SlideShare a Scribd company logo
Jaspersoft 
MongoDB Analytics 
Diverse Use Cases – 
Diverse Architectures 
Ben Connors 
Worldwide Head of Alliances 
© Copyright 2000-2014 TIBCO Software Inc.
Agenda 
 Example MongoDB use cases and analytics 
 MongoDB Analytics Architectures 
 Advantages 
 Challenges 
 Q & A 
©2014 TIBCO Corporation . 2
3 
Connecting to MongoDB 
©2014 TIBCO Corporation . 
Different access techniques to match diverse 
requirements 
Use each technique individually or combine the ones 
you need
4 
Example MongoDB Use Cases 
 Historical Pattern Analysis 
 Trends in sentiment analysis 
 Seasonality of searches 
 Operational Reporting 
 Clickstream analysis 
 Sensor data 
 Content management analysis 
 Data Exploration 
 Research 
 Causal analysis 
 Multi-Source Analysis 
 Revenue patterns correlating to external factors 
 Political event reaction 
 Pure science 
©2014 TIBCO Corporation .
Diverse Users 
©2014 TIBCO Corporation . 5
Fast Insights 
“Success in the Big 
Data era is about 
more than size. It’s 
about getting insight 
from these huge data 
sets more quickly” 
Doug Henschen 
InformationWeek 
©2014 TIBCO Corporation . 6
Jaspersoft BI High-Level Architecture 
7 
©2014 TIBCO Corporation.
Native Direct Access 
Native 
Native connectors enable 
reporting without batch 
processing or moving data 
©2014 TIBCO Corporation . 8
Native Direct Access Pros/Cons 
Pros Cons 
Leverage full underlying functionality Limited tool choices 
Query Latency (depends on type) Memory limits, fault tolerance 
No bulk movement of data Security 
E.g. Operational Reporting 
• Clickstream analysis 
• Sensor data 
• Geospatial analytics 
©2014 TIBCO Corporation . 9
Semantic Layer for Simplified Access 
Enable self-service BI by defining a 
semantic layer on top of your 
MongoDB and other sources 
©2014 TIBCO Corporation . 10
Semantic Layer Pros/Cons 
Pros Cons 
Simplified access for users Performance overhead 
Self-service, ad hoc No access to underlying functionality 
No bulk movement of data 
Low latency queries 
E.g. Data Exploration 
• Research 
• Causal analysis 
©2014 TIBCO Corporation . 11
Data Federation for Rapid Blending 
Combine relational sources with 
MongoDB without copying or moving 
data using the a Data Virtualization 
engine 
©2014 TIBCO Corporation . 12
Data Federation Pros/Cons 
Pros Cons 
Simplified access for users Performance overhead 
Self-service No access to underlying functionality 
No bulk movement of data Network overhead at query time 
Low latency queries 
Quickly (& cheaply) combine 
MongoDB + operational data for better 
insights 
E.g. Multi-Source Analysis 
• Revenue patterns correlating 
to external factors 
• Political event reaction 
• Pure science 
• Operational + CRM data 
©2014 TIBCO Corporation . 13
Move & Combine Data Using ETL 
ETL Jobs connect Big 
Data, relational and 
other sources into a 
single data warehouse 
©2014 TIBCO Corporation . 14
ETL Pros/Cons 
Pros Cons 
Full RDBMS functionality Added expense for software 
Low latency queries Very high latency ETL process 
Self-service No access to underlying functionality 
No network overhead at query time Bulk movement of data 
Maintain use of SQL tools Added operational complexity 
Insert data cleansing process 
Combine multiple data sources 
E.g. Historical Pattern Analysis 
• Trends in sentiment analysis 
• Seasonality of searches 
• Combine disparate data patterns 
©2014 TIBCO Corporation . 15
Demo 
©2014 TIBCO Corporation . 16
Summary 
 Multiple Use Cases = Multiple Technical Approaches 
 Native 
 Semantic layer 
 Federated 
 ETL 
©2014 TIBCO Corporation . 
17
Try Out Jaspersoft 
Easy 
 Download 30-day Evaluation at Jaspersoft.com 
 Connect to your own data 
 Go to Jaspersoft.com/getting-started 
Easier 
 Try the Hosted version – NO INSTALLATION! 
 Play with sample reports & data 
 Go to Jaspersoft.com/jaspersoft-live-trial 
©2014 Jaspersoft Corporation. 18
Ad

More Related Content

What's hot (20)

ICIC 2017: New Poduct presentations InfoChem
ICIC 2017: New Poduct presentations InfoChemICIC 2017: New Poduct presentations InfoChem
ICIC 2017: New Poduct presentations InfoChem
Dr. Haxel Consult
 
GraphTalk Copenhagen - Killing Data Silos in the Life Sciences with Neo4j
GraphTalk Copenhagen - Killing Data Silos in the Life Sciences with Neo4jGraphTalk Copenhagen - Killing Data Silos in the Life Sciences with Neo4j
GraphTalk Copenhagen - Killing Data Silos in the Life Sciences with Neo4j
Neo4j
 
The Yellowbrick Impact for MicroStrategy
The Yellowbrick Impact for MicroStrategyThe Yellowbrick Impact for MicroStrategy
The Yellowbrick Impact for MicroStrategy
Yellowbrick Data
 
Data-as-a-Service: DataGraft
Data-as-a-Service: DataGraftData-as-a-Service: DataGraft
Data-as-a-Service: DataGraft
dapaasproject
 
SGI Big Data Launch
SGI Big Data LaunchSGI Big Data Launch
SGI Big Data Launch
inside-BigData.com
 
Webinar: The 5 Most Critical Things to Understand About Modern Data Integration
Webinar: The 5 Most Critical Things to Understand About Modern Data IntegrationWebinar: The 5 Most Critical Things to Understand About Modern Data Integration
Webinar: The 5 Most Critical Things to Understand About Modern Data Integration
SnapLogic
 
II-SDV 2017: How Visualisation of Open Patent Data can help with Strategic De...
II-SDV 2017: How Visualisation of Open Patent Data can help with Strategic De...II-SDV 2017: How Visualisation of Open Patent Data can help with Strategic De...
II-SDV 2017: How Visualisation of Open Patent Data can help with Strategic De...
Dr. Haxel Consult
 
InterSystems presentatie: Making Sense of Unstructured Data
InterSystems presentatie: Making Sense of Unstructured DataInterSystems presentatie: Making Sense of Unstructured Data
InterSystems presentatie: Making Sense of Unstructured Data
InterSystems Benelux
 
From Data to Action with TV 2
From Data to Action with TV 2From Data to Action with TV 2
From Data to Action with TV 2
Elasticsearch
 
Introducing SURF
Introducing SURF Introducing SURF
Introducing SURF
annetteuva
 
Cortex - NOAH19 Berlin
Cortex - NOAH19 BerlinCortex - NOAH19 Berlin
Cortex - NOAH19 Berlin
NOAH Advisors
 
AI-SDV 2020: Bringing AI to SME projects: Addressing customer needs with a fl...
AI-SDV 2020: Bringing AI to SME projects: Addressing customer needs with a fl...AI-SDV 2020: Bringing AI to SME projects: Addressing customer needs with a fl...
AI-SDV 2020: Bringing AI to SME projects: Addressing customer needs with a fl...
Dr. Haxel Consult
 
II-SDV 2017: Search Technologies
II-SDV 2017: Search TechnologiesII-SDV 2017: Search Technologies
II-SDV 2017: Search Technologies
Dr. Haxel Consult
 
[Hortonworks] Future Of Data: Madrid - HDF & Data in motion
[Hortonworks] Future Of Data: Madrid - HDF & Data in motion[Hortonworks] Future Of Data: Madrid - HDF & Data in motion
[Hortonworks] Future Of Data: Madrid - HDF & Data in motion
Raúl Marín
 
Webinar: Which Storage Architecture is Best for Splunk Analytics?
Webinar: Which Storage Architecture is Best for Splunk Analytics?Webinar: Which Storage Architecture is Best for Splunk Analytics?
Webinar: Which Storage Architecture is Best for Splunk Analytics?
Storage Switzerland
 
One Equals to Consistent
One Equals to ConsistentOne Equals to Consistent
One Equals to Consistent
Qiaoliang Xiang
 
II-SDV 2017: Gridlogics Technologies
II-SDV 2017: Gridlogics TechnologiesII-SDV 2017: Gridlogics Technologies
II-SDV 2017: Gridlogics Technologies
Dr. Haxel Consult
 
ELT vs. ETL - How they’re different and why it matters
ELT vs. ETL - How they’re different and why it mattersELT vs. ETL - How they’re different and why it matters
ELT vs. ETL - How they’re different and why it matters
Matillion
 
From Batch to Real Time: Overstock’s Journey Towards Unifying Analytics Acros...
From Batch to Real Time: Overstock’s Journey Towards Unifying Analytics Acros...From Batch to Real Time: Overstock’s Journey Towards Unifying Analytics Acros...
From Batch to Real Time: Overstock’s Journey Towards Unifying Analytics Acros...
Databricks
 
Jisc Research Data Shared Service Open Repositories 2018 Paper
Jisc Research Data Shared Service Open Repositories 2018 PaperJisc Research Data Shared Service Open Repositories 2018 Paper
Jisc Research Data Shared Service Open Repositories 2018 Paper
Jisc RDM
 
ICIC 2017: New Poduct presentations InfoChem
ICIC 2017: New Poduct presentations InfoChemICIC 2017: New Poduct presentations InfoChem
ICIC 2017: New Poduct presentations InfoChem
Dr. Haxel Consult
 
GraphTalk Copenhagen - Killing Data Silos in the Life Sciences with Neo4j
GraphTalk Copenhagen - Killing Data Silos in the Life Sciences with Neo4jGraphTalk Copenhagen - Killing Data Silos in the Life Sciences with Neo4j
GraphTalk Copenhagen - Killing Data Silos in the Life Sciences with Neo4j
Neo4j
 
The Yellowbrick Impact for MicroStrategy
The Yellowbrick Impact for MicroStrategyThe Yellowbrick Impact for MicroStrategy
The Yellowbrick Impact for MicroStrategy
Yellowbrick Data
 
Data-as-a-Service: DataGraft
Data-as-a-Service: DataGraftData-as-a-Service: DataGraft
Data-as-a-Service: DataGraft
dapaasproject
 
Webinar: The 5 Most Critical Things to Understand About Modern Data Integration
Webinar: The 5 Most Critical Things to Understand About Modern Data IntegrationWebinar: The 5 Most Critical Things to Understand About Modern Data Integration
Webinar: The 5 Most Critical Things to Understand About Modern Data Integration
SnapLogic
 
II-SDV 2017: How Visualisation of Open Patent Data can help with Strategic De...
II-SDV 2017: How Visualisation of Open Patent Data can help with Strategic De...II-SDV 2017: How Visualisation of Open Patent Data can help with Strategic De...
II-SDV 2017: How Visualisation of Open Patent Data can help with Strategic De...
Dr. Haxel Consult
 
InterSystems presentatie: Making Sense of Unstructured Data
InterSystems presentatie: Making Sense of Unstructured DataInterSystems presentatie: Making Sense of Unstructured Data
InterSystems presentatie: Making Sense of Unstructured Data
InterSystems Benelux
 
From Data to Action with TV 2
From Data to Action with TV 2From Data to Action with TV 2
From Data to Action with TV 2
Elasticsearch
 
Introducing SURF
Introducing SURF Introducing SURF
Introducing SURF
annetteuva
 
Cortex - NOAH19 Berlin
Cortex - NOAH19 BerlinCortex - NOAH19 Berlin
Cortex - NOAH19 Berlin
NOAH Advisors
 
AI-SDV 2020: Bringing AI to SME projects: Addressing customer needs with a fl...
AI-SDV 2020: Bringing AI to SME projects: Addressing customer needs with a fl...AI-SDV 2020: Bringing AI to SME projects: Addressing customer needs with a fl...
AI-SDV 2020: Bringing AI to SME projects: Addressing customer needs with a fl...
Dr. Haxel Consult
 
II-SDV 2017: Search Technologies
II-SDV 2017: Search TechnologiesII-SDV 2017: Search Technologies
II-SDV 2017: Search Technologies
Dr. Haxel Consult
 
[Hortonworks] Future Of Data: Madrid - HDF & Data in motion
[Hortonworks] Future Of Data: Madrid - HDF & Data in motion[Hortonworks] Future Of Data: Madrid - HDF & Data in motion
[Hortonworks] Future Of Data: Madrid - HDF & Data in motion
Raúl Marín
 
Webinar: Which Storage Architecture is Best for Splunk Analytics?
Webinar: Which Storage Architecture is Best for Splunk Analytics?Webinar: Which Storage Architecture is Best for Splunk Analytics?
Webinar: Which Storage Architecture is Best for Splunk Analytics?
Storage Switzerland
 
One Equals to Consistent
One Equals to ConsistentOne Equals to Consistent
One Equals to Consistent
Qiaoliang Xiang
 
II-SDV 2017: Gridlogics Technologies
II-SDV 2017: Gridlogics TechnologiesII-SDV 2017: Gridlogics Technologies
II-SDV 2017: Gridlogics Technologies
Dr. Haxel Consult
 
ELT vs. ETL - How they’re different and why it matters
ELT vs. ETL - How they’re different and why it mattersELT vs. ETL - How they’re different and why it matters
ELT vs. ETL - How they’re different and why it matters
Matillion
 
From Batch to Real Time: Overstock’s Journey Towards Unifying Analytics Acros...
From Batch to Real Time: Overstock’s Journey Towards Unifying Analytics Acros...From Batch to Real Time: Overstock’s Journey Towards Unifying Analytics Acros...
From Batch to Real Time: Overstock’s Journey Towards Unifying Analytics Acros...
Databricks
 
Jisc Research Data Shared Service Open Repositories 2018 Paper
Jisc Research Data Shared Service Open Repositories 2018 PaperJisc Research Data Shared Service Open Repositories 2018 Paper
Jisc Research Data Shared Service Open Repositories 2018 Paper
Jisc RDM
 

Viewers also liked (9)

Real Time Data Analytics with MongoDB and Fluentd at Wish
Real Time Data Analytics with MongoDB and Fluentd at WishReal Time Data Analytics with MongoDB and Fluentd at Wish
Real Time Data Analytics with MongoDB and Fluentd at Wish
MongoDB
 
Webinar: Managing Real Time Risk Analytics with MongoDB
Webinar: Managing Real Time Risk Analytics with MongoDB Webinar: Managing Real Time Risk Analytics with MongoDB
Webinar: Managing Real Time Risk Analytics with MongoDB
MongoDB
 
node-crate: node.js and big data
 node-crate: node.js and big data node-crate: node.js and big data
node-crate: node.js and big data
Stefan Thies
 
Building Real Time Systems on MongoDB Using the Oplog at Stripe
Building Real Time Systems on MongoDB Using the Oplog at StripeBuilding Real Time Systems on MongoDB Using the Oplog at Stripe
Building Real Time Systems on MongoDB Using the Oplog at Stripe
MongoDB
 
Using MongoDB with Hadoop & Spark
Using MongoDB with Hadoop & SparkUsing MongoDB with Hadoop & Spark
Using MongoDB with Hadoop & Spark
MongoDB
 
Webinar: Making A Single View of the Customer Real with MongoDB
Webinar: Making A Single View of the Customer Real with MongoDBWebinar: Making A Single View of the Customer Real with MongoDB
Webinar: Making A Single View of the Customer Real with MongoDB
MongoDB
 
Single view with_mongo_db_(lo)
Single view with_mongo_db_(lo)Single view with_mongo_db_(lo)
Single view with_mongo_db_(lo)
MongoDB
 
Building Real Time Systems on MongoDB Using the Oplog at Stripe
Building Real Time Systems on MongoDB Using the Oplog at StripeBuilding Real Time Systems on MongoDB Using the Oplog at Stripe
Building Real Time Systems on MongoDB Using the Oplog at Stripe
Stripe
 
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB
 
Real Time Data Analytics with MongoDB and Fluentd at Wish
Real Time Data Analytics with MongoDB and Fluentd at WishReal Time Data Analytics with MongoDB and Fluentd at Wish
Real Time Data Analytics with MongoDB and Fluentd at Wish
MongoDB
 
Webinar: Managing Real Time Risk Analytics with MongoDB
Webinar: Managing Real Time Risk Analytics with MongoDB Webinar: Managing Real Time Risk Analytics with MongoDB
Webinar: Managing Real Time Risk Analytics with MongoDB
MongoDB
 
node-crate: node.js and big data
 node-crate: node.js and big data node-crate: node.js and big data
node-crate: node.js and big data
Stefan Thies
 
Building Real Time Systems on MongoDB Using the Oplog at Stripe
Building Real Time Systems on MongoDB Using the Oplog at StripeBuilding Real Time Systems on MongoDB Using the Oplog at Stripe
Building Real Time Systems on MongoDB Using the Oplog at Stripe
MongoDB
 
Using MongoDB with Hadoop & Spark
Using MongoDB with Hadoop & SparkUsing MongoDB with Hadoop & Spark
Using MongoDB with Hadoop & Spark
MongoDB
 
Webinar: Making A Single View of the Customer Real with MongoDB
Webinar: Making A Single View of the Customer Real with MongoDBWebinar: Making A Single View of the Customer Real with MongoDB
Webinar: Making A Single View of the Customer Real with MongoDB
MongoDB
 
Single view with_mongo_db_(lo)
Single view with_mongo_db_(lo)Single view with_mongo_db_(lo)
Single view with_mongo_db_(lo)
MongoDB
 
Building Real Time Systems on MongoDB Using the Oplog at Stripe
Building Real Time Systems on MongoDB Using the Oplog at StripeBuilding Real Time Systems on MongoDB Using the Oplog at Stripe
Building Real Time Systems on MongoDB Using the Oplog at Stripe
Stripe
 
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB for Time Series Data Part 2: Analyzing Time Series Data Using the Agg...
MongoDB
 
Ad

Similar to Lightning Talk: Real-Time Analytics from MongoDB (20)

Qo Introduction V2
Qo Introduction V2Qo Introduction V2
Qo Introduction V2
Joe_F
 
Future of Data Strategy (ASEAN)
Future of Data Strategy (ASEAN)Future of Data Strategy (ASEAN)
Future of Data Strategy (ASEAN)
Denodo
 
Self-Service Analytics with Guard Rails
Self-Service Analytics with Guard RailsSelf-Service Analytics with Guard Rails
Self-Service Analytics with Guard Rails
Denodo
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Modern Data Management for Federal Modernization
Modern Data Management for Federal ModernizationModern Data Management for Federal Modernization
Modern Data Management for Federal Modernization
Denodo
 
The Future of Data Management: The Enterprise Data Hub
The Future of Data Management: The Enterprise Data HubThe Future of Data Management: The Enterprise Data Hub
The Future of Data Management: The Enterprise Data Hub
Cloudera, Inc.
 
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Denodo
 
There are 250 Database products, are you running the right one?
There are 250 Database products, are you running the right one?There are 250 Database products, are you running the right one?
There are 250 Database products, are you running the right one?
Aerospike, Inc.
 
Contexti / Oracle - Big Data : From Pilot to Production
Contexti / Oracle - Big Data : From Pilot to ProductionContexti / Oracle - Big Data : From Pilot to Production
Contexti / Oracle - Big Data : From Pilot to Production
Contexti
 
Apache NiFi Toronto Meetup
Apache NiFi Toronto MeetupApache NiFi Toronto Meetup
Apache NiFi Toronto Meetup
Hortonworks
 
Extended Data Warehouse - A New Data Architecture for Modern BI with Claudia ...
Extended Data Warehouse - A New Data Architecture for Modern BI with Claudia ...Extended Data Warehouse - A New Data Architecture for Modern BI with Claudia ...
Extended Data Warehouse - A New Data Architecture for Modern BI with Claudia ...
Denodo
 
A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)
Denodo
 
Bridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need ItBridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need It
Denodo
 
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Denodo
 
Big Data LDN 2017: How Big Data Insights Become Easily Accessible With Workfl...
Big Data LDN 2017: How Big Data Insights Become Easily Accessible With Workfl...Big Data LDN 2017: How Big Data Insights Become Easily Accessible With Workfl...
Big Data LDN 2017: How Big Data Insights Become Easily Accessible With Workfl...
Matt Stubbs
 
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
Denodo
 
Horses for Courses: Database Roundtable
Horses for Courses: Database RoundtableHorses for Courses: Database Roundtable
Horses for Courses: Database Roundtable
Eric Kavanagh
 
Evolution of Big Data at Intel - Crawl, Walk and Run Approach
Evolution of Big Data at Intel - Crawl, Walk and Run ApproachEvolution of Big Data at Intel - Crawl, Walk and Run Approach
Evolution of Big Data at Intel - Crawl, Walk and Run Approach
DataWorks Summit
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
How to Place Data at the Center of Digital Transformation in BFSI
How to Place Data at the Center of Digital Transformation in BFSIHow to Place Data at the Center of Digital Transformation in BFSI
How to Place Data at the Center of Digital Transformation in BFSI
Denodo
 
Qo Introduction V2
Qo Introduction V2Qo Introduction V2
Qo Introduction V2
Joe_F
 
Future of Data Strategy (ASEAN)
Future of Data Strategy (ASEAN)Future of Data Strategy (ASEAN)
Future of Data Strategy (ASEAN)
Denodo
 
Self-Service Analytics with Guard Rails
Self-Service Analytics with Guard RailsSelf-Service Analytics with Guard Rails
Self-Service Analytics with Guard Rails
Denodo
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Modern Data Management for Federal Modernization
Modern Data Management for Federal ModernizationModern Data Management for Federal Modernization
Modern Data Management for Federal Modernization
Denodo
 
The Future of Data Management: The Enterprise Data Hub
The Future of Data Management: The Enterprise Data HubThe Future of Data Management: The Enterprise Data Hub
The Future of Data Management: The Enterprise Data Hub
Cloudera, Inc.
 
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Denodo
 
There are 250 Database products, are you running the right one?
There are 250 Database products, are you running the right one?There are 250 Database products, are you running the right one?
There are 250 Database products, are you running the right one?
Aerospike, Inc.
 
Contexti / Oracle - Big Data : From Pilot to Production
Contexti / Oracle - Big Data : From Pilot to ProductionContexti / Oracle - Big Data : From Pilot to Production
Contexti / Oracle - Big Data : From Pilot to Production
Contexti
 
Apache NiFi Toronto Meetup
Apache NiFi Toronto MeetupApache NiFi Toronto Meetup
Apache NiFi Toronto Meetup
Hortonworks
 
Extended Data Warehouse - A New Data Architecture for Modern BI with Claudia ...
Extended Data Warehouse - A New Data Architecture for Modern BI with Claudia ...Extended Data Warehouse - A New Data Architecture for Modern BI with Claudia ...
Extended Data Warehouse - A New Data Architecture for Modern BI with Claudia ...
Denodo
 
A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)A Key to Real-time Insights in a Post-COVID World (ASEAN)
A Key to Real-time Insights in a Post-COVID World (ASEAN)
Denodo
 
Bridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need ItBridging the Last Mile: Getting Data to the People Who Need It
Bridging the Last Mile: Getting Data to the People Who Need It
Denodo
 
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Data Virtualization Journey: How to Grow from Single Project and to Enterpris...
Denodo
 
Big Data LDN 2017: How Big Data Insights Become Easily Accessible With Workfl...
Big Data LDN 2017: How Big Data Insights Become Easily Accessible With Workfl...Big Data LDN 2017: How Big Data Insights Become Easily Accessible With Workfl...
Big Data LDN 2017: How Big Data Insights Become Easily Accessible With Workfl...
Matt Stubbs
 
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
Denodo
 
Horses for Courses: Database Roundtable
Horses for Courses: Database RoundtableHorses for Courses: Database Roundtable
Horses for Courses: Database Roundtable
Eric Kavanagh
 
Evolution of Big Data at Intel - Crawl, Walk and Run Approach
Evolution of Big Data at Intel - Crawl, Walk and Run ApproachEvolution of Big Data at Intel - Crawl, Walk and Run Approach
Evolution of Big Data at Intel - Crawl, Walk and Run Approach
DataWorks Summit
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
How to Place Data at the Center of Digital Transformation in BFSI
How to Place Data at the Center of Digital Transformation in BFSIHow to Place Data at the Center of Digital Transformation in BFSI
How to Place Data at the Center of Digital Transformation in BFSI
Denodo
 
Ad

More from MongoDB (20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 

Recently uploaded (20)

Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
CSUC - Consorci de Serveis Universitaris de Catalunya
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Developing System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptxDeveloping System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptx
wondimagegndesta
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Developing System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptxDeveloping System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptx
wondimagegndesta
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 

Lightning Talk: Real-Time Analytics from MongoDB

  • 1. Jaspersoft MongoDB Analytics Diverse Use Cases – Diverse Architectures Ben Connors Worldwide Head of Alliances © Copyright 2000-2014 TIBCO Software Inc.
  • 2. Agenda  Example MongoDB use cases and analytics  MongoDB Analytics Architectures  Advantages  Challenges  Q & A ©2014 TIBCO Corporation . 2
  • 3. 3 Connecting to MongoDB ©2014 TIBCO Corporation . Different access techniques to match diverse requirements Use each technique individually or combine the ones you need
  • 4. 4 Example MongoDB Use Cases  Historical Pattern Analysis  Trends in sentiment analysis  Seasonality of searches  Operational Reporting  Clickstream analysis  Sensor data  Content management analysis  Data Exploration  Research  Causal analysis  Multi-Source Analysis  Revenue patterns correlating to external factors  Political event reaction  Pure science ©2014 TIBCO Corporation .
  • 5. Diverse Users ©2014 TIBCO Corporation . 5
  • 6. Fast Insights “Success in the Big Data era is about more than size. It’s about getting insight from these huge data sets more quickly” Doug Henschen InformationWeek ©2014 TIBCO Corporation . 6
  • 7. Jaspersoft BI High-Level Architecture 7 ©2014 TIBCO Corporation.
  • 8. Native Direct Access Native Native connectors enable reporting without batch processing or moving data ©2014 TIBCO Corporation . 8
  • 9. Native Direct Access Pros/Cons Pros Cons Leverage full underlying functionality Limited tool choices Query Latency (depends on type) Memory limits, fault tolerance No bulk movement of data Security E.g. Operational Reporting • Clickstream analysis • Sensor data • Geospatial analytics ©2014 TIBCO Corporation . 9
  • 10. Semantic Layer for Simplified Access Enable self-service BI by defining a semantic layer on top of your MongoDB and other sources ©2014 TIBCO Corporation . 10
  • 11. Semantic Layer Pros/Cons Pros Cons Simplified access for users Performance overhead Self-service, ad hoc No access to underlying functionality No bulk movement of data Low latency queries E.g. Data Exploration • Research • Causal analysis ©2014 TIBCO Corporation . 11
  • 12. Data Federation for Rapid Blending Combine relational sources with MongoDB without copying or moving data using the a Data Virtualization engine ©2014 TIBCO Corporation . 12
  • 13. Data Federation Pros/Cons Pros Cons Simplified access for users Performance overhead Self-service No access to underlying functionality No bulk movement of data Network overhead at query time Low latency queries Quickly (& cheaply) combine MongoDB + operational data for better insights E.g. Multi-Source Analysis • Revenue patterns correlating to external factors • Political event reaction • Pure science • Operational + CRM data ©2014 TIBCO Corporation . 13
  • 14. Move & Combine Data Using ETL ETL Jobs connect Big Data, relational and other sources into a single data warehouse ©2014 TIBCO Corporation . 14
  • 15. ETL Pros/Cons Pros Cons Full RDBMS functionality Added expense for software Low latency queries Very high latency ETL process Self-service No access to underlying functionality No network overhead at query time Bulk movement of data Maintain use of SQL tools Added operational complexity Insert data cleansing process Combine multiple data sources E.g. Historical Pattern Analysis • Trends in sentiment analysis • Seasonality of searches • Combine disparate data patterns ©2014 TIBCO Corporation . 15
  • 16. Demo ©2014 TIBCO Corporation . 16
  • 17. Summary  Multiple Use Cases = Multiple Technical Approaches  Native  Semantic layer  Federated  ETL ©2014 TIBCO Corporation . 17
  • 18. Try Out Jaspersoft Easy  Download 30-day Evaluation at Jaspersoft.com  Connect to your own data  Go to Jaspersoft.com/getting-started Easier  Try the Hosted version – NO INSTALLATION!  Play with sample reports & data  Go to Jaspersoft.com/jaspersoft-live-trial ©2014 Jaspersoft Corporation. 18
  翻译: