SlideShare a Scribd company logo
Latency Performance of Encoding with
Random Linear Network Coding
Lars Nielsen 1,2,3
René Rydhof Hansen 1
Daniel E. Lucani 2,3
May 3, 2018
1Department Of Computer Science (Cassiopeia), Aalborg University
2Department of Engineering, Aarhus University
3Chocolate Cloud ApS
Problem
• User experience is
affected by long encoding
latency
• Large management
overhead, with multiple
generation
• What happens if we
change the NC
configuration?
• For what data size, is a
single generation
plausible?
1
Problem
• Can we confirm theory?
• Is it possible to predict changes to latency, based on NC
configuration?
Nistor et al. 2011, 2012 Focus: Latency of coefficient generation
from a Finite Field.
A. Paramanathan et al. 2013 and C. W. Sørensen et al. 2016
Focus: Energy consumption.
2
Network Coding
• A technique to improve the reliability, robustness, and security
of networks
• It is a subset of erasure correcting code
• Random Linear Network Coding (RLNC), is a subset of
Network Coding
• Companies and research have started to apply Network Coding
in data storage
3
Network Coding
4
Network Coding
4
Network Coding Encoding
• For each generation, a symbol matrix is constructed
• Each symbol represent a linear equation
• Coefficients are randomly drawn from a GF(2q)
C × S = CS
5
On-The-Fly
c1,1 c1,2 01,3 · · · 01,g ·








Symbol1
Symbol2
0
...
0g+r








= first coded symbol
6
On-The-Fly
c1,1 c1,2 01,3 · · · 01,g
c2,1 c2,2 c2,3 · · · 02,g
·











Symbol1
Symbol2
Symbol3
0
...
0g+r











= second coded symbol
6
On-The-Fly






c1,1 c1,2 01,3 · · · 01,g
c2,1 c2,2 c2,3 · · · 02,g
...
cg+r,1 cg+r,2 · · · cg+r,g






·








Symbol1
Symbol2
Symbol3
...
Symbolg








= g+r coded symbol
6
Experiment
Full Vector
f (g, k) = α · g · k(g + r) + β · k · (g − 1)(g + r)
On-The-Fly
h(g, k) = (α + β) · k · g−1
i=0 i + r · k · (α · g + β · (g − 1))
= (α+β)·k·g·(g−1)
2 + r · k · (α · g + β · (g − 1))
g = generation size, k = symbol size, r = amount of redundancy
symbols, α = cost of product operation and β = cost of addition
operation
7
Experiment Expectations
Algorithm / g 8 - 16 Result 16 - 32 Result
Full Vector 2.06x 2.03x
On-The-Fly 2.14x 2.06x
Data Sizes Expected
Latency
increase
Result
1kB - 1 MB 103x
1 - 10 MB 10x
10 - 20 MB 2x
2n MB ∼ 2x
g ∆L Result
8 2.14x
16 2.06x
32 2.03x
8
How the experiment was conducted
• The benchmark is implemented in C++ and uses Kodo
• Using multiple configuration for generation size and symbol
size
• Data is generated following Monte Carlo simulation
• We use high granularity clock for recording start/stop of
encoding
• For each experiment configuration 1000 experiments have
been performed
The source code, configurations, and results are available on
GitHub under the MIT software license
github.com/looopTools/sw9-source
9
For the Full Vector Algorithm
1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB
Data size
10−2
10−1
100
101
102
103
Latencyinms
10
For the Full Vector Algorithm
Data Sizes Expected Latency increase Result
1kB - 1 MB 103x ∼ 102x
1 - 10 MB 10x 13x
10 - 20 MB 2x 2x
2n MB ∼ 2x 1.92x − 2.41x, av-
erage 2.16x
1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB
Data size
10−2
10−1
100
101
102
103
Latencyinms
11
For the Full Vector Algorithm
1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB
Data size
10−2
10−1
100
101
102
103
Latencyinms
G=8
G=16
G=32
12
For the Full Vector Algorithm
Algorithm / g 8 - 16 Result 16 - 32 Result
Full Vector 2.06x 1.75x 2.03x 1.82x
1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB
Data size
10−2
10−1
100
101
102
103
Latencyinms G=8
G=16
G=32
13
Comparison of the On-The-Fly and Full Vector algorithms
1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB
Data size
10−2
10−1
100
101
102
103
Latencyinms
FV G=8
FV G=16
FV G=32
OTF G=8
OTF G=16
OTF G=32
14
Comparison of the On-The-Fly and Full Vector algorithms
g ∆L Result
8 2.14x 1.41x
16 2.06x 1.62x
32 2.03x 1.75x
1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB
Data size
10−2
10−1
100
101
102
103
Latencyinms
FV G=8
FV G=16
FV G=32
OTF G=8
OTF G=16
OTF G=32
15
Conclusion Future Work
Conclusion
• ∼ 2x increase to latency, when doubling generation- or symbol
size
• Gain of switching to On-The-Fly is more moderate than
expected
• 1.41x for g = 8
• 1.62x for g = 16
• 1.75x for g = 32
Future Work
• Confirm results on additional CPU architectures
• Further investigate the 1kB to 1MB results
• Can multi-threading be used to decrease latency?
16
Ad

More Related Content

What's hot (20)

VJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCNVJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCN
Dat Nguyen
 
Graph Regularised Hashing
Graph Regularised HashingGraph Regularised Hashing
Graph Regularised Hashing
Sean Moran
 
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
Tomonari Masada
 
Algorithm
AlgorithmAlgorithm
Algorithm
Pragnesh Patel
 
1 finite wordlength
1 finite wordlength1 finite wordlength
1 finite wordlength
Naatchammai Ramanathan
 
presentation
presentationpresentation
presentation
jie ren
 
Multi-Cloud Federated Kubernetes at CERN
Multi-Cloud Federated Kubernetes at CERNMulti-Cloud Federated Kubernetes at CERN
Multi-Cloud Federated Kubernetes at CERN
Ricardo Rocha
 
RC6
RC6RC6
RC6
Zellagui Amine
 
Lost In The Clouds
Lost In The CloudsLost In The Clouds
Lost In The Clouds
george.james
 
Gmails Quota Secrets
Gmails Quota SecretsGmails Quota Secrets
Gmails Quota Secrets
Uri Levanon
 
VLSI IMPLEMENTATION OF AREA EFFICIENT 2-PARALLEL FIR DIGITAL FILTER
VLSI IMPLEMENTATION OF AREA EFFICIENT 2-PARALLEL FIR DIGITAL FILTERVLSI IMPLEMENTATION OF AREA EFFICIENT 2-PARALLEL FIR DIGITAL FILTER
VLSI IMPLEMENTATION OF AREA EFFICIENT 2-PARALLEL FIR DIGITAL FILTER
VLSICS Design
 
DaWaK'07
DaWaK'07DaWaK'07
DaWaK'07
Ronnie Alves
 
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в н...
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в н...QA Fest 2018. Никита Кричко. Методология использования машинного обучения в н...
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в н...
QAFest
 
Intelligent Placement of Datacenter for Internet Services
Intelligent Placement of Datacenter for Internet Services Intelligent Placement of Datacenter for Internet Services
Intelligent Placement of Datacenter for Internet Services
Arinto Murdopo
 
Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems
Pilot Optimization and Channel Estimation for Multiuser Massive MIMO SystemsPilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems
Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems
T. E. BOGALE
 
Testing of Matrices Multiplication Methods on Different Processors
Testing of Matrices Multiplication Methods on Different ProcessorsTesting of Matrices Multiplication Methods on Different Processors
Testing of Matrices Multiplication Methods on Different Processors
Editor IJMTER
 
fast-matmul-ppopp2015
fast-matmul-ppopp2015fast-matmul-ppopp2015
fast-matmul-ppopp2015
Austin Benson
 
ETW - Monitor Anything, Anytime, Anywhere (NDC Oslo 2017)
ETW - Monitor Anything, Anytime, Anywhere (NDC Oslo 2017)ETW - Monitor Anything, Anytime, Anywhere (NDC Oslo 2017)
ETW - Monitor Anything, Anytime, Anywhere (NDC Oslo 2017)
Dina Goldshtein
 
k-means algorithm implementation on Hadoop
k-means algorithm implementation on Hadoopk-means algorithm implementation on Hadoop
k-means algorithm implementation on Hadoop
Stratos Gounidellis
 
Earthquake Updates and Enhancements to Processing for Hazus-MH 3.2
Earthquake Updates and Enhancements to Processing for Hazus-MH 3.2Earthquake Updates and Enhancements to Processing for Hazus-MH 3.2
Earthquake Updates and Enhancements to Processing for Hazus-MH 3.2
Troy Schmidt
 
VJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCNVJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCN
Dat Nguyen
 
Graph Regularised Hashing
Graph Regularised HashingGraph Regularised Hashing
Graph Regularised Hashing
Sean Moran
 
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Al...
Tomonari Masada
 
presentation
presentationpresentation
presentation
jie ren
 
Multi-Cloud Federated Kubernetes at CERN
Multi-Cloud Federated Kubernetes at CERNMulti-Cloud Federated Kubernetes at CERN
Multi-Cloud Federated Kubernetes at CERN
Ricardo Rocha
 
Lost In The Clouds
Lost In The CloudsLost In The Clouds
Lost In The Clouds
george.james
 
Gmails Quota Secrets
Gmails Quota SecretsGmails Quota Secrets
Gmails Quota Secrets
Uri Levanon
 
VLSI IMPLEMENTATION OF AREA EFFICIENT 2-PARALLEL FIR DIGITAL FILTER
VLSI IMPLEMENTATION OF AREA EFFICIENT 2-PARALLEL FIR DIGITAL FILTERVLSI IMPLEMENTATION OF AREA EFFICIENT 2-PARALLEL FIR DIGITAL FILTER
VLSI IMPLEMENTATION OF AREA EFFICIENT 2-PARALLEL FIR DIGITAL FILTER
VLSICS Design
 
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в н...
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в н...QA Fest 2018. Никита Кричко. Методология использования машинного обучения в н...
QA Fest 2018. Никита Кричко. Методология использования машинного обучения в н...
QAFest
 
Intelligent Placement of Datacenter for Internet Services
Intelligent Placement of Datacenter for Internet Services Intelligent Placement of Datacenter for Internet Services
Intelligent Placement of Datacenter for Internet Services
Arinto Murdopo
 
Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems
Pilot Optimization and Channel Estimation for Multiuser Massive MIMO SystemsPilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems
Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems
T. E. BOGALE
 
Testing of Matrices Multiplication Methods on Different Processors
Testing of Matrices Multiplication Methods on Different ProcessorsTesting of Matrices Multiplication Methods on Different Processors
Testing of Matrices Multiplication Methods on Different Processors
Editor IJMTER
 
fast-matmul-ppopp2015
fast-matmul-ppopp2015fast-matmul-ppopp2015
fast-matmul-ppopp2015
Austin Benson
 
ETW - Monitor Anything, Anytime, Anywhere (NDC Oslo 2017)
ETW - Monitor Anything, Anytime, Anywhere (NDC Oslo 2017)ETW - Monitor Anything, Anytime, Anywhere (NDC Oslo 2017)
ETW - Monitor Anything, Anytime, Anywhere (NDC Oslo 2017)
Dina Goldshtein
 
k-means algorithm implementation on Hadoop
k-means algorithm implementation on Hadoopk-means algorithm implementation on Hadoop
k-means algorithm implementation on Hadoop
Stratos Gounidellis
 
Earthquake Updates and Enhancements to Processing for Hazus-MH 3.2
Earthquake Updates and Enhancements to Processing for Hazus-MH 3.2Earthquake Updates and Enhancements to Processing for Hazus-MH 3.2
Earthquake Updates and Enhancements to Processing for Hazus-MH 3.2
Troy Schmidt
 

Similar to Latency Performance of Encoding with Random Linear Network Coding (20)

Accelerate Reed-Solomon coding for Fault-Tolerance in RAID-like system
Accelerate Reed-Solomon coding for Fault-Tolerance in RAID-like systemAccelerate Reed-Solomon coding for Fault-Tolerance in RAID-like system
Accelerate Reed-Solomon coding for Fault-Tolerance in RAID-like system
Shuai Yuan
 
International journal of signal and image processing issues vol 2015 - no 1...
International journal of signal and image processing issues   vol 2015 - no 1...International journal of signal and image processing issues   vol 2015 - no 1...
International journal of signal and image processing issues vol 2015 - no 1...
sophiabelthome
 
Updating PageRank for Streaming Graphs
Updating PageRank for Streaming GraphsUpdating PageRank for Streaming Graphs
Updating PageRank for Streaming Graphs
Jason Riedy
 
Modified DCT-based Audio Watermarking Optimization using Genetics Algorithm
Modified DCT-based Audio Watermarking Optimization using Genetics AlgorithmModified DCT-based Audio Watermarking Optimization using Genetics Algorithm
Modified DCT-based Audio Watermarking Optimization using Genetics Algorithm
TELKOMNIKA JOURNAL
 
An35225228
An35225228An35225228
An35225228
IJERA Editor
 
Modified Golomb Code For Integer Representation
Modified Golomb Code For Integer RepresentationModified Golomb Code For Integer Representation
Modified Golomb Code For Integer Representation
IJSRD
 
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
Ealwan Lee
 
Colfax-Winograd-Summary _final (1)
Colfax-Winograd-Summary _final (1)Colfax-Winograd-Summary _final (1)
Colfax-Winograd-Summary _final (1)
Sangamesh Ragate
 
Rc6 algorithm
Rc6 algorithmRc6 algorithm
Rc6 algorithm
Chethan Chetu
 
Pipelined Compression in Remote GPU Virtualization Systems using rCUDA: Early...
Pipelined Compression in Remote GPU Virtualization Systems using rCUDA: Early...Pipelined Compression in Remote GPU Virtualization Systems using rCUDA: Early...
Pipelined Compression in Remote GPU Virtualization Systems using rCUDA: Early...
Carlos Reaño González
 
Fmcad08
Fmcad08Fmcad08
Fmcad08
Rajesh Gupta
 
Adaptive Linear Solvers and Eigensolvers
Adaptive Linear Solvers and EigensolversAdaptive Linear Solvers and Eigensolvers
Adaptive Linear Solvers and Eigensolvers
inside-BigData.com
 
Effect of Block Sizes on the Attributes of Watermarking Digital Images
Effect of Block Sizes on the Attributes of Watermarking Digital ImagesEffect of Block Sizes on the Attributes of Watermarking Digital Images
Effect of Block Sizes on the Attributes of Watermarking Digital Images
Dr. Michael Agbaje
 
Load testing of HELIDEM geo-portal: an OGC open standards interoperability ex...
Load testing of HELIDEM geo-portal: an OGC open standards interoperability ex...Load testing of HELIDEM geo-portal: an OGC open standards interoperability ex...
Load testing of HELIDEM geo-portal: an OGC open standards interoperability ex...
Massimiliano Cannata
 
Performance Evaluation & Design Methodologies for Automated 32 Bit CRC Checki...
Performance Evaluation & Design Methodologies for Automated 32 Bit CRC Checki...Performance Evaluation & Design Methodologies for Automated 32 Bit CRC Checki...
Performance Evaluation & Design Methodologies for Automated 32 Bit CRC Checki...
VIT-AP University
 
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity TechniquePerformance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
ALYAA AL-BARRAK
 
Implementation performance analysis of cordic
Implementation performance analysis of cordicImplementation performance analysis of cordic
Implementation performance analysis of cordic
iaemedu
 
"Approaches for Energy Efficient Implementation of Deep Neural Networks," a P...
"Approaches for Energy Efficient Implementation of Deep Neural Networks," a P..."Approaches for Energy Efficient Implementation of Deep Neural Networks," a P...
"Approaches for Energy Efficient Implementation of Deep Neural Networks," a P...
Edge AI and Vision Alliance
 
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...
IOSR Journals
 
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
T. E. BOGALE
 
Accelerate Reed-Solomon coding for Fault-Tolerance in RAID-like system
Accelerate Reed-Solomon coding for Fault-Tolerance in RAID-like systemAccelerate Reed-Solomon coding for Fault-Tolerance in RAID-like system
Accelerate Reed-Solomon coding for Fault-Tolerance in RAID-like system
Shuai Yuan
 
International journal of signal and image processing issues vol 2015 - no 1...
International journal of signal and image processing issues   vol 2015 - no 1...International journal of signal and image processing issues   vol 2015 - no 1...
International journal of signal and image processing issues vol 2015 - no 1...
sophiabelthome
 
Updating PageRank for Streaming Graphs
Updating PageRank for Streaming GraphsUpdating PageRank for Streaming Graphs
Updating PageRank for Streaming Graphs
Jason Riedy
 
Modified DCT-based Audio Watermarking Optimization using Genetics Algorithm
Modified DCT-based Audio Watermarking Optimization using Genetics AlgorithmModified DCT-based Audio Watermarking Optimization using Genetics Algorithm
Modified DCT-based Audio Watermarking Optimization using Genetics Algorithm
TELKOMNIKA JOURNAL
 
Modified Golomb Code For Integer Representation
Modified Golomb Code For Integer RepresentationModified Golomb Code For Integer Representation
Modified Golomb Code For Integer Representation
IJSRD
 
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
Ealwan Lee
 
Colfax-Winograd-Summary _final (1)
Colfax-Winograd-Summary _final (1)Colfax-Winograd-Summary _final (1)
Colfax-Winograd-Summary _final (1)
Sangamesh Ragate
 
Pipelined Compression in Remote GPU Virtualization Systems using rCUDA: Early...
Pipelined Compression in Remote GPU Virtualization Systems using rCUDA: Early...Pipelined Compression in Remote GPU Virtualization Systems using rCUDA: Early...
Pipelined Compression in Remote GPU Virtualization Systems using rCUDA: Early...
Carlos Reaño González
 
Adaptive Linear Solvers and Eigensolvers
Adaptive Linear Solvers and EigensolversAdaptive Linear Solvers and Eigensolvers
Adaptive Linear Solvers and Eigensolvers
inside-BigData.com
 
Effect of Block Sizes on the Attributes of Watermarking Digital Images
Effect of Block Sizes on the Attributes of Watermarking Digital ImagesEffect of Block Sizes on the Attributes of Watermarking Digital Images
Effect of Block Sizes on the Attributes of Watermarking Digital Images
Dr. Michael Agbaje
 
Load testing of HELIDEM geo-portal: an OGC open standards interoperability ex...
Load testing of HELIDEM geo-portal: an OGC open standards interoperability ex...Load testing of HELIDEM geo-portal: an OGC open standards interoperability ex...
Load testing of HELIDEM geo-portal: an OGC open standards interoperability ex...
Massimiliano Cannata
 
Performance Evaluation & Design Methodologies for Automated 32 Bit CRC Checki...
Performance Evaluation & Design Methodologies for Automated 32 Bit CRC Checki...Performance Evaluation & Design Methodologies for Automated 32 Bit CRC Checki...
Performance Evaluation & Design Methodologies for Automated 32 Bit CRC Checki...
VIT-AP University
 
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity TechniquePerformance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
ALYAA AL-BARRAK
 
Implementation performance analysis of cordic
Implementation performance analysis of cordicImplementation performance analysis of cordic
Implementation performance analysis of cordic
iaemedu
 
"Approaches for Energy Efficient Implementation of Deep Neural Networks," a P...
"Approaches for Energy Efficient Implementation of Deep Neural Networks," a P..."Approaches for Energy Efficient Implementation of Deep Neural Networks," a P...
"Approaches for Energy Efficient Implementation of Deep Neural Networks," a P...
Edge AI and Vision Alliance
 
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...
Design and Implementation of Encoder for (15, k) Binary BCH Code Using VHDL a...
IOSR Journals
 
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
T. E. BOGALE
 
Ad

Recently uploaded (20)

Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdfTop Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
evrigsolution
 
How to Install and Activate ListGrabber Plugin
How to Install and Activate ListGrabber PluginHow to Install and Activate ListGrabber Plugin
How to Install and Activate ListGrabber Plugin
eGrabber
 
wAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptxwAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptx
SimonedeGijt
 
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
OnePlan Solutions
 
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb ClarkDeploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Peter Caitens
 
AEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural MeetingAEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural Meeting
jennaf3
 
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-RuntimeReinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Natan Silnitsky
 
Artificial hand using embedded system.pptx
Artificial hand using embedded system.pptxArtificial hand using embedded system.pptx
Artificial hand using embedded system.pptx
bhoomigowda12345
 
Exchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv SoftwareExchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv Software
Shoviv Software
 
Sequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptxSequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptx
aashrithakondapalli8
 
How to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryErrorHow to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryError
Tier1 app
 
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
Ranking Google
 
Digital Twins Software Service in Belfast
Digital Twins Software Service in BelfastDigital Twins Software Service in Belfast
Digital Twins Software Service in Belfast
julia smits
 
[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts
Dimitrios Platis
 
The Elixir Developer - All Things Open
The Elixir Developer - All Things OpenThe Elixir Developer - All Things Open
The Elixir Developer - All Things Open
Carlo Gilmar Padilla Santana
 
Do not let staffing shortages and limited fiscal view hamper your cause
Do not let staffing shortages and limited fiscal view hamper your causeDo not let staffing shortages and limited fiscal view hamper your cause
Do not let staffing shortages and limited fiscal view hamper your cause
Fexle Services Pvt. Ltd.
 
Adobe InDesign Crack FREE Download 2025 link
Adobe InDesign Crack FREE Download 2025 linkAdobe InDesign Crack FREE Download 2025 link
Adobe InDesign Crack FREE Download 2025 link
mahmadzubair09
 
Medical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk ScoringMedical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk Scoring
ICS
 
Top 12 Most Useful AngularJS Development Tools to Use in 2025
Top 12 Most Useful AngularJS Development Tools to Use in 2025Top 12 Most Useful AngularJS Development Tools to Use in 2025
Top 12 Most Useful AngularJS Development Tools to Use in 2025
GrapesTech Solutions
 
Robotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptxRobotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptx
julia smits
 
Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdfTop Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
Top Magento Hyvä Theme Features That Make It Ideal for E-commerce.pdf
evrigsolution
 
How to Install and Activate ListGrabber Plugin
How to Install and Activate ListGrabber PluginHow to Install and Activate ListGrabber Plugin
How to Install and Activate ListGrabber Plugin
eGrabber
 
wAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptxwAIred_LearnWithOutAI_JCON_14052025.pptx
wAIred_LearnWithOutAI_JCON_14052025.pptx
SimonedeGijt
 
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
Surviving a Downturn Making Smarter Portfolio Decisions with OnePlan - Webina...
OnePlan Solutions
 
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb ClarkDeploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Deploying & Testing Agentforce - End-to-end with Copado - Ewenb Clark
Peter Caitens
 
AEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural MeetingAEM User Group DACH - 2025 Inaugural Meeting
AEM User Group DACH - 2025 Inaugural Meeting
jennaf3
 
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-RuntimeReinventing Microservices Efficiency and Innovation with Single-Runtime
Reinventing Microservices Efficiency and Innovation with Single-Runtime
Natan Silnitsky
 
Artificial hand using embedded system.pptx
Artificial hand using embedded system.pptxArtificial hand using embedded system.pptx
Artificial hand using embedded system.pptx
bhoomigowda12345
 
Exchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv SoftwareExchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv Software
Shoviv Software
 
Sequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptxSequence Diagrams With Pictures (1).pptx
Sequence Diagrams With Pictures (1).pptx
aashrithakondapalli8
 
How to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryErrorHow to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryError
Tier1 app
 
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
!%& IDM Crack with Internet Download Manager 6.42 Build 32 >
Ranking Google
 
Digital Twins Software Service in Belfast
Digital Twins Software Service in BelfastDigital Twins Software Service in Belfast
Digital Twins Software Service in Belfast
julia smits
 
[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts[gbgcpp] Let's get comfortable with concepts
[gbgcpp] Let's get comfortable with concepts
Dimitrios Platis
 
Do not let staffing shortages and limited fiscal view hamper your cause
Do not let staffing shortages and limited fiscal view hamper your causeDo not let staffing shortages and limited fiscal view hamper your cause
Do not let staffing shortages and limited fiscal view hamper your cause
Fexle Services Pvt. Ltd.
 
Adobe InDesign Crack FREE Download 2025 link
Adobe InDesign Crack FREE Download 2025 linkAdobe InDesign Crack FREE Download 2025 link
Adobe InDesign Crack FREE Download 2025 link
mahmadzubair09
 
Medical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk ScoringMedical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk Scoring
ICS
 
Top 12 Most Useful AngularJS Development Tools to Use in 2025
Top 12 Most Useful AngularJS Development Tools to Use in 2025Top 12 Most Useful AngularJS Development Tools to Use in 2025
Top 12 Most Useful AngularJS Development Tools to Use in 2025
GrapesTech Solutions
 
Robotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptxRobotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptx
julia smits
 
Ad

Latency Performance of Encoding with Random Linear Network Coding

  • 1. Latency Performance of Encoding with Random Linear Network Coding Lars Nielsen 1,2,3 René Rydhof Hansen 1 Daniel E. Lucani 2,3 May 3, 2018 1Department Of Computer Science (Cassiopeia), Aalborg University 2Department of Engineering, Aarhus University 3Chocolate Cloud ApS
  • 2. Problem • User experience is affected by long encoding latency • Large management overhead, with multiple generation • What happens if we change the NC configuration? • For what data size, is a single generation plausible? 1
  • 3. Problem • Can we confirm theory? • Is it possible to predict changes to latency, based on NC configuration? Nistor et al. 2011, 2012 Focus: Latency of coefficient generation from a Finite Field. A. Paramanathan et al. 2013 and C. W. Sørensen et al. 2016 Focus: Energy consumption. 2
  • 4. Network Coding • A technique to improve the reliability, robustness, and security of networks • It is a subset of erasure correcting code • Random Linear Network Coding (RLNC), is a subset of Network Coding • Companies and research have started to apply Network Coding in data storage 3
  • 7. Network Coding Encoding • For each generation, a symbol matrix is constructed • Each symbol represent a linear equation • Coefficients are randomly drawn from a GF(2q) C × S = CS 5
  • 8. On-The-Fly c1,1 c1,2 01,3 · · · 01,g ·         Symbol1 Symbol2 0 ... 0g+r         = first coded symbol 6
  • 9. On-The-Fly c1,1 c1,2 01,3 · · · 01,g c2,1 c2,2 c2,3 · · · 02,g ·            Symbol1 Symbol2 Symbol3 0 ... 0g+r            = second coded symbol 6
  • 10. On-The-Fly       c1,1 c1,2 01,3 · · · 01,g c2,1 c2,2 c2,3 · · · 02,g ... cg+r,1 cg+r,2 · · · cg+r,g       ·         Symbol1 Symbol2 Symbol3 ... Symbolg         = g+r coded symbol 6
  • 11. Experiment Full Vector f (g, k) = α · g · k(g + r) + β · k · (g − 1)(g + r) On-The-Fly h(g, k) = (α + β) · k · g−1 i=0 i + r · k · (α · g + β · (g − 1)) = (α+β)·k·g·(g−1) 2 + r · k · (α · g + β · (g − 1)) g = generation size, k = symbol size, r = amount of redundancy symbols, α = cost of product operation and β = cost of addition operation 7
  • 12. Experiment Expectations Algorithm / g 8 - 16 Result 16 - 32 Result Full Vector 2.06x 2.03x On-The-Fly 2.14x 2.06x Data Sizes Expected Latency increase Result 1kB - 1 MB 103x 1 - 10 MB 10x 10 - 20 MB 2x 2n MB ∼ 2x g ∆L Result 8 2.14x 16 2.06x 32 2.03x 8
  • 13. How the experiment was conducted • The benchmark is implemented in C++ and uses Kodo • Using multiple configuration for generation size and symbol size • Data is generated following Monte Carlo simulation • We use high granularity clock for recording start/stop of encoding • For each experiment configuration 1000 experiments have been performed The source code, configurations, and results are available on GitHub under the MIT software license github.com/looopTools/sw9-source 9
  • 14. For the Full Vector Algorithm 1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB Data size 10−2 10−1 100 101 102 103 Latencyinms 10
  • 15. For the Full Vector Algorithm Data Sizes Expected Latency increase Result 1kB - 1 MB 103x ∼ 102x 1 - 10 MB 10x 13x 10 - 20 MB 2x 2x 2n MB ∼ 2x 1.92x − 2.41x, av- erage 2.16x 1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB Data size 10−2 10−1 100 101 102 103 Latencyinms 11
  • 16. For the Full Vector Algorithm 1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB Data size 10−2 10−1 100 101 102 103 Latencyinms G=8 G=16 G=32 12
  • 17. For the Full Vector Algorithm Algorithm / g 8 - 16 Result 16 - 32 Result Full Vector 2.06x 1.75x 2.03x 1.82x 1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB Data size 10−2 10−1 100 101 102 103 Latencyinms G=8 G=16 G=32 13
  • 18. Comparison of the On-The-Fly and Full Vector algorithms 1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB Data size 10−2 10−1 100 101 102 103 Latencyinms FV G=8 FV G=16 FV G=32 OTF G=8 OTF G=16 OTF G=32 14
  • 19. Comparison of the On-The-Fly and Full Vector algorithms g ∆L Result 8 2.14x 1.41x 16 2.06x 1.62x 32 2.03x 1.75x 1kB 1MB 10MB 20MB 32MB 64MB 128MB 256MB 512MB Data size 10−2 10−1 100 101 102 103 Latencyinms FV G=8 FV G=16 FV G=32 OTF G=8 OTF G=16 OTF G=32 15
  • 20. Conclusion Future Work Conclusion • ∼ 2x increase to latency, when doubling generation- or symbol size • Gain of switching to On-The-Fly is more moderate than expected • 1.41x for g = 8 • 1.62x for g = 16 • 1.75x for g = 32 Future Work • Confirm results on additional CPU architectures • Further investigate the 1kB to 1MB results • Can multi-threading be used to decrease latency? 16
  翻译: