (finished)10). thermodynamics (finished)
10). thermodynamics (finished)
PhysicsLover
 
Analysis Of A Binary Outcome Variable
Analysis Of A Binary Outcome VariableAnalysis Of A Binary Outcome Variable
Analysis Of A Binary Outcome Variable
Arthur8898
 
Sistemas de primer orden, segundo orden y de orden superior
Sistemas de primer orden, segundo orden y de orden superiorSistemas de primer orden, segundo orden y de orden superior
Sistemas de primer orden, segundo orden y de orden superior
Jhon D'Lozxo
 
Ad

More from Angel Darío González-Delgado (12)

CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION
CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION
CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION
Angel Darío González-Delgado
 
Signos de puntuación
Signos de puntuaciónSignos de puntuación
Signos de puntuación
Angel Darío González-Delgado
 
Biodiesel from microalgae: A chemical process approach
Biodiesel from microalgae: A chemical process approachBiodiesel from microalgae: A chemical process approach
Biodiesel from microalgae: A chemical process approach
Angel Darío González-Delgado
 
Process Optimization Applied to Biofuels production and Development of Bioref...
Process Optimization Applied to Biofuels production and Development of Bioref...Process Optimization Applied to Biofuels production and Development of Bioref...
Process Optimization Applied to Biofuels production and Development of Bioref...
Angel Darío González-Delgado
 
Selección de una cepa de microalga para el desarrollo de una biorefinería
Selección de una cepa de microalga para el desarrollo de una biorefineríaSelección de una cepa de microalga para el desarrollo de una biorefinería
Selección de una cepa de microalga para el desarrollo de una biorefinería
Angel Darío González-Delgado
 
Humidifier: Foundations, Applications and Scientific Progress
Humidifier: Foundations, Applications and Scientific ProgressHumidifier: Foundations, Applications and Scientific Progress
Humidifier: Foundations, Applications and Scientific Progress
Angel Darío González-Delgado
 
Absorption Column: Foundations, Applications and Scientific Progress
Absorption Column: Foundations, Applications and Scientific ProgressAbsorption Column: Foundations, Applications and Scientific Progress
Absorption Column: Foundations, Applications and Scientific Progress
Angel Darío González-Delgado
 
Distillation column: Foundations, Applications and Scientific Progress
Distillation column: Foundations, Applications and Scientific ProgressDistillation column: Foundations, Applications and Scientific Progress
Distillation column: Foundations, Applications and Scientific Progress
Angel Darío González-Delgado
 
HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)
HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)
HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)
Angel Darío González-Delgado
 
Modelos de solución termodinámicos
Modelos de solución termodinámicosModelos de solución termodinámicos
Modelos de solución termodinámicos
Angel Darío González-Delgado
 
Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)
Angel Darío González-Delgado
 
Lineamientos trabajo de grado en Ingeniería Química
Lineamientos trabajo de grado en Ingeniería QuímicaLineamientos trabajo de grado en Ingeniería Química
Lineamientos trabajo de grado en Ingeniería Química
Angel Darío González-Delgado
 
CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION
CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION
CONTROL VALVES: CHARACTERISTICS, GAIN & TRANSFER FUNCTION
Angel Darío González-Delgado
 
Biodiesel from microalgae: A chemical process approach
Biodiesel from microalgae: A chemical process approachBiodiesel from microalgae: A chemical process approach
Biodiesel from microalgae: A chemical process approach
Angel Darío González-Delgado
 
Process Optimization Applied to Biofuels production and Development of Bioref...
Process Optimization Applied to Biofuels production and Development of Bioref...Process Optimization Applied to Biofuels production and Development of Bioref...
Process Optimization Applied to Biofuels production and Development of Bioref...
Angel Darío González-Delgado
 
Selección de una cepa de microalga para el desarrollo de una biorefinería
Selección de una cepa de microalga para el desarrollo de una biorefineríaSelección de una cepa de microalga para el desarrollo de una biorefinería
Selección de una cepa de microalga para el desarrollo de una biorefinería
Angel Darío González-Delgado
 
Humidifier: Foundations, Applications and Scientific Progress
Humidifier: Foundations, Applications and Scientific ProgressHumidifier: Foundations, Applications and Scientific Progress
Humidifier: Foundations, Applications and Scientific Progress
Angel Darío González-Delgado
 
Absorption Column: Foundations, Applications and Scientific Progress
Absorption Column: Foundations, Applications and Scientific ProgressAbsorption Column: Foundations, Applications and Scientific Progress
Absorption Column: Foundations, Applications and Scientific Progress
Angel Darío González-Delgado
 
Distillation column: Foundations, Applications and Scientific Progress
Distillation column: Foundations, Applications and Scientific ProgressDistillation column: Foundations, Applications and Scientific Progress
Distillation column: Foundations, Applications and Scientific Progress
Angel Darío González-Delgado
 
HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)
HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)
HAZARD & OPERABILITY STUDY (HAZOP) & MATERIAL SAFETY DATA SHEET (MSDS)
Angel Darío González-Delgado
 
Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)Thermodynamics of solutions. Solved problems (Spanish)
Thermodynamics of solutions. Solved problems (Spanish)
Angel Darío González-Delgado
 
Ad

Recently uploaded (20)

twin tower attack 2001 new york city
twin  tower  attack  2001 new  york citytwin  tower  attack  2001 new  york city
twin tower attack 2001 new york city
harishreemavs
 
Prediction of Flexural Strength of Concrete Produced by Using Pozzolanic Mate...
Prediction of Flexural Strength of Concrete Produced by Using Pozzolanic Mate...Prediction of Flexural Strength of Concrete Produced by Using Pozzolanic Mate...
Prediction of Flexural Strength of Concrete Produced by Using Pozzolanic Mate...
Journal of Soft Computing in Civil Engineering
 
Frontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend EngineersFrontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend Engineers
Michael Hertzberg
 
6th International Conference on Big Data, Machine Learning and IoT (BMLI 2025)
6th International Conference on Big Data, Machine Learning and IoT (BMLI 2025)6th International Conference on Big Data, Machine Learning and IoT (BMLI 2025)
6th International Conference on Big Data, Machine Learning and IoT (BMLI 2025)
ijflsjournal087
 
Slide share PPT of NOx control technologies.pptx
Slide share PPT of  NOx control technologies.pptxSlide share PPT of  NOx control technologies.pptx
Slide share PPT of NOx control technologies.pptx
vvsasane
 
hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .
NABLAS株式会社
 
sss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptx
sss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptx
sss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptx
ajayrm685
 
acid base ppt and their specific application in food
acid base ppt and their specific application in foodacid base ppt and their specific application in food
acid base ppt and their specific application in food
Fatehatun Noor
 
SICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introductionSICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introduction
fabienklr
 
Applications of Centroid in Structural Engineering
Applications of Centroid in Structural EngineeringApplications of Centroid in Structural Engineering
Applications of Centroid in Structural Engineering
suvrojyotihalder2006
 
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdfDavid Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry
 
Evonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdfEvonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdf
szhang13
 
ATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ATAL 6 Days Online FDP Scheme Document 2025-26.pdfATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ssuserda39791
 
How to Build a Desktop Weather Station Using ESP32 and E-ink Display
How to Build a Desktop Weather Station Using ESP32 and E-ink DisplayHow to Build a Desktop Weather Station Using ESP32 and E-ink Display
How to Build a Desktop Weather Station Using ESP32 and E-ink Display
CircuitDigest
 
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdfSmart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
PawachMetharattanara
 
Machine Learning basics POWERPOINT PRESENETATION
Machine Learning basics POWERPOINT PRESENETATIONMachine Learning basics POWERPOINT PRESENETATION
Machine Learning basics POWERPOINT PRESENETATION
DarrinBright1
 
Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025
Antonin Danalet
 
JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...
JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...
JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...
Reflections on Morality, Philosophy, and History
 
Uses of drones in civil construction.pdf
Uses of drones in civil construction.pdfUses of drones in civil construction.pdf
Uses of drones in civil construction.pdf
surajsen1729
 
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning ModelsMode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Journal of Soft Computing in Civil Engineering
 
twin tower attack 2001 new york city
twin  tower  attack  2001 new  york citytwin  tower  attack  2001 new  york city
twin tower attack 2001 new york city
harishreemavs
 
Frontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend EngineersFrontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend Engineers
Michael Hertzberg
 
6th International Conference on Big Data, Machine Learning and IoT (BMLI 2025)
6th International Conference on Big Data, Machine Learning and IoT (BMLI 2025)6th International Conference on Big Data, Machine Learning and IoT (BMLI 2025)
6th International Conference on Big Data, Machine Learning and IoT (BMLI 2025)
ijflsjournal087
 
Slide share PPT of NOx control technologies.pptx
Slide share PPT of  NOx control technologies.pptxSlide share PPT of  NOx control technologies.pptx
Slide share PPT of NOx control technologies.pptx
vvsasane
 
hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .
NABLAS株式会社
 
sss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptx
sss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptx
sss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptx
ajayrm685
 
acid base ppt and their specific application in food
acid base ppt and their specific application in foodacid base ppt and their specific application in food
acid base ppt and their specific application in food
Fatehatun Noor
 
SICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introductionSICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introduction
fabienklr
 
Applications of Centroid in Structural Engineering
Applications of Centroid in Structural EngineeringApplications of Centroid in Structural Engineering
Applications of Centroid in Structural Engineering
suvrojyotihalder2006
 
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdfDavid Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry
 
Evonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdfEvonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdf
szhang13
 
ATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ATAL 6 Days Online FDP Scheme Document 2025-26.pdfATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ssuserda39791
 
How to Build a Desktop Weather Station Using ESP32 and E-ink Display
How to Build a Desktop Weather Station Using ESP32 and E-ink DisplayHow to Build a Desktop Weather Station Using ESP32 and E-ink Display
How to Build a Desktop Weather Station Using ESP32 and E-ink Display
CircuitDigest
 
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdfSmart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
PawachMetharattanara
 
Machine Learning basics POWERPOINT PRESENETATION
Machine Learning basics POWERPOINT PRESENETATIONMachine Learning basics POWERPOINT PRESENETATION
Machine Learning basics POWERPOINT PRESENETATION
DarrinBright1
 
Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025
Antonin Danalet
 
Uses of drones in civil construction.pdf
Uses of drones in civil construction.pdfUses of drones in civil construction.pdf
Uses of drones in civil construction.pdf
surajsen1729
 

LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE

  • 1. LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE 1 CONTROL PROCESS FIRST-ORDERDYNAMICSYSTEMS "Good, better, best. Never let it rest. 'Til your good is better and your better is best." - St. Jerome
  • 2. LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES & THERMAL PROCESS EXAMPLE IRIS BUSTAMANTE PÁJARO* ANGIE CASTILLO GUEVARA* ALVARO JOSE GARCÍA PADILLA * KARIANA ANDREA MORENO SADDER* LUIS ALBERTO PATERNINA NUÑEZ* CHEMICAL ENGINEERING PROGRAM UNIVERSITY OF CARTAGENA 2 CONTROL PROCESS FIRST-ORDERDYNAMICSYSTEMS
  • 3. 3 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION FUNCTIONS OF TWO OR MORE VARIABLES Rate of a chemical reactionEquation of state Raoult’s law 𝑘 𝑐 𝐴 2 𝑡 𝑐 𝐵(𝑡) 𝑟 𝑐 𝐴 𝑡 , 𝑐 𝐵(𝑡) ) 𝑦 𝑇 𝑡 , 𝑝 𝑡 , 𝑥(𝑡) 𝑝0 𝑇 𝑡 𝑝 𝑡 𝑥(𝑡) 𝜌 𝑝 𝑡 , 𝑇(𝑡) 𝑀 𝑝(𝑡) 𝑅 𝑇(𝑡) Smith & Corripio, 2005
  • 4. 4 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION Smith & Corripio, 2005 LINEARIZATION OF FUNCTIONS OF TWO OR MORE VARIABLES Taylor series expansion 𝑓 𝑥1 𝑡 , 𝑥2 𝑡 , … ≈ 𝑓 𝑥1, 𝑥2, … + 𝜕𝑓 𝜕𝑥1 𝑥1 𝑡 − 𝑥1 + 𝜕𝑓 𝜕𝑥2 𝑥2 𝑡 − 𝑥2 + ⋯ 𝜕𝑓 𝜕𝑥 𝑘 = 𝜕𝑓 𝜕𝑥 𝑘 𝑥1, 𝑥2,… Where, 𝑥1, 𝑥2, … basic values of each variable.
  • 5. 5 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION Smith & Corripio, 2005 EXAMPLE 2-6.2 FUNCTION 𝑎 𝑤 𝑡 , ℎ(𝑡) = 𝑤 𝑡 ℎ(𝑡) Area of a rectangle 𝑤 𝑡 ℎ 𝑡 𝑎 𝑤 𝑡 , ℎ(𝑡) ≈ 𝑎 𝑤, ℎ + 𝜕𝑎 𝜕𝑤 𝑤 𝑡 − 𝑤 + 𝜕𝑎 𝜕ℎ ℎ 𝑡 − ℎ How to linearize? 𝑎 𝑤 𝑡 , ℎ(𝑡) ≈ 𝑎 𝑤, ℎ + ℎ 𝑤 𝑡 − 𝑤 + 𝑤 ℎ 𝑡 − ℎ 𝑎 𝑤, ℎ 𝑤 ℎ 𝑤 ℎ 𝑡 − ℎ ℎ𝑤𝑡−𝑤 Error Small error
  • 6. 6 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION Smith & Corripio, 2005 EXAMPLE 2-6.3 T p Density of an ideal gas as function of pressure and temperature: 𝜌 𝑝 𝑡 , 𝑇(𝑡) = 𝑀 𝑝(𝑡) 𝑅 𝑇(𝑡) Linear approximation? Additional information 𝑀 = 20 𝑘𝑔 𝑘𝑚𝑜𝑙 𝑇 = 300 𝐾 𝑃 = 101.3 𝑘𝑃𝑎 𝑅 = 8.314 𝑘𝑃𝑎 ∙ 𝑚3 𝑘𝑚𝑜𝑙 ∙ 𝐾
  • 7. 7 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION Smith & Corripio, 2005 How to linearize? 𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈ 𝜌 𝑝, 𝑇 + 𝜕𝜌 𝜕𝑝 𝑝 𝑡 − 𝑝 + 𝜕𝜌 𝜕𝑇 𝑇 𝑡 − 𝑇 𝜕𝜌 𝜕𝑝 = 𝜕𝜌 𝜕𝑝 𝑝, 𝑇 = 𝜕 𝜕𝑝 𝑀 𝑝(𝑡) 𝑅 𝑇(𝑡) 𝑝, 𝑇 = 𝑀 𝑅 𝑇(𝑡) 𝑝, 𝑇 = 𝑀 𝑅 𝑇 𝜕𝜌 𝜕𝑇 = 𝜕𝜌 𝜕𝑇 𝑝, 𝑇 = 𝜕 𝜕𝑇 𝑀 𝑝(𝑡) 𝑅 𝑇(𝑡) 𝑝, 𝑇 = − 𝑀𝑝 𝑡 𝑅 𝑇2 𝑡 𝑝, 𝑇 = − 𝑀 𝑝 𝑅 𝑇2 𝜌 𝑝, 𝑇 = 𝑀 𝑝 𝑅 𝑇
  • 8. 8 MATHEMATICALTOOLSFORCONTROLSYSTEMS LINEARIZATION Smith & Corripio, 2005 Linearized function 𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈ 𝑀 𝑝 𝑅 𝑇 + 𝑀 𝑅 𝑇 𝑝 𝑡 − 𝑝 − 𝑀 𝑝 𝑅 𝑇2 𝑇 𝑡 − 𝑇 Numerically 𝜌 𝑝 𝑡 , 𝑇(𝑡) ≈ 1.178 + 0.01163 𝑝 𝑡 − 101.3 − 0.00393 𝑇 𝑡 − 300 𝜌 = 𝑘𝑔 𝑚3 ; 𝑇 = 𝐾; 𝑝 = 𝑘𝑃𝑎 Where,
  • 9. 9 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝐹𝑖, 𝑇𝑖 𝐹𝑜, 𝑇𝑜 Assumptions Control volume Liquid is well mixed Tank is well insulated Energy input by the stirrer is negligible Constant and equal inlet and outlet volumetric flow, liquid densities and heat capacity Question Mathematical model, 𝑇𝑜 response to changes in 𝑇𝑖 Case 1: Adiabatic
  • 10. 10 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS Energy balance: 𝐹𝑖 𝜌𝑖ℎ𝑖 𝑡 − 𝐹𝑜 𝜌 𝑜ℎ 𝑜 𝑡 = 𝑑 𝑉 𝜌 𝑢 𝑡 𝑑𝑡 Rate of energy into control volume Rate of energy out of control volume Rate of change of energy accumulated in control volume 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 Replacing internal energy 𝑢(𝑡) and enthalpy ℎ(𝑡) 𝑢 𝑡 = 𝑐 𝑣 𝑇 𝑡 − 𝑇𝑟𝑒𝑓 ℎ 𝑡 = 𝑐 𝑝 𝑇 𝑡 − 𝑇𝑟𝑒𝑓 Eq. 1
  • 11. 11 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝐹𝜌𝑐 𝑝 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇𝑠𝑠 = 0 Deviation Subtracting Eq. 1 & 2 Stable State (SS): Eq. 2 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑇𝑠𝑠 = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 𝑇𝑖(𝑡) = 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 𝑇(𝑡) = 𝑇 𝑡 − 𝑇𝑠𝑠 𝐹𝜌𝑐 𝑝 𝑇𝑖(𝑡) − 𝐹𝜌𝑐 𝑝 𝑇(𝑡) = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 𝑇𝑖(𝑡) = 𝑉 𝜌𝑐 𝑣 𝐹𝜌𝑐 𝑝 𝑑 𝑇 𝑡 𝑑𝑡 + 𝑇(𝑡) 𝝉
  • 12. 12 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS Use of Laplace transform yields ℒ 𝑇𝑖(𝑡) = 𝜏 ℒ 𝑑 𝑇 𝑡 𝑑𝑡 + ℒ 𝑇(𝑡) ℒ 𝑑 𝑦 𝑡 𝑑𝑡 = 𝑠𝑦 𝑠 − 𝑦(0) 𝑇𝑖(𝑠) = 𝜏 𝑠 𝑇 𝑠 − 𝑇 0 + 𝑇(𝑠) 𝑇 0 = 𝑇 0 − 𝑇𝑠𝑠 = 0 𝑇 𝑠 = 1 (𝜏𝑠 + 1) 𝑇𝑖 (𝑠) Transfer function first-order processes Assuming inlet temperature increases of M degrees in magnitude 𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 + 𝑀 𝑡 < 0 𝑡 ≥ 0
  • 13. 13 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑇𝑖 𝑡 = 𝑀 𝑢(𝑡) 𝑇𝑖 𝑠 = 𝑀 𝑠 Unit step function 𝑇 𝑠 = 1 (𝜏𝑠 + 1) 𝑀 𝑠 Partial fractions method 𝑇 𝑠 = 𝑀 𝑠 𝜏𝑠 + 1 = 𝐴 𝑠 + 𝐵 𝜏𝑠 + 1 𝐴 𝜏𝑠 + 1 + 𝐵𝑠 = 𝑀 𝑇 𝑠 = 𝑀 𝑠 + −𝑀𝜏 𝜏𝑠 + 1 ℒ−1 1 𝑠 + 𝑎 = 𝑒−𝑎𝑡 ℒ−1 1 𝑠 = 𝑒−0𝑡 = 1ℒ−1 𝑇 𝑠 = ℒ−1 𝑀 𝑠 + ℒ−1 −𝑀𝜏 𝜏𝑠 + 1 Laplace transform inverse
  • 14. 14 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑇 𝑡 = 𝑀 (1 − 𝑒−𝑡/𝜏) 𝑇 𝑡 = 𝑇𝑠𝑠 + 𝑀 (1 − 𝑒−𝑡/𝜏)or 0 M 𝑇 𝑡 , °C 𝑇 𝑇 + 𝑀 𝜏 Time 0.632 𝑀 Figure. Response of a first-order process to a step change in input variable
  • 15. 15 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS Case 2: Non adiabatic 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑞 𝑡 = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 𝑞 𝑡 = 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠(𝑡)Assumption: U constant 𝐹𝜌𝑐 𝑝 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇𝑠𝑠 − 𝑈𝐴 𝑇𝑠𝑠 − 𝑇𝑠,𝑠𝑠 = 0 Stable State (SS): Eq. 2 Eq. 1𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠(𝑡) = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 Subtracting Eq. 1 & 2
  • 16. 16 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑇𝑠𝑠 − 𝑈𝐴 𝑇 𝑡 − 𝑇𝑠𝑠 − (𝑇𝑠 𝑡 − 𝑇𝑠,𝑠𝑠) = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 𝑇𝑖(𝑡) = 𝑇𝑖 𝑡 − 𝑇𝑖,𝑠𝑠 𝑇(𝑡) = 𝑇 𝑡 − 𝑇𝑠𝑠 𝑇𝑠(𝑡) = 𝑇𝑠 𝑡 − 𝑇𝑠,𝑠𝑠 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 − 𝐹𝜌𝑐 𝑝 𝑇 𝑡 − 𝑈𝐴 𝑇(𝑡) − 𝑇𝑠(𝑡) = 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 𝑉 𝜌𝑐 𝑣 𝑑 𝑇 𝑡 𝑑𝑡 + 𝐹𝜌𝑐 𝑝 + 𝑈𝐴 𝑇 𝑡 = 𝐹𝜌𝑐 𝑝 𝑇𝑖 𝑡 + 𝑈𝐴 𝑇𝑠(𝑡)
  • 17. 17 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑉 𝜌𝑐 𝑣 𝐹𝜌𝑐 𝑝 + 𝑈𝐴 𝑑 𝑇 𝑡 𝑑𝑡 + 𝑇 𝑡 = 𝐹𝜌𝑐 𝑝 𝐹𝜌𝑐 𝑝 + 𝑈𝐴 𝑇𝑖 𝑡 + 𝑈𝐴 𝐹𝜌𝑐 𝑝 + 𝑈𝐴 𝑇𝑠 (𝑡) 𝝉 𝑲 𝟏 𝑲 𝟐 Use of Laplace transform yields 𝜏 𝑠 𝑇 𝑠 − 𝑇 0 + 𝑇 𝑠 = 𝐾1 𝑇𝑖 𝑠 + 𝐾2 𝑇𝑠 𝑠 𝑇 𝑠 = 𝐾1 𝜏𝑠 + 1 𝑇𝑖 𝑠 + 𝐾2 𝜏𝑠 + 1 𝑇𝑠 𝑠 𝐾 = ∆𝑂 ∆𝐼 = ∆ output variable ∆ input variable
  • 18. 18 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑇 𝑠 = 𝐾2 𝜏𝑠 + 1 𝑇𝑠 𝑠 Constant: surrounding temperature Constant: liquid temperature 𝑇 𝑠 = 𝐾1 𝜏𝑠 + 1 𝑇𝑖 𝑠 𝑇𝑠 𝑡 = 𝑇𝑠,𝑠𝑠; 𝑇𝑠 𝑠 = 0 𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠; 𝑇𝑖 𝑠 = 0 Assuming inlet temperature increases of M degrees in magnitude 𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 𝑇𝑖 𝑡 = 𝑇𝑖,𝑠𝑠 + 𝑀 𝑡 < 0 𝑡 ≥ 0
  • 19. 19 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑇𝑖 𝑡 = 𝑀 𝑢(𝑡) 𝑇𝑖 𝑠 = 𝑀 𝑠 Unit step function 𝑇 𝑠 = 𝐾1 (𝜏𝑠 + 1) 𝑀 𝑠 Partial fractions method 𝑇 𝑠 = 𝐾1 𝑀 𝑠 𝜏𝑠 + 1 = 𝐴 𝑠 + 𝐵 𝜏𝑠 + 1 𝐴 𝜏𝑠 + 1 + 𝐵𝑠 = 𝐾1 𝑀 𝑇 𝑠 = 𝐾1 𝑀 𝑠 + −𝐾1 𝑀𝜏 𝜏𝑠 + 1 ℒ−1 1 𝑠 + 𝑎 = 𝑒−𝑎𝑡 ℒ−1 1 𝑠 = 𝑒−0𝑡 = 1ℒ−1 𝑇 𝑠 = ℒ−1 𝐾1 𝑀 𝑠 + ℒ−1 −𝐾1 𝑀𝜏 𝜏𝑠 + 1 Laplace transform inverse
  • 20. 20 FIRST-ORDERDYNAMICSYSTEMS THERMAL PROCESS EXAMPLE Smith & Corripio, 2005 THERMAL PROCESS 𝑇 𝑡 = 𝐾1 𝑀 (1 − 𝑒−𝑡/𝜏) 𝑇 𝑡 = 𝑇𝑠𝑠 + 𝐾1 𝑀 (1 − 𝑒−𝑡/𝜏)or 0 M 𝑇 𝑡 , °C 𝑇 𝑇 + 𝐾1 𝑀 Time 𝐾1 𝑀 Figure. Response of a first-order process to a step change in input variable
  翻译: