SlideShare a Scribd company logo
Agenda
▪ Difference Between Machine Learning and Deep Learning
▪ What is Deep Learning?
▪ What is TensorFlow?
▪ TensorFlow Data Structures
▪ TensorFlow Use-Case
Agenda
▪ Difference Between Machine Learning and Deep Learning
▪ What is Deep Learning?
▪ What is TensorFlow?
▪ TensorFlow Data Structures
▪ TensorFlow Use-Case
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Machine Learning vs Deep Learning
Let’s see what are the differences between Machine Learning and Deep Learning
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Machine Learning vs Deep Learning
Machine Learning Deep Learning
High performance on less data Low performance on less data
Deep Learning Performance
Machine Learning Performance
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Machine Learning vs Deep Learning
Machine Learning Deep Learning
Can work on low end machines Requires high end machines
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Machine Learning vs Deep Learning
Machine Learning Deep Learning
Features need to be hand-coded
as per the domain and data type
Tries to learn high-level features
from data
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What is Deep Learning?
Now is the time to understand what exactly is Deep Learning?
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What is Deep Learning?
Input Layer
Hidden Layer 1
Hidden Layer 2
Output Layer
A collection of statistical machine learning techniques used to learn feature hierarchies often based on
artificial neural networks
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What are Tensors?
Let’s see what are Tensors?
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What Are Tensors?
 Tensors are the standard way of representing data in TensorFlow (deep learning).
 Tensors are multidimensional arrays, an extension of two-dimensional tables (matrices) to data
with higher dimension.
Tensor of
dimension[1]
Tensor of
dimensions[2]
Tensor of
dimensions[3]
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensors Rank
Rank Math Entity Python Example
0 Scalar (magnitude
only)
s = 483
1 Vector (magnitude
and direction)
v = [1.1, 2.2, 3.3]
2 Matrix (table of
numbers)
m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3-Tensor (cube of
numbers)
t =
[[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18
]]]
n n-Tensor (you get
the idea)
....
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensor Data Types
In addition to dimensionality Tensors have different data types as well, you can assign any one of
these data types to a Tensor
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What Is TensorFlow?
Now, is the time explore TensorFlow.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What Is TensorFlow?
 TensorFlow is a Python library used to implement deep networks.
 In TensorFlow, computation is approached as a dataflow graph.
3.2 -1.4 5.1 …
-1.0 -2 2.4 …
… … … …
… … … …
Tensor Flow
Matmul
W X
Add
Relu
B
Computational
Graph
Functions
Tensors
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
TensorFlow Code-Basics
Let’s understand the fundamentals of TensorFlow
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
TensorFlow Code-Basics
TensorFlow core programs consists of two discrete sections:
Building a computational graph Running a computational graph
A computational graph is a series of TensorFlow
operations arranged into a graph of nodes
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
TensorFlow Building And Running A Graph
Building a computational graph Running a computational graph
import tensorflow as tf
node1 = tf.constant(3.0, tf.float32)
node2 = tf.constant(4.0)
print(node1, node2)
Constant nodes
sess = tf.Session()
print(sess.run([node1, node2]))
To actually evaluate the nodes, we must run
the computational graph within a session.
As the session encapsulates the control and
state of the TensorFlow runtime.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
5.0
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Computational Graph
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
b
5.0
6.0
Const
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Computational Graph
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
b c
5.0
6.0
Const Mul
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Computational Graph
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
b c
5.0
6.0
Const Mul
30.0
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Running The Computational Graph
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Graph Visualization
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Graph Visualization
 For visualizing TensorFlow graphs, we use TensorBoard.
 The first argument when creating the FileWriter is an output directory name, which will be created
if it doesn't exist.
File_writer = tf.summary.FileWriter('log_simple_graph', sess.graph)
TensorBoard runs as a local web app, on port 6006. (this
is default port, “6006” is “ ” upside-down.)oo
tensorboard --logdir = “path_to_the_graph”
Execute this command in the cmd
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Constants, Placeholders and Variables
Let’s understand what are constants, placeholders and variables
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Constant
One type of a node is a constant. It takes no inputs, and it outputs a value
it stores internally.
import tensorflow as tf
node1 = tf.constant(3.0, tf.float32)
node2 = tf.constant(4.0)
print(node1, node2)
Constant nodes
Constant
Placeholder
Variable
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Constant
One type of a node is a constant. It takes no inputs, and it outputs a value
it stores internally.
import tensorflow as tf
node1 = tf.constant(3.0, tf.float32)
node2 = tf.constant(4.0)
print(node1, node2)
Constant nodes
Constant
Placeholder
Variable
What if I want the
graph to accept
external inputs?
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Placeholder
Constant
Placeholder
Variable
A graph can be parameterized to accept external inputs, known as placeholders.
A placeholder is a promise to provide a value later.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Placeholder
Constant
Placeholder
Variable
A graph can be parameterized to accept external inputs, known as placeholders.
A placeholder is a promise to provide a value later.
How to modify the
graph, if I want new
output for the same
input ?
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Variable
Constant
Placeholder
Variable
To make the model trainable, we need to be able to modify the graph to get
new outputs with the same input. Variables allow us to add trainable
parameters to a graph
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Let Us Now Create A Model
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Simple Linear Model
import tensorflow as tf
W = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
x = tf.placeholder(tf.float32)
linear_model = W * x + b
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
print(sess.run(linear_model, {x:[1,2,3,4]}))
We've created a model, but we
don't know how good it is yet
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
How To Increase The Efficiency Of The Model?
Calculate the loss
Model
Update the Variables
Repeat the process until the loss becomes very small
A loss function measures how
far apart the current model is
from the provided data.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Calculating The Loss
In order to understand how good the Model is, we should know the loss/error.
To evaluate the model on training data, we need a y i.e. a
placeholder to provide the desired values, and we need to
write a loss function.
We'll use a standard loss model for linear regression.
(linear_model – y ) creates a vector where each element is
the corresponding example's error delta.
tf.square is used to square that error.
tf.reduce_sum is used to sum all the squared error.
y = tf.placeholder(tf.float32)
squared_deltas = tf.square(linear_model - y)
loss = tf.reduce_sum(squared_deltas)
print(sess.run(loss, {x:[1,2,3,4], y:[0,-1,-2,-3]}))
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
Optimizer modifies each variable according to the magnitude of the derivative of loss with
respect to that variable. Here we will use Gradient Descent Optimizer
How Gradient Descent Actually
Works?
Let’s understand this
with an analogy
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
• Suppose you are at the top of a mountain, and you have to reach a lake which is at the lowest
point of the mountain (a.k.a valley).
• A twist is that you are blindfolded and you have zero visibility to see where you are headed. So,
what approach will you take to reach the lake?
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
• The best way is to check the ground near you and observe where the land tends to descend.
• This will give an idea in what direction you should take your first step. If you follow the
descending path, it is very likely you would reach the lake.
Consider the length of the step as learning rate
Consider the position of the hiker as weight
Consider the process of climbing down
the mountain as cost function/loss
function
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
Global Cost/Loss
Minimum
Jmin(w)
J(w)
Let us
understand the
math behind
Gradient
Descent
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
The magnitude and direction
of the weight update is
computed by taking a step in
the opposite direction of the
cost gradient
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
The magnitude and direction
of the weight update is
computed by taking a step in
the opposite direction of the
cost gradient
The weights are then updated
after each epoch via the
following update rule:
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
The magnitude and direction
of the weight update is
computed by taking a step in
the opposite direction of the
cost gradient
The weights are then updated
after each epoch via the
following update rule:
Here, Δw is a vector that
contains the weight
updates of each weight
coefficient w, which are
computed as follows:
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
Suppose, we want to find the best parameters (W) for our learning algorithm. We can apply the
same analogy and find the best possible values for that parameter. Consider the example below:
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
sess.run(init)
for i in range(1000):
sess.run(train, {x:[1,2,3,4], y:[0,-1,-2,-3]})
print(sess.run([W, b]))
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
TensorFlow Use-Case
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Long Short Term Memory Networks Use-Case
We will feed a LSTM with correct sequences from the text of 3 symbols as inputs and 1 labeled
symbol, eventually the neural network will learn to predict the next symbol correctly
had a general
LSTM
cell
Council
Prediction
label
vs
inputs
LSTM cell with
three inputs and
1 output.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Long Short Term Memory Networks Use-Case
long ago , the mice had a general council to consider what measures
they could take to outwit their common enemy , the cat . some said
this , and some said that but at last a young mouse got up and said he
had a proposal to make , which he thought would meet the case . you
will all agree , said he , that our chief danger consists in the sly and
treacherous manner in which the enemy approaches us . now , if we
could receive some signal of her approach , we could easily escape from
her . i venture , therefore , to propose that a small bell be procured , and
attached by a ribbon round the neck of the cat . by this means we
should always know when she was about , and could easily retire while
she was in the neighborhood . this proposal met with general applause ,
until an old mouse got up and said that is all very well , but who is to
bell the cat ? the mice looked at one another and nobody spoke . then
the old mouse said it is easy to propose impossible remedies .
How to
train the
network?
A short story from Aesop’s Fables
with 112 unique symbols
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Long Short Term Memory Networks Use-Case
A unique integer value is assigned to each symbol because
LSTM inputs can only understand real numbers.
20 6 33
LSTM
cell
LSTM cell with
three inputs and
1 output.
had a general
.01 .02 .6 .00
37
37
vs
Council
Council
112-element
vector
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Session In A Minute
Machine Learning vs Deep Learning What is Deep Learning? What is TensorFlow?
TensorFlow Code-Basics Simple Linear Model TensorFlow Use-Case
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tutorial | Edureka
Ad

More Related Content

What's hot (20)

Vector database
Vector databaseVector database
Vector database
Guy Korland
 
Azure Machine Learning
Azure Machine LearningAzure Machine Learning
Azure Machine Learning
Mostafa
 
Pytorch
PytorchPytorch
Pytorch
ehsan tr
 
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
Simplilearn
 
Neo4j: The path to success with Graph Database and Graph Data Science
Neo4j: The path to success with Graph Database and Graph Data ScienceNeo4j: The path to success with Graph Database and Graph Data Science
Neo4j: The path to success with Graph Database and Graph Data Science
Neo4j
 
Web hdfs and httpfs
Web hdfs and httpfsWeb hdfs and httpfs
Web hdfs and httpfs
wchevreuil
 
Webinar Data Mesh - Part 3
Webinar Data Mesh - Part 3Webinar Data Mesh - Part 3
Webinar Data Mesh - Part 3
Jeffrey T. Pollock
 
Introduction to TensorFlow
Introduction to TensorFlowIntroduction to TensorFlow
Introduction to TensorFlow
Matthias Feys
 
Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Flink Forward
 
Real-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache PinotReal-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache Pinot
Xiang Fu
 
Databricks + Snowflake: Catalyzing Data and AI Initiatives
Databricks + Snowflake: Catalyzing Data and AI InitiativesDatabricks + Snowflake: Catalyzing Data and AI Initiatives
Databricks + Snowflake: Catalyzing Data and AI Initiatives
Databricks
 
Simplifying Model Management with MLflow
Simplifying Model Management with MLflowSimplifying Model Management with MLflow
Simplifying Model Management with MLflow
Databricks
 
Build Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks StreamingBuild Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks Streaming
Databricks
 
Data Pipline Observability meetup
Data Pipline Observability meetup Data Pipline Observability meetup
Data Pipline Observability meetup
Omid Vahdaty
 
Introduction to keras
Introduction to kerasIntroduction to keras
Introduction to keras
Haritha Thilakarathne
 
Overview on Azure Machine Learning
Overview on Azure Machine LearningOverview on Azure Machine Learning
Overview on Azure Machine Learning
James Serra
 
Some Iceberg Basics for Beginners (CDP).pdf
Some Iceberg Basics for Beginners (CDP).pdfSome Iceberg Basics for Beginners (CDP).pdf
Some Iceberg Basics for Beginners (CDP).pdf
Michael Kogan
 
Data Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to MeshData Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to Mesh
Jeffrey T. Pollock
 
The Modern Data Team for the Modern Data Stack: dbt and the Role of the Analy...
The Modern Data Team for the Modern Data Stack: dbt and the Role of the Analy...The Modern Data Team for the Modern Data Stack: dbt and the Role of the Analy...
The Modern Data Team for the Modern Data Stack: dbt and the Role of the Analy...
Databricks
 
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo
 
Azure Machine Learning
Azure Machine LearningAzure Machine Learning
Azure Machine Learning
Mostafa
 
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
Simplilearn
 
Neo4j: The path to success with Graph Database and Graph Data Science
Neo4j: The path to success with Graph Database and Graph Data ScienceNeo4j: The path to success with Graph Database and Graph Data Science
Neo4j: The path to success with Graph Database and Graph Data Science
Neo4j
 
Web hdfs and httpfs
Web hdfs and httpfsWeb hdfs and httpfs
Web hdfs and httpfs
wchevreuil
 
Introduction to TensorFlow
Introduction to TensorFlowIntroduction to TensorFlow
Introduction to TensorFlow
Matthias Feys
 
Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Virtual Flink Forward 2020: Netflix Data Mesh: Composable Data Processing - J...
Flink Forward
 
Real-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache PinotReal-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache Pinot
Xiang Fu
 
Databricks + Snowflake: Catalyzing Data and AI Initiatives
Databricks + Snowflake: Catalyzing Data and AI InitiativesDatabricks + Snowflake: Catalyzing Data and AI Initiatives
Databricks + Snowflake: Catalyzing Data and AI Initiatives
Databricks
 
Simplifying Model Management with MLflow
Simplifying Model Management with MLflowSimplifying Model Management with MLflow
Simplifying Model Management with MLflow
Databricks
 
Build Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks StreamingBuild Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks Streaming
Databricks
 
Data Pipline Observability meetup
Data Pipline Observability meetup Data Pipline Observability meetup
Data Pipline Observability meetup
Omid Vahdaty
 
Overview on Azure Machine Learning
Overview on Azure Machine LearningOverview on Azure Machine Learning
Overview on Azure Machine Learning
James Serra
 
Some Iceberg Basics for Beginners (CDP).pdf
Some Iceberg Basics for Beginners (CDP).pdfSome Iceberg Basics for Beginners (CDP).pdf
Some Iceberg Basics for Beginners (CDP).pdf
Michael Kogan
 
Data Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to MeshData Mesh Part 4 Monolith to Mesh
Data Mesh Part 4 Monolith to Mesh
Jeffrey T. Pollock
 
The Modern Data Team for the Modern Data Stack: dbt and the Role of the Analy...
The Modern Data Team for the Modern Data Stack: dbt and the Role of the Analy...The Modern Data Team for the Modern Data Stack: dbt and the Role of the Analy...
The Modern Data Team for the Modern Data Stack: dbt and the Role of the Analy...
Databricks
 
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Denodo
 

Viewers also liked (20)

What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...
What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...
What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...
Edureka!
 
Top 5 Deep Learning and AI Stories - October 6, 2017
Top 5 Deep Learning and AI Stories - October 6, 2017Top 5 Deep Learning and AI Stories - October 6, 2017
Top 5 Deep Learning and AI Stories - October 6, 2017
NVIDIA
 
Big Data Tutorial For Beginners | What Is Big Data | Big Data Tutorial | Hado...
Big Data Tutorial For Beginners | What Is Big Data | Big Data Tutorial | Hado...Big Data Tutorial For Beginners | What Is Big Data | Big Data Tutorial | Hado...
Big Data Tutorial For Beginners | What Is Big Data | Big Data Tutorial | Hado...
Edureka!
 
AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017
AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017
AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017
Carol Smith
 
ReactJS Tutorial For Beginners | ReactJS Redux Training For Beginners | React...
ReactJS Tutorial For Beginners | ReactJS Redux Training For Beginners | React...ReactJS Tutorial For Beginners | ReactJS Redux Training For Beginners | React...
ReactJS Tutorial For Beginners | ReactJS Redux Training For Beginners | React...
Edureka!
 
Docker Swarm For High Availability | Docker Tutorial | DevOps Tutorial | Edureka
Docker Swarm For High Availability | Docker Tutorial | DevOps Tutorial | EdurekaDocker Swarm For High Availability | Docker Tutorial | DevOps Tutorial | Edureka
Docker Swarm For High Availability | Docker Tutorial | DevOps Tutorial | Edureka
Edureka!
 
Angular 4 Data Binding | Two Way Data Binding in Angular 4 | Angular 4 Tutori...
Angular 4 Data Binding | Two Way Data Binding in Angular 4 | Angular 4 Tutori...Angular 4 Data Binding | Two Way Data Binding in Angular 4 | Angular 4 Tutori...
Angular 4 Data Binding | Two Way Data Binding in Angular 4 | Angular 4 Tutori...
Edureka!
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShare
SlideShare
 
What Is DevOps? | Introduction To DevOps | DevOps Tools | DevOps Tutorial | D...
What Is DevOps? | Introduction To DevOps | DevOps Tools | DevOps Tutorial | D...What Is DevOps? | Introduction To DevOps | DevOps Tools | DevOps Tutorial | D...
What Is DevOps? | Introduction To DevOps | DevOps Tools | DevOps Tutorial | D...
Edureka!
 
Oficinas de Proyectos Eficientes con Microsoft EPM 2010 (en Microsoft Uruguay)
Oficinas de Proyectos Eficientes con Microsoft EPM 2010 (en Microsoft Uruguay)Oficinas de Proyectos Eficientes con Microsoft EPM 2010 (en Microsoft Uruguay)
Oficinas de Proyectos Eficientes con Microsoft EPM 2010 (en Microsoft Uruguay)
Walter Ariel Risi
 
Epm
EpmEpm
Epm
ProColombia
 
Web social
Web socialWeb social
Web social
Gianina Villar Soto
 
Presentación Juan David Echeverri EPM
Presentación Juan David Echeverri EPMPresentación Juan David Echeverri EPM
Presentación Juan David Echeverri EPM
CQC MCI
 
Importancia de las tic en la educación 3
Importancia de las tic en la educación 3Importancia de las tic en la educación 3
Importancia de las tic en la educación 3
lucerito8
 
negociaciones de Epm
negociaciones de Epmnegociaciones de Epm
negociaciones de Epm
estefaniayaquer
 
13 caso-epm
13 caso-epm13 caso-epm
13 caso-epm
Andesco
 
Taller Administración del tiempo
Taller Administración del tiempoTaller Administración del tiempo
Taller Administración del tiempo
Gustavo Villegas L.
 
IFS Energy & Utilities Solution Map
IFS Energy & Utilities Solution MapIFS Energy & Utilities Solution Map
IFS Energy & Utilities Solution Map
IFS
 
[Tek] 4차산업혁명위원회 사회제도혁신위원회에 제출한 규제합리화 방안
[Tek] 4차산업혁명위원회 사회제도혁신위원회에 제출한 규제합리화 방안[Tek] 4차산업혁명위원회 사회제도혁신위원회에 제출한 규제합리화 방안
[Tek] 4차산업혁명위원회 사회제도혁신위원회에 제출한 규제합리화 방안
TEK & LAW, LLP
 
Data Infrastructure at LinkedIn
Data Infrastructure at LinkedInData Infrastructure at LinkedIn
Data Infrastructure at LinkedIn
Amy W. Tang
 
What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...
What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...
What is Artificial Intelligence | Artificial Intelligence Tutorial For Beginn...
Edureka!
 
Top 5 Deep Learning and AI Stories - October 6, 2017
Top 5 Deep Learning and AI Stories - October 6, 2017Top 5 Deep Learning and AI Stories - October 6, 2017
Top 5 Deep Learning and AI Stories - October 6, 2017
NVIDIA
 
Big Data Tutorial For Beginners | What Is Big Data | Big Data Tutorial | Hado...
Big Data Tutorial For Beginners | What Is Big Data | Big Data Tutorial | Hado...Big Data Tutorial For Beginners | What Is Big Data | Big Data Tutorial | Hado...
Big Data Tutorial For Beginners | What Is Big Data | Big Data Tutorial | Hado...
Edureka!
 
AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017
AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017
AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017
Carol Smith
 
ReactJS Tutorial For Beginners | ReactJS Redux Training For Beginners | React...
ReactJS Tutorial For Beginners | ReactJS Redux Training For Beginners | React...ReactJS Tutorial For Beginners | ReactJS Redux Training For Beginners | React...
ReactJS Tutorial For Beginners | ReactJS Redux Training For Beginners | React...
Edureka!
 
Docker Swarm For High Availability | Docker Tutorial | DevOps Tutorial | Edureka
Docker Swarm For High Availability | Docker Tutorial | DevOps Tutorial | EdurekaDocker Swarm For High Availability | Docker Tutorial | DevOps Tutorial | Edureka
Docker Swarm For High Availability | Docker Tutorial | DevOps Tutorial | Edureka
Edureka!
 
Angular 4 Data Binding | Two Way Data Binding in Angular 4 | Angular 4 Tutori...
Angular 4 Data Binding | Two Way Data Binding in Angular 4 | Angular 4 Tutori...Angular 4 Data Binding | Two Way Data Binding in Angular 4 | Angular 4 Tutori...
Angular 4 Data Binding | Two Way Data Binding in Angular 4 | Angular 4 Tutori...
Edureka!
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShare
SlideShare
 
What Is DevOps? | Introduction To DevOps | DevOps Tools | DevOps Tutorial | D...
What Is DevOps? | Introduction To DevOps | DevOps Tools | DevOps Tutorial | D...What Is DevOps? | Introduction To DevOps | DevOps Tools | DevOps Tutorial | D...
What Is DevOps? | Introduction To DevOps | DevOps Tools | DevOps Tutorial | D...
Edureka!
 
Oficinas de Proyectos Eficientes con Microsoft EPM 2010 (en Microsoft Uruguay)
Oficinas de Proyectos Eficientes con Microsoft EPM 2010 (en Microsoft Uruguay)Oficinas de Proyectos Eficientes con Microsoft EPM 2010 (en Microsoft Uruguay)
Oficinas de Proyectos Eficientes con Microsoft EPM 2010 (en Microsoft Uruguay)
Walter Ariel Risi
 
Presentación Juan David Echeverri EPM
Presentación Juan David Echeverri EPMPresentación Juan David Echeverri EPM
Presentación Juan David Echeverri EPM
CQC MCI
 
Importancia de las tic en la educación 3
Importancia de las tic en la educación 3Importancia de las tic en la educación 3
Importancia de las tic en la educación 3
lucerito8
 
13 caso-epm
13 caso-epm13 caso-epm
13 caso-epm
Andesco
 
Taller Administración del tiempo
Taller Administración del tiempoTaller Administración del tiempo
Taller Administración del tiempo
Gustavo Villegas L.
 
IFS Energy & Utilities Solution Map
IFS Energy & Utilities Solution MapIFS Energy & Utilities Solution Map
IFS Energy & Utilities Solution Map
IFS
 
[Tek] 4차산업혁명위원회 사회제도혁신위원회에 제출한 규제합리화 방안
[Tek] 4차산업혁명위원회 사회제도혁신위원회에 제출한 규제합리화 방안[Tek] 4차산업혁명위원회 사회제도혁신위원회에 제출한 규제합리화 방안
[Tek] 4차산업혁명위원회 사회제도혁신위원회에 제출한 규제합리화 방안
TEK & LAW, LLP
 
Data Infrastructure at LinkedIn
Data Infrastructure at LinkedInData Infrastructure at LinkedIn
Data Infrastructure at LinkedIn
Amy W. Tang
 
Ad

Similar to Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tutorial | Edureka (20)

TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Py...
TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Py...TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Py...
TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Py...
Edureka!
 
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Edureka!
 
Theano vs TensorFlow | Edureka
Theano vs TensorFlow | EdurekaTheano vs TensorFlow | Edureka
Theano vs TensorFlow | Edureka
Edureka!
 
Internship project presentation_final_upload
Internship project presentation_final_uploadInternship project presentation_final_upload
Internship project presentation_final_upload
Suraj Rathore
 
Introduction to Tensor Flow for Optical Character Recognition (OCR)
Introduction to Tensor Flow for Optical Character Recognition (OCR)Introduction to Tensor Flow for Optical Character Recognition (OCR)
Introduction to Tensor Flow for Optical Character Recognition (OCR)
Vincenzo Santopietro
 
Feature Engineering in NLP.pdf
Feature Engineering in NLP.pdfFeature Engineering in NLP.pdf
Feature Engineering in NLP.pdf
bilaje4244prolugcom
 
TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016
Andrii Babii
 
Introduction to TensorFlow
Introduction to TensorFlowIntroduction to TensorFlow
Introduction to TensorFlow
Ralph Vincent Regalado
 
Metrics 2.0 @ Monitorama PDX 2014
Metrics 2.0 @ Monitorama PDX 2014Metrics 2.0 @ Monitorama PDX 2014
Metrics 2.0 @ Monitorama PDX 2014
Dieter Plaetinck
 
Natural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usageNatural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usage
hyunyoung Lee
 
Computer project
Computer projectComputer project
Computer project
Czarina Patalod
 
MySQL Optimizer: What’s New in 8.0
MySQL Optimizer: What’s New in 8.0MySQL Optimizer: What’s New in 8.0
MySQL Optimizer: What’s New in 8.0
oysteing
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
 
Base sas interview questions
Base sas interview questionsBase sas interview questions
Base sas interview questions
Sunil0108
 
Certification Study Group -Professional ML Engineer Session 2 (GCP-TensorFlow...
Certification Study Group -Professional ML Engineer Session 2 (GCP-TensorFlow...Certification Study Group -Professional ML Engineer Session 2 (GCP-TensorFlow...
Certification Study Group -Professional ML Engineer Session 2 (GCP-TensorFlow...
gdgsurrey
 
Pythonlearn-02-Expressions123AdvanceLevel.pptx
Pythonlearn-02-Expressions123AdvanceLevel.pptxPythonlearn-02-Expressions123AdvanceLevel.pptx
Pythonlearn-02-Expressions123AdvanceLevel.pptx
AninditaSarkarNaha
 
Base sas interview questions
Base sas interview questionsBase sas interview questions
Base sas interview questions
Dr P Deepak
 
Deep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudDataDeep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudData
WeCloudData
 
03-Variables, Expressions and Statements (1).pdf
03-Variables, Expressions and Statements (1).pdf03-Variables, Expressions and Statements (1).pdf
03-Variables, Expressions and Statements (1).pdf
MirHazarKhan1
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
Guru Nanak Technical Institutions
 
TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Py...
TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Py...TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Py...
TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Py...
Edureka!
 
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Edureka!
 
Theano vs TensorFlow | Edureka
Theano vs TensorFlow | EdurekaTheano vs TensorFlow | Edureka
Theano vs TensorFlow | Edureka
Edureka!
 
Internship project presentation_final_upload
Internship project presentation_final_uploadInternship project presentation_final_upload
Internship project presentation_final_upload
Suraj Rathore
 
Introduction to Tensor Flow for Optical Character Recognition (OCR)
Introduction to Tensor Flow for Optical Character Recognition (OCR)Introduction to Tensor Flow for Optical Character Recognition (OCR)
Introduction to Tensor Flow for Optical Character Recognition (OCR)
Vincenzo Santopietro
 
TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016
Andrii Babii
 
Metrics 2.0 @ Monitorama PDX 2014
Metrics 2.0 @ Monitorama PDX 2014Metrics 2.0 @ Monitorama PDX 2014
Metrics 2.0 @ Monitorama PDX 2014
Dieter Plaetinck
 
Natural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usageNatural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usage
hyunyoung Lee
 
MySQL Optimizer: What’s New in 8.0
MySQL Optimizer: What’s New in 8.0MySQL Optimizer: What’s New in 8.0
MySQL Optimizer: What’s New in 8.0
oysteing
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
 
Base sas interview questions
Base sas interview questionsBase sas interview questions
Base sas interview questions
Sunil0108
 
Certification Study Group -Professional ML Engineer Session 2 (GCP-TensorFlow...
Certification Study Group -Professional ML Engineer Session 2 (GCP-TensorFlow...Certification Study Group -Professional ML Engineer Session 2 (GCP-TensorFlow...
Certification Study Group -Professional ML Engineer Session 2 (GCP-TensorFlow...
gdgsurrey
 
Pythonlearn-02-Expressions123AdvanceLevel.pptx
Pythonlearn-02-Expressions123AdvanceLevel.pptxPythonlearn-02-Expressions123AdvanceLevel.pptx
Pythonlearn-02-Expressions123AdvanceLevel.pptx
AninditaSarkarNaha
 
Base sas interview questions
Base sas interview questionsBase sas interview questions
Base sas interview questions
Dr P Deepak
 
Deep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudDataDeep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudData
WeCloudData
 
03-Variables, Expressions and Statements (1).pdf
03-Variables, Expressions and Statements (1).pdf03-Variables, Expressions and Statements (1).pdf
03-Variables, Expressions and Statements (1).pdf
MirHazarKhan1
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
Guru Nanak Technical Institutions
 
Ad

More from Edureka! (20)

What to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | EdurekaWhat to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | Edureka
Edureka!
 
Top 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | EdurekaTop 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | Edureka
Edureka!
 
Top 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | EdurekaTop 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | Edureka
Edureka!
 
Tableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | EdurekaTableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | Edureka
Edureka!
 
Python Programming Tutorial | Edureka
Python Programming Tutorial | EdurekaPython Programming Tutorial | Edureka
Python Programming Tutorial | Edureka
Edureka!
 
Top 5 PMP Certifications | Edureka
Top 5 PMP Certifications | EdurekaTop 5 PMP Certifications | Edureka
Top 5 PMP Certifications | Edureka
Edureka!
 
Top Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | EdurekaTop Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | Edureka
Edureka!
 
Linux Mint Tutorial | Edureka
Linux Mint Tutorial | EdurekaLinux Mint Tutorial | Edureka
Linux Mint Tutorial | Edureka
Edureka!
 
How to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| EdurekaHow to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| Edureka
Edureka!
 
Importance of Digital Marketing | Edureka
Importance of Digital Marketing | EdurekaImportance of Digital Marketing | Edureka
Importance of Digital Marketing | Edureka
Edureka!
 
RPA in 2020 | Edureka
RPA in 2020 | EdurekaRPA in 2020 | Edureka
RPA in 2020 | Edureka
Edureka!
 
Email Notifications in Jenkins | Edureka
Email Notifications in Jenkins | EdurekaEmail Notifications in Jenkins | Edureka
Email Notifications in Jenkins | Edureka
Edureka!
 
EA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | EdurekaEA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | Edureka
Edureka!
 
Cognitive AI Tutorial | Edureka
Cognitive AI Tutorial | EdurekaCognitive AI Tutorial | Edureka
Cognitive AI Tutorial | Edureka
Edureka!
 
AWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | EdurekaAWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | Edureka
Edureka!
 
Blue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | EdurekaBlue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | Edureka
Edureka!
 
Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka
Edureka!
 
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | EdurekaA star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
Edureka!
 
Kubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | EdurekaKubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | Edureka
Edureka!
 
Introduction to DevOps | Edureka
Introduction to DevOps | EdurekaIntroduction to DevOps | Edureka
Introduction to DevOps | Edureka
Edureka!
 
What to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | EdurekaWhat to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | Edureka
Edureka!
 
Top 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | EdurekaTop 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | Edureka
Edureka!
 
Top 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | EdurekaTop 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | Edureka
Edureka!
 
Tableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | EdurekaTableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | Edureka
Edureka!
 
Python Programming Tutorial | Edureka
Python Programming Tutorial | EdurekaPython Programming Tutorial | Edureka
Python Programming Tutorial | Edureka
Edureka!
 
Top 5 PMP Certifications | Edureka
Top 5 PMP Certifications | EdurekaTop 5 PMP Certifications | Edureka
Top 5 PMP Certifications | Edureka
Edureka!
 
Top Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | EdurekaTop Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | Edureka
Edureka!
 
Linux Mint Tutorial | Edureka
Linux Mint Tutorial | EdurekaLinux Mint Tutorial | Edureka
Linux Mint Tutorial | Edureka
Edureka!
 
How to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| EdurekaHow to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| Edureka
Edureka!
 
Importance of Digital Marketing | Edureka
Importance of Digital Marketing | EdurekaImportance of Digital Marketing | Edureka
Importance of Digital Marketing | Edureka
Edureka!
 
RPA in 2020 | Edureka
RPA in 2020 | EdurekaRPA in 2020 | Edureka
RPA in 2020 | Edureka
Edureka!
 
Email Notifications in Jenkins | Edureka
Email Notifications in Jenkins | EdurekaEmail Notifications in Jenkins | Edureka
Email Notifications in Jenkins | Edureka
Edureka!
 
EA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | EdurekaEA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | Edureka
Edureka!
 
Cognitive AI Tutorial | Edureka
Cognitive AI Tutorial | EdurekaCognitive AI Tutorial | Edureka
Cognitive AI Tutorial | Edureka
Edureka!
 
AWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | EdurekaAWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | Edureka
Edureka!
 
Blue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | EdurekaBlue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | Edureka
Edureka!
 
Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka
Edureka!
 
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | EdurekaA star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
Edureka!
 
Kubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | EdurekaKubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | Edureka
Edureka!
 
Introduction to DevOps | Edureka
Introduction to DevOps | EdurekaIntroduction to DevOps | Edureka
Introduction to DevOps | Edureka
Edureka!
 

Recently uploaded (20)

Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Vasileios Komianos
 
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Alan Dix
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Dark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanizationDark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanization
Jakub Šimek
 
React Native for Business Solutions: Building Scalable Apps for Success
React Native for Business Solutions: Building Scalable Apps for SuccessReact Native for Business Solutions: Building Scalable Apps for Success
React Native for Business Solutions: Building Scalable Apps for Success
Amelia Swank
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Cybersecurity Tools and Technologies - Microsoft Certificate
Cybersecurity Tools and Technologies - Microsoft CertificateCybersecurity Tools and Technologies - Microsoft Certificate
Cybersecurity Tools and Technologies - Microsoft Certificate
VICTOR MAESTRE RAMIREZ
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025
Damco Salesforce Services
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
Agentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community MeetupAgentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community Meetup
Manoj Batra (1600 + Connections)
 
Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?
Eric Torreborre
 
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
ICT Frame Magazine Pvt. Ltd.
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Vasileios Komianos
 
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Alan Dix
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Dark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanizationDark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanization
Jakub Šimek
 
React Native for Business Solutions: Building Scalable Apps for Success
React Native for Business Solutions: Building Scalable Apps for SuccessReact Native for Business Solutions: Building Scalable Apps for Success
React Native for Business Solutions: Building Scalable Apps for Success
Amelia Swank
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Cybersecurity Tools and Technologies - Microsoft Certificate
Cybersecurity Tools and Technologies - Microsoft CertificateCybersecurity Tools and Technologies - Microsoft Certificate
Cybersecurity Tools and Technologies - Microsoft Certificate
VICTOR MAESTRE RAMIREZ
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025
Damco Salesforce Services
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?
Eric Torreborre
 
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
ICT Frame Magazine Pvt. Ltd.
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 

Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tutorial | Edureka

  • 1. Agenda ▪ Difference Between Machine Learning and Deep Learning ▪ What is Deep Learning? ▪ What is TensorFlow? ▪ TensorFlow Data Structures ▪ TensorFlow Use-Case
  • 2. Agenda ▪ Difference Between Machine Learning and Deep Learning ▪ What is Deep Learning? ▪ What is TensorFlow? ▪ TensorFlow Data Structures ▪ TensorFlow Use-Case
  • 3. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Machine Learning vs Deep Learning Let’s see what are the differences between Machine Learning and Deep Learning
  • 4. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Machine Learning vs Deep Learning Machine Learning Deep Learning High performance on less data Low performance on less data Deep Learning Performance Machine Learning Performance
  • 5. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Machine Learning vs Deep Learning Machine Learning Deep Learning Can work on low end machines Requires high end machines
  • 6. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Machine Learning vs Deep Learning Machine Learning Deep Learning Features need to be hand-coded as per the domain and data type Tries to learn high-level features from data
  • 7. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What is Deep Learning? Now is the time to understand what exactly is Deep Learning?
  • 8. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What is Deep Learning? Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer A collection of statistical machine learning techniques used to learn feature hierarchies often based on artificial neural networks
  • 9. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What are Tensors? Let’s see what are Tensors?
  • 10. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What Are Tensors?  Tensors are the standard way of representing data in TensorFlow (deep learning).  Tensors are multidimensional arrays, an extension of two-dimensional tables (matrices) to data with higher dimension. Tensor of dimension[1] Tensor of dimensions[2] Tensor of dimensions[3]
  • 11. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensors Rank Rank Math Entity Python Example 0 Scalar (magnitude only) s = 483 1 Vector (magnitude and direction) v = [1.1, 2.2, 3.3] 2 Matrix (table of numbers) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 3 3-Tensor (cube of numbers) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18 ]]] n n-Tensor (you get the idea) ....
  • 12. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensor Data Types In addition to dimensionality Tensors have different data types as well, you can assign any one of these data types to a Tensor
  • 13. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What Is TensorFlow? Now, is the time explore TensorFlow.
  • 14. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What Is TensorFlow?  TensorFlow is a Python library used to implement deep networks.  In TensorFlow, computation is approached as a dataflow graph. 3.2 -1.4 5.1 … -1.0 -2 2.4 … … … … … … … … … Tensor Flow Matmul W X Add Relu B Computational Graph Functions Tensors
  • 15. Copyright © 2017, edureka and/or its affiliates. All rights reserved. TensorFlow Code-Basics Let’s understand the fundamentals of TensorFlow
  • 16. Copyright © 2017, edureka and/or its affiliates. All rights reserved. TensorFlow Code-Basics TensorFlow core programs consists of two discrete sections: Building a computational graph Running a computational graph A computational graph is a series of TensorFlow operations arranged into a graph of nodes
  • 17. Copyright © 2017, edureka and/or its affiliates. All rights reserved. TensorFlow Building And Running A Graph Building a computational graph Running a computational graph import tensorflow as tf node1 = tf.constant(3.0, tf.float32) node2 = tf.constant(4.0) print(node1, node2) Constant nodes sess = tf.Session() print(sess.run([node1, node2])) To actually evaluate the nodes, we must run the computational graph within a session. As the session encapsulates the control and state of the TensorFlow runtime.
  • 18. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a 5.0 Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Computational Graph
  • 19. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a b 5.0 6.0 Const Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Computational Graph
  • 20. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a b c 5.0 6.0 Const Mul Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Computational Graph
  • 21. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a b c 5.0 6.0 Const Mul 30.0 Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Running The Computational Graph
  • 22. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Graph Visualization
  • 23. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Graph Visualization  For visualizing TensorFlow graphs, we use TensorBoard.  The first argument when creating the FileWriter is an output directory name, which will be created if it doesn't exist. File_writer = tf.summary.FileWriter('log_simple_graph', sess.graph) TensorBoard runs as a local web app, on port 6006. (this is default port, “6006” is “ ” upside-down.)oo tensorboard --logdir = “path_to_the_graph” Execute this command in the cmd
  • 24. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Constants, Placeholders and Variables Let’s understand what are constants, placeholders and variables
  • 25. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Constant One type of a node is a constant. It takes no inputs, and it outputs a value it stores internally. import tensorflow as tf node1 = tf.constant(3.0, tf.float32) node2 = tf.constant(4.0) print(node1, node2) Constant nodes Constant Placeholder Variable
  • 26. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Constant One type of a node is a constant. It takes no inputs, and it outputs a value it stores internally. import tensorflow as tf node1 = tf.constant(3.0, tf.float32) node2 = tf.constant(4.0) print(node1, node2) Constant nodes Constant Placeholder Variable What if I want the graph to accept external inputs?
  • 27. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Placeholder Constant Placeholder Variable A graph can be parameterized to accept external inputs, known as placeholders. A placeholder is a promise to provide a value later.
  • 28. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Placeholder Constant Placeholder Variable A graph can be parameterized to accept external inputs, known as placeholders. A placeholder is a promise to provide a value later. How to modify the graph, if I want new output for the same input ?
  • 29. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Variable Constant Placeholder Variable To make the model trainable, we need to be able to modify the graph to get new outputs with the same input. Variables allow us to add trainable parameters to a graph
  • 30. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Let Us Now Create A Model
  • 31. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Simple Linear Model import tensorflow as tf W = tf.Variable([.3], tf.float32) b = tf.Variable([-.3], tf.float32) x = tf.placeholder(tf.float32) linear_model = W * x + b init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) print(sess.run(linear_model, {x:[1,2,3,4]})) We've created a model, but we don't know how good it is yet
  • 32. Copyright © 2017, edureka and/or its affiliates. All rights reserved. How To Increase The Efficiency Of The Model? Calculate the loss Model Update the Variables Repeat the process until the loss becomes very small A loss function measures how far apart the current model is from the provided data.
  • 33. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Calculating The Loss In order to understand how good the Model is, we should know the loss/error. To evaluate the model on training data, we need a y i.e. a placeholder to provide the desired values, and we need to write a loss function. We'll use a standard loss model for linear regression. (linear_model – y ) creates a vector where each element is the corresponding example's error delta. tf.square is used to square that error. tf.reduce_sum is used to sum all the squared error. y = tf.placeholder(tf.float32) squared_deltas = tf.square(linear_model - y) loss = tf.reduce_sum(squared_deltas) print(sess.run(loss, {x:[1,2,3,4], y:[0,-1,-2,-3]}))
  • 34. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss Optimizer modifies each variable according to the magnitude of the derivative of loss with respect to that variable. Here we will use Gradient Descent Optimizer How Gradient Descent Actually Works? Let’s understand this with an analogy
  • 35. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss • Suppose you are at the top of a mountain, and you have to reach a lake which is at the lowest point of the mountain (a.k.a valley). • A twist is that you are blindfolded and you have zero visibility to see where you are headed. So, what approach will you take to reach the lake?
  • 36. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss • The best way is to check the ground near you and observe where the land tends to descend. • This will give an idea in what direction you should take your first step. If you follow the descending path, it is very likely you would reach the lake. Consider the length of the step as learning rate Consider the position of the hiker as weight Consider the process of climbing down the mountain as cost function/loss function
  • 37. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss Global Cost/Loss Minimum Jmin(w) J(w) Let us understand the math behind Gradient Descent
  • 38. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as:
  • 39. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as: The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient
  • 40. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as: The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient The weights are then updated after each epoch via the following update rule:
  • 41. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as: The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient The weights are then updated after each epoch via the following update rule: Here, Δw is a vector that contains the weight updates of each weight coefficient w, which are computed as follows:
  • 42. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss Suppose, we want to find the best parameters (W) for our learning algorithm. We can apply the same analogy and find the best possible values for that parameter. Consider the example below: optimizer = tf.train.GradientDescentOptimizer(0.01) train = optimizer.minimize(loss) sess.run(init) for i in range(1000): sess.run(train, {x:[1,2,3,4], y:[0,-1,-2,-3]}) print(sess.run([W, b]))
  • 43. Copyright © 2017, edureka and/or its affiliates. All rights reserved. TensorFlow Use-Case
  • 44. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Long Short Term Memory Networks Use-Case We will feed a LSTM with correct sequences from the text of 3 symbols as inputs and 1 labeled symbol, eventually the neural network will learn to predict the next symbol correctly had a general LSTM cell Council Prediction label vs inputs LSTM cell with three inputs and 1 output.
  • 45. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Long Short Term Memory Networks Use-Case long ago , the mice had a general council to consider what measures they could take to outwit their common enemy , the cat . some said this , and some said that but at last a young mouse got up and said he had a proposal to make , which he thought would meet the case . you will all agree , said he , that our chief danger consists in the sly and treacherous manner in which the enemy approaches us . now , if we could receive some signal of her approach , we could easily escape from her . i venture , therefore , to propose that a small bell be procured , and attached by a ribbon round the neck of the cat . by this means we should always know when she was about , and could easily retire while she was in the neighborhood . this proposal met with general applause , until an old mouse got up and said that is all very well , but who is to bell the cat ? the mice looked at one another and nobody spoke . then the old mouse said it is easy to propose impossible remedies . How to train the network? A short story from Aesop’s Fables with 112 unique symbols
  • 46. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Long Short Term Memory Networks Use-Case A unique integer value is assigned to each symbol because LSTM inputs can only understand real numbers. 20 6 33 LSTM cell LSTM cell with three inputs and 1 output. had a general .01 .02 .6 .00 37 37 vs Council Council 112-element vector
  • 47. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Session In A Minute Machine Learning vs Deep Learning What is Deep Learning? What is TensorFlow? TensorFlow Code-Basics Simple Linear Model TensorFlow Use-Case
  • 48. Copyright © 2017, edureka and/or its affiliates. All rights reserved.
  翻译: