SlideShare a Scribd company logo
Introduction to SQL
Ram Kedem
Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent
Objectives
• Defining SQL
• Why do we need to use it ?
• Pronouncing SQL: S-Q-L or Sequel?
• Standard SQL and language adjustments
• Types of SQL Statements
• Basic column data types in MSSQL
Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent
Defining SQL
• Structured Query Language
• Allows users to communicate with Relational Databases and
retrieve data from their tables.
SQL
RDBMS
Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent
Pronouncing : S-Q-L or Sequel?
• SQL was developed at IBM and it was initially called
“Structured English Query Language” (SEQUEL) and
pronounced “sequel”
• Later it was shortened to SQL - “Structured Query Language”
• Both pronunciations are correct
Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent
Standard SQL and
Language Extensions
• The RDBMS model was implemented by many vendors –
• Microsoft (SQL Server), Oracle, IBM (DB2), MySQL, Postgres, etc.
• SQL is the language each of those vendors use in order to
access and manipulate their databases
• In most cases all vendors use the same SQL command in order
to achieve the same goal. In some cases vendors will use
specific SQL extention that will only work under their
platform.
Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent
Standard SQL and
Language Extensions
• Same statement to retrieve data of one column
• SELECT lastName FROM employees
• Different statement to concatencate strings
• SELECT 'hello' + 'world' (SQL Server)
• SELECT 'hello' || 'world' (Oracle)
Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent
Types of SQL Statements
• Data Manipulation Language (DML) statements are used for
managing data within schema objects. For example :
• SELECT - retrieve data from the a database
• INSERT - insert data into a table
• UPDATE - updates existing data within a table
• DELETE – delete existing rows
• Data Definition Language (DDL) statements are used to define the
database structure or schema. For example :
• CREATE - to create objects in the database
• DROP - delete objects from the database
• Data Control Language (DCL) statements. For example :
• GRANT - gives user's access privileges to database
• REVOKE - withdraw access privileges given with the GRANT
command
Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent
Basic column data types
• Numeric columns
• INT - Integer (whole number) data value
• Money - Numeric data types with fixed precision and scale
Product id
(int)
Product price
(numeric)
Product name
(varchar(25))
Experation
(date)
1 53.3 Product1 2014/03/22
2 23.1 Product2 2014/02/21
3 32.3 Product3 2014/03/02
Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent
Basic column data types
• Numeric columns
• INT - Integer (whole number) data value
• Money - Monetary or currency values String columns
• VARCHAR(N) – String data
• Date columns
• DATE – date data
Product id
(int)
Product price
(money)
Product name
(varchar(25))
Experation
(date)
1 53.3 Product1 2014/03/22
2 23.1 Product2 2014/02/21
3 32.3 Product3 2014/03/02
Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent
Essential Points
• SQL is the language we use in order to communicate with the
RDBMS
• Although in most cases vendors use the same SQL command,
in some cases the SQL command might be different
• There are different categories to the SQL language, and each is
responsible on different aspect
• There are many different available data types is MSSQL Server,
most basic columns are Int, Money, Varchar and Date.
Ad

More Related Content

What's hot (20)

Introduction to Databases
Introduction to DatabasesIntroduction to Databases
Introduction to Databases
Ram Kedem
 
Ms sql-server
Ms sql-serverMs sql-server
Ms sql-server
Md.Mojibul Hoque
 
Introduction to sql
Introduction to sqlIntroduction to sql
Introduction to sql
VARSHAKUMARI49
 
Chapter 1 introduction to sql server
Chapter 1 introduction to sql serverChapter 1 introduction to sql server
Chapter 1 introduction to sql server
baabtra.com - No. 1 supplier of quality freshers
 
SQL Functions
SQL FunctionsSQL Functions
SQL Functions
ammarbrohi
 
Chapter 4 Structured Query Language
Chapter 4 Structured Query LanguageChapter 4 Structured Query Language
Chapter 4 Structured Query Language
Eddyzulham Mahluzydde
 
Sql Server Basics
Sql Server BasicsSql Server Basics
Sql Server Basics
rainynovember12
 
SQL Queries
SQL QueriesSQL Queries
SQL Queries
Nilt1234
 
Introduction to-sql
Introduction to-sqlIntroduction to-sql
Introduction to-sql
BG Java EE Course
 
Sql server T-sql basics ppt-3
Sql server T-sql basics  ppt-3Sql server T-sql basics  ppt-3
Sql server T-sql basics ppt-3
Vibrant Technologies & Computers
 
Database Concepts and Components
Database Concepts and ComponentsDatabase Concepts and Components
Database Concepts and Components
RIAH ENCARNACION
 
Sql Basics And Advanced
Sql Basics And AdvancedSql Basics And Advanced
Sql Basics And Advanced
rainynovember12
 
2 database system concepts and architecture
2 database system concepts and architecture2 database system concepts and architecture
2 database system concepts and architecture
Kumar
 
Database
DatabaseDatabase
Database
Bhandari Nawaraj
 
Introduction to database & sql
Introduction to database & sqlIntroduction to database & sql
Introduction to database & sql
zahid6
 
SQL Commands
SQL Commands SQL Commands
SQL Commands
Sachidananda M H
 
Sql commands
Sql commandsSql commands
Sql commands
Pooja Dixit
 
Sql tutorial
Sql tutorialSql tutorial
Sql tutorial
Rumman Ansari
 
SQL Queries Information
SQL Queries InformationSQL Queries Information
SQL Queries Information
Nishant Munjal
 
SQL
SQLSQL
SQL
Vineeta Garg
 

Similar to Introduction to SQL (20)

Data Warehouse Design Considerations
Data Warehouse Design ConsiderationsData Warehouse Design Considerations
Data Warehouse Design Considerations
Ram Kedem
 
Using Basic Structured Query Language lo1.pptx
Using Basic Structured Query Language lo1.pptxUsing Basic Structured Query Language lo1.pptx
Using Basic Structured Query Language lo1.pptx
TsedaleBayabil
 
2 designing tables
2 designing tables2 designing tables
2 designing tables
Ram Kedem
 
3 sql overview
3 sql overview3 sql overview
3 sql overview
Randy Riness @ South Puget Sound Community College
 
U-SQL - Azure Data Lake Analytics for Developers
U-SQL - Azure Data Lake Analytics for DevelopersU-SQL - Azure Data Lake Analytics for Developers
U-SQL - Azure Data Lake Analytics for Developers
Michael Rys
 
SQL-Server Database.pdf
SQL-Server Database.pdfSQL-Server Database.pdf
SQL-Server Database.pdf
ShehryarSH1
 
SQL Server Workshop for Developers - Visual Studio Live! NY 2012
SQL Server Workshop for Developers - Visual Studio Live! NY 2012SQL Server Workshop for Developers - Visual Studio Live! NY 2012
SQL Server Workshop for Developers - Visual Studio Live! NY 2012
Andrew Brust
 
SQl-1.pptx
SQl-1.pptxSQl-1.pptx
SQl-1.pptx
kingVox
 
Querying_with_T-SQL_-_01.pptx
Querying_with_T-SQL_-_01.pptxQuerying_with_T-SQL_-_01.pptx
Querying_with_T-SQL_-_01.pptx
QuyVo27
 
SQL - RDBMS Concepts
SQL - RDBMS ConceptsSQL - RDBMS Concepts
SQL - RDBMS Concepts
WebStackAcademy
 
SQL Server 2008 For Developers
SQL Server 2008 For DevelopersSQL Server 2008 For Developers
SQL Server 2008 For Developers
John Sterrett
 
The SQL Query Language: Simple SELECT Commands
The SQL Query Language: Simple SELECT CommandsThe SQL Query Language: Simple SELECT Commands
The SQL Query Language: Simple SELECT Commands
teamspeer05
 
Database part2-
Database part2-Database part2-
Database part2-
Taymoor Nazmy
 
Jason Olson - IBM i DB2 Modernization to SQL
Jason Olson - IBM i DB2 Modernization to SQLJason Olson - IBM i DB2 Modernization to SQL
Jason Olson - IBM i DB2 Modernization to SQL
John Zozzaro
 
SQL 3.pptx
SQL 3.pptxSQL 3.pptx
SQL 3.pptx
Rishab Saini
 
Query editor for multi databases
Query editor for multi databasesQuery editor for multi databases
Query editor for multi databases
Aarthi Raghavendra
 
U-SQL Intro (SQLBits 2016)
U-SQL Intro (SQLBits 2016)U-SQL Intro (SQLBits 2016)
U-SQL Intro (SQLBits 2016)
Michael Rys
 
Chapter 2: Ms SQL Server
Chapter 2: Ms SQL ServerChapter 2: Ms SQL Server
Chapter 2: Ms SQL Server
Ngeam Soly
 
CSE311_IAH_Slide06_SQL _Retrival_Queries.pptx
CSE311_IAH_Slide06_SQL _Retrival_Queries.pptxCSE311_IAH_Slide06_SQL _Retrival_Queries.pptx
CSE311_IAH_Slide06_SQL _Retrival_Queries.pptx
noshinnawar31
 
SQL Intro
SQL IntroSQL Intro
SQL Intro
koppenolski
 
Data Warehouse Design Considerations
Data Warehouse Design ConsiderationsData Warehouse Design Considerations
Data Warehouse Design Considerations
Ram Kedem
 
Using Basic Structured Query Language lo1.pptx
Using Basic Structured Query Language lo1.pptxUsing Basic Structured Query Language lo1.pptx
Using Basic Structured Query Language lo1.pptx
TsedaleBayabil
 
2 designing tables
2 designing tables2 designing tables
2 designing tables
Ram Kedem
 
U-SQL - Azure Data Lake Analytics for Developers
U-SQL - Azure Data Lake Analytics for DevelopersU-SQL - Azure Data Lake Analytics for Developers
U-SQL - Azure Data Lake Analytics for Developers
Michael Rys
 
SQL-Server Database.pdf
SQL-Server Database.pdfSQL-Server Database.pdf
SQL-Server Database.pdf
ShehryarSH1
 
SQL Server Workshop for Developers - Visual Studio Live! NY 2012
SQL Server Workshop for Developers - Visual Studio Live! NY 2012SQL Server Workshop for Developers - Visual Studio Live! NY 2012
SQL Server Workshop for Developers - Visual Studio Live! NY 2012
Andrew Brust
 
SQl-1.pptx
SQl-1.pptxSQl-1.pptx
SQl-1.pptx
kingVox
 
Querying_with_T-SQL_-_01.pptx
Querying_with_T-SQL_-_01.pptxQuerying_with_T-SQL_-_01.pptx
Querying_with_T-SQL_-_01.pptx
QuyVo27
 
SQL Server 2008 For Developers
SQL Server 2008 For DevelopersSQL Server 2008 For Developers
SQL Server 2008 For Developers
John Sterrett
 
The SQL Query Language: Simple SELECT Commands
The SQL Query Language: Simple SELECT CommandsThe SQL Query Language: Simple SELECT Commands
The SQL Query Language: Simple SELECT Commands
teamspeer05
 
Jason Olson - IBM i DB2 Modernization to SQL
Jason Olson - IBM i DB2 Modernization to SQLJason Olson - IBM i DB2 Modernization to SQL
Jason Olson - IBM i DB2 Modernization to SQL
John Zozzaro
 
Query editor for multi databases
Query editor for multi databasesQuery editor for multi databases
Query editor for multi databases
Aarthi Raghavendra
 
U-SQL Intro (SQLBits 2016)
U-SQL Intro (SQLBits 2016)U-SQL Intro (SQLBits 2016)
U-SQL Intro (SQLBits 2016)
Michael Rys
 
Chapter 2: Ms SQL Server
Chapter 2: Ms SQL ServerChapter 2: Ms SQL Server
Chapter 2: Ms SQL Server
Ngeam Soly
 
CSE311_IAH_Slide06_SQL _Retrival_Queries.pptx
CSE311_IAH_Slide06_SQL _Retrival_Queries.pptxCSE311_IAH_Slide06_SQL _Retrival_Queries.pptx
CSE311_IAH_Slide06_SQL _Retrival_Queries.pptx
noshinnawar31
 
Ad

More from Ram Kedem (20)

Impala use case @ edge
Impala use case @ edgeImpala use case @ edge
Impala use case @ edge
Ram Kedem
 
Advanced SQL Webinar
Advanced SQL WebinarAdvanced SQL Webinar
Advanced SQL Webinar
Ram Kedem
 
Managing oracle Database Instance
Managing oracle Database InstanceManaging oracle Database Instance
Managing oracle Database Instance
Ram Kedem
 
Power Pivot and Power View
Power Pivot and Power ViewPower Pivot and Power View
Power Pivot and Power View
Ram Kedem
 
Data Mining in SSAS
Data Mining in SSASData Mining in SSAS
Data Mining in SSAS
Ram Kedem
 
Data mining In SSAS
Data mining In SSASData mining In SSAS
Data mining In SSAS
Ram Kedem
 
SQL Injections - Oracle
SQL Injections - OracleSQL Injections - Oracle
SQL Injections - Oracle
Ram Kedem
 
SSAS Attributes
SSAS AttributesSSAS Attributes
SSAS Attributes
Ram Kedem
 
SSRS Matrix
SSRS MatrixSSRS Matrix
SSRS Matrix
Ram Kedem
 
DDL Practice (Hebrew)
DDL Practice (Hebrew)DDL Practice (Hebrew)
DDL Practice (Hebrew)
Ram Kedem
 
DML Practice (Hebrew)
DML Practice (Hebrew)DML Practice (Hebrew)
DML Practice (Hebrew)
Ram Kedem
 
Exploring Oracle Database Architecture (Hebrew)
Exploring Oracle Database Architecture (Hebrew)Exploring Oracle Database Architecture (Hebrew)
Exploring Oracle Database Architecture (Hebrew)
Ram Kedem
 
Deploy SSRS Project - SQL Server 2014
Deploy SSRS Project - SQL Server 2014Deploy SSRS Project - SQL Server 2014
Deploy SSRS Project - SQL Server 2014
Ram Kedem
 
Pig - Processing XML data
Pig - Processing XML dataPig - Processing XML data
Pig - Processing XML data
Ram Kedem
 
SSAS Cubes & Hierarchies
SSAS Cubes & HierarchiesSSAS Cubes & Hierarchies
SSAS Cubes & Hierarchies
Ram Kedem
 
SSRS Basic Parameters
SSRS Basic ParametersSSRS Basic Parameters
SSRS Basic Parameters
Ram Kedem
 
SSRS Gauges
SSRS GaugesSSRS Gauges
SSRS Gauges
Ram Kedem
 
SSRS Conditional Formatting
SSRS Conditional FormattingSSRS Conditional Formatting
SSRS Conditional Formatting
Ram Kedem
 
SSRS Calculated Fields
SSRS Calculated FieldsSSRS Calculated Fields
SSRS Calculated Fields
Ram Kedem
 
SSRS Groups
SSRS GroupsSSRS Groups
SSRS Groups
Ram Kedem
 
Impala use case @ edge
Impala use case @ edgeImpala use case @ edge
Impala use case @ edge
Ram Kedem
 
Advanced SQL Webinar
Advanced SQL WebinarAdvanced SQL Webinar
Advanced SQL Webinar
Ram Kedem
 
Managing oracle Database Instance
Managing oracle Database InstanceManaging oracle Database Instance
Managing oracle Database Instance
Ram Kedem
 
Power Pivot and Power View
Power Pivot and Power ViewPower Pivot and Power View
Power Pivot and Power View
Ram Kedem
 
Data Mining in SSAS
Data Mining in SSASData Mining in SSAS
Data Mining in SSAS
Ram Kedem
 
Data mining In SSAS
Data mining In SSASData mining In SSAS
Data mining In SSAS
Ram Kedem
 
SQL Injections - Oracle
SQL Injections - OracleSQL Injections - Oracle
SQL Injections - Oracle
Ram Kedem
 
SSAS Attributes
SSAS AttributesSSAS Attributes
SSAS Attributes
Ram Kedem
 
DDL Practice (Hebrew)
DDL Practice (Hebrew)DDL Practice (Hebrew)
DDL Practice (Hebrew)
Ram Kedem
 
DML Practice (Hebrew)
DML Practice (Hebrew)DML Practice (Hebrew)
DML Practice (Hebrew)
Ram Kedem
 
Exploring Oracle Database Architecture (Hebrew)
Exploring Oracle Database Architecture (Hebrew)Exploring Oracle Database Architecture (Hebrew)
Exploring Oracle Database Architecture (Hebrew)
Ram Kedem
 
Deploy SSRS Project - SQL Server 2014
Deploy SSRS Project - SQL Server 2014Deploy SSRS Project - SQL Server 2014
Deploy SSRS Project - SQL Server 2014
Ram Kedem
 
Pig - Processing XML data
Pig - Processing XML dataPig - Processing XML data
Pig - Processing XML data
Ram Kedem
 
SSAS Cubes & Hierarchies
SSAS Cubes & HierarchiesSSAS Cubes & Hierarchies
SSAS Cubes & Hierarchies
Ram Kedem
 
SSRS Basic Parameters
SSRS Basic ParametersSSRS Basic Parameters
SSRS Basic Parameters
Ram Kedem
 
SSRS Conditional Formatting
SSRS Conditional FormattingSSRS Conditional Formatting
SSRS Conditional Formatting
Ram Kedem
 
SSRS Calculated Fields
SSRS Calculated FieldsSSRS Calculated Fields
SSRS Calculated Fields
Ram Kedem
 
Ad

Recently uploaded (20)

machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Build With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdfBuild With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdf
Google Developer Group - Harare
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 

Introduction to SQL

  • 2. Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent Objectives • Defining SQL • Why do we need to use it ? • Pronouncing SQL: S-Q-L or Sequel? • Standard SQL and language adjustments • Types of SQL Statements • Basic column data types in MSSQL
  • 3. Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent Defining SQL • Structured Query Language • Allows users to communicate with Relational Databases and retrieve data from their tables. SQL RDBMS
  • 4. Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent Pronouncing : S-Q-L or Sequel? • SQL was developed at IBM and it was initially called “Structured English Query Language” (SEQUEL) and pronounced “sequel” • Later it was shortened to SQL - “Structured Query Language” • Both pronunciations are correct
  • 5. Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent Standard SQL and Language Extensions • The RDBMS model was implemented by many vendors – • Microsoft (SQL Server), Oracle, IBM (DB2), MySQL, Postgres, etc. • SQL is the language each of those vendors use in order to access and manipulate their databases • In most cases all vendors use the same SQL command in order to achieve the same goal. In some cases vendors will use specific SQL extention that will only work under their platform.
  • 6. Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent Standard SQL and Language Extensions • Same statement to retrieve data of one column • SELECT lastName FROM employees • Different statement to concatencate strings • SELECT 'hello' + 'world' (SQL Server) • SELECT 'hello' || 'world' (Oracle)
  • 7. Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent Types of SQL Statements • Data Manipulation Language (DML) statements are used for managing data within schema objects. For example : • SELECT - retrieve data from the a database • INSERT - insert data into a table • UPDATE - updates existing data within a table • DELETE – delete existing rows • Data Definition Language (DDL) statements are used to define the database structure or schema. For example : • CREATE - to create objects in the database • DROP - delete objects from the database • Data Control Language (DCL) statements. For example : • GRANT - gives user's access privileges to database • REVOKE - withdraw access privileges given with the GRANT command
  • 8. Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent Basic column data types • Numeric columns • INT - Integer (whole number) data value • Money - Numeric data types with fixed precision and scale Product id (int) Product price (numeric) Product name (varchar(25)) Experation (date) 1 53.3 Product1 2014/03/22 2 23.1 Product2 2014/02/21 3 32.3 Product3 2014/03/02
  • 9. Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent Basic column data types • Numeric columns • INT - Integer (whole number) data value • Money - Monetary or currency values String columns • VARCHAR(N) – String data • Date columns • DATE – date data Product id (int) Product price (money) Product name (varchar(25)) Experation (date) 1 53.3 Product1 2014/03/22 2 23.1 Product2 2014/02/21 3 32.3 Product3 2014/03/02
  • 10. Copyright 2014 © Ram Kedem. All rights reserved. Not to be reproduced without written consent Essential Points • SQL is the language we use in order to communicate with the RDBMS • Although in most cases vendors use the same SQL command, in some cases the SQL command might be different • There are different categories to the SQL language, and each is responsible on different aspect • There are many different available data types is MSSQL Server, most basic columns are Int, Money, Varchar and Date.
  翻译: