This document provides an introduction to data mining. It defines data mining as extracting useful information from large datasets. Key domains that benefit include market analysis, risk management, and fraud detection. Common data mining techniques are discussed such as association, classification, clustering, prediction, and decision trees. Both open source tools like RapidMiner, WEKA, and R, as well commercial tools like SQL Server, IBM Cognos, and Dundas BI are introduced for performing data mining.