SlideShare a Scribd company logo
Introducing
Reactive Machine Learning
Jeff Smith
@jeffksmithjr
x.ai is a personal assistant
who schedules meetings for you
You
nom nom, the data dog
Scala & Python
Spark & Akka
Couchbase
Machine Learning
Reactive + Machine Learning
Machine Learning Systems
Traits of Reactive Systems
Responsive
Resilient
Elastic
Message-Driven
Reactive Strategies
Reactive Machine Learning
Reactive Machine Learning
Collecting Data
Machine Learning Systems
Introducing Reactive Machine Learning
Introducing Reactive Machine Learning
Uncertainty Interval
27 33
Immutable Facts
case class PreyReading(sensorId: Int,
locationId: Int,
timestamp: Long,
animalsLowerBound: Double,
animalsUpperBound: Double,
percentZebras: Double)
implicit val preyReadingFormatter = Json.format[PreyReading]
Distributed Data Storage
Partition Tolerance
Distributed Data Storage
Immutable Facts
val reading = PreyReading(36,
12,
currentTimeMillis(),
12.0,
18.0,
0.60)
val setDoc = bucket.set[PreyReading](readingId(reading), reading)
Scaling with Distributed Databases
Almost Immutable Data Model
{
"sensor_id": 123,
"readings": [
{
"sensor_id": 456,
"timestamp": 1457403598289,
"lower_bound": 12.0,
"upper_bound": 18.0,
"percent_zebras": 0.60
}
]
}
Hot Key
Truly Immutable Data Model
{
"sensor_id_reading_id": 123456,
"timestamp": 1457403598289,
"lower_bound": 12.0,
"upper_bound": 18.0,
"percent_zebras": 0.60
}
Generating Features
Machine Learning Systems
Feature Generation
Raw Data FeaturesFeature Generation Pipeline
Microblogging Data
Pipeline Failure
Raw Data FeaturesFeature Generation Pipeline
Raw Data FeaturesFeature Generation Pipeline
Supervising Feature Generation
Raw Data FeaturesFeature Generation Pipeline
Supervision
Original Features
object SquawkLength extends FeatureType[Int]
object Super extends LabelType[Boolean]
val originalFeatures: Set[FeatureType] = Set(SquawkLength)
val label = Super
Basic Features
object PastSquawks extends FeatureType[Int]
val basicFeatures = originalFeatures + PastSquawks
More Features
object MobileSquawker extends FeatureType[Boolean]
val moreFeatures = basicFeatures + MobileSquawker
Feature Collections
case class FeatureCollection(id: Int,
createdAt: DateTime,
features: Set[_ <: FeatureType[_]],
label: LabelType[_])
Feature Collections
val earlierCollection = FeatureCollection(101,
earlier,
basicFeatures,
label)
val latestCollection = FeatureCollection(202,
now,
moreFeatures,
label)
val featureCollections = sc.parallelize(
Seq(earlierCollection, latestCollection))
Fallback Collections
val FallbackCollection = FeatureCollection(404,
beginningOfTime,
originalFeatures,
label)
Fallback Collections
def validCollection(collections: RDD[FeatureCollection],
invalidFeatures: Set[FeatureType[_]]) = {
val validCollections = collections.filter(
fc => !fc.features
.exists(invalidFeatures.contains))
.sortBy(collection => collection.id)
if (validCollections.count() > 0) {
validCollections.first()
} else
FallbackCollection
}
Learning Models
Machine Learning Systems
Learning Models
Features ModelModel Learning Pipeline
Models of Love
Traits of Spark
Reactive Strategies in Spark
Data Preparation
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
.fit(instances)
val featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.fit(instances)
val Array(trainingData, testingData) = instances.randomSplit(
Array(0.8, 0.2))
Learning a Model
val decisionTree = new DecisionTreeClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures")
val labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("predictedLabel")
.setLabels(labelIndexer.labels)
val pipeline = new Pipeline()
.setStages(Array(labelIndexer, featureIndexer, decisionTree,
labelConverter))
Evolving Modeling Strategies
val randomForest = new RandomForestClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures")
val revisedPipeline = new Pipeline()
.setStages(Array(labelIndexer, featureIndexer, randomForest,
labelConverter))
Deep Models of Artistic Style
Refactoring Command Line Tools
> python neural-art-tf.py -m vgg -mp ./vgg -c ./images/
bear.jpg -s ./images/style.jpg -w 800
def produce_art(content_image_path, style_image_path,
model_path, model_type, width, alpha, beta, num_iters):
Exposing a Service
class NeuralServer(object):
def generate(self, content_image_path, style_image_path,
model_path, model_type, width, alpha, beta, num_iters):
produce_art(content_image_path, style_image_path,
model_path, model_type, width, alpha, beta, num_iters)
return True
daemon = Pyro4.Daemon()
ns = Pyro4.locateNS()
uri = daemon.register(NeuralServer)
ns.register("neuralserver", uri)
daemon.requestLoop()
Encoding Model Types
object ModelType extends Enumeration {
type ModelType = Value
val VGG = Value("VGG")
val I2V = Value("I2V")
}
Encoding Valid Configuration
case class JobConfiguration(contentPath: String,
stylePath: String,
modelPath: String,
modelType: ModelType,
width: Integer = 800,
alpha: java.lang.Double = 1.0,
beta: java.lang.Double = 200.0,
iterations: Integer = 5000)
Finding the Service
val ns = NameServerProxy.locateNS(null)
val remoteServer = new PyroProxy(ns.lookup("neuralserver"))
Calling the Service
def callServer(remoteServer: PyroProxy, jobConfiguration:
JobConfiguration) = {
Future.firstCompletedOf(
List(
timedOut,
Future {
remoteServer.call("generate",
jobConfiguration.contentPath,
jobConfiguration.stylePath,
jobConfiguration.modelPath,
jobConfiguration.modelType.toString,
jobConfiguration.width,
jobConfiguration.alpha,
jobConfiguration.beta,
jobConfiguration.iterations).asInstanceOf[Boolean]
}))}
Profiles with Style
Hybrid Model learning
Features ModelModel Learning Pipeline
Publishing Models
Machine Learning Systems
Publishing Models
Model
Predictive
Service
Publishing Process
Building Lineages
val rawData: RawData
val featureSet: Set[FeatureType]
val model: ClassificationModel
val modelMetrics: BinaryClassificationMetrics
Predicting
Machine Learning Systems
Predicting
Client
Predictive
Service
Request> <Prediction
Models as Services
def predict(model: Features => Prediction)
(features: Features):
Future[Either[String, Prediction]] = { ??? }
Models as Services
val routes = {
pathPrefix("model") {
(post & entity(as[PredictionRequest])) { context =>
complete {
predict(model: Features => Prediction)
(extractFeatures(context))
.map[ToResponseMarshallable] {
case Right(prediction) => PredictionSummary(prediction)
case Left(errorMessage) => BadRequest -> errorMessage
}
}
}
}
}
Clojure Functions
Clojure Predictive Service
Predicting
Client
Predictive
Service
Request
Summary
Machine Learning Systems
Traits of Reactive Systems
Reactive Strategies
Reactive Machine Learning
For Later
manning.com
reactivemachinelearning.com
medium.com/data-engineering
M A N N I N G
Jeff SmithUse the code reactnymu
for 39% off!
x.ai
@xdotai
hello@human.x.ai
New York, New York
We’re hiring!
Thank You!
Code: reactnymu
Jeff Smith
@jeffksmithjr
reactivemachinelearning.com
M A N N I N G
Jeff Smith
Ad

More Related Content

What's hot (20)

Laporan Resmi Algoritma dan Struktur Data :
Laporan Resmi Algoritma dan Struktur Data : Laporan Resmi Algoritma dan Struktur Data :
Laporan Resmi Algoritma dan Struktur Data :
Siska Amelia
 
Scala Collections : Java 8 on Steroids
Scala Collections : Java 8 on SteroidsScala Collections : Java 8 on Steroids
Scala Collections : Java 8 on Steroids
François Garillot
 
Model-based GUI testing using UPPAAL
Model-based GUI testing using UPPAALModel-based GUI testing using UPPAAL
Model-based GUI testing using UPPAAL
Ulrik Hørlyk Hjort
 
Pragmatic Real-World Scala (short version)
Pragmatic Real-World Scala (short version)Pragmatic Real-World Scala (short version)
Pragmatic Real-World Scala (short version)
Jonas Bonér
 
جلسه هفتم پایتون برای هکر های قانونی دوره مقدماتی پاییز ۹۲
جلسه هفتم پایتون برای هکر های قانونی دوره مقدماتی پاییز ۹۲جلسه هفتم پایتون برای هکر های قانونی دوره مقدماتی پاییز ۹۲
جلسه هفتم پایتون برای هکر های قانونی دوره مقدماتی پاییز ۹۲
Mohammad Reza Kamalifard
 
scalaliftoff2009.pdf
scalaliftoff2009.pdfscalaliftoff2009.pdf
scalaliftoff2009.pdf
Hiroshi Ono
 
Java Collection framework
Java Collection frameworkJava Collection framework
Java Collection framework
ankitgarg_er
 
Underscore.js
Underscore.jsUnderscore.js
Underscore.js
timourian
 
Pune Clojure Course Outline
Pune Clojure Course OutlinePune Clojure Course Outline
Pune Clojure Course Outline
Baishampayan Ghose
 
Meet scala
Meet scalaMeet scala
Meet scala
Wojciech Pituła
 
Scala collections api expressivity and brevity upgrade from java
Scala collections api  expressivity and brevity upgrade from javaScala collections api  expressivity and brevity upgrade from java
Scala collections api expressivity and brevity upgrade from java
IndicThreads
 
Scala for curious
Scala for curiousScala for curious
Scala for curious
Tim (dev-tim) Zadorozhniy
 
Scala parallel-collections
Scala parallel-collectionsScala parallel-collections
Scala parallel-collections
Knoldus Inc.
 
Indexing and Query Optimizer (Richard Kreuter)
Indexing and Query Optimizer (Richard Kreuter)Indexing and Query Optimizer (Richard Kreuter)
Indexing and Query Optimizer (Richard Kreuter)
MongoDB
 
Scala collections
Scala collectionsScala collections
Scala collections
Inphina Technologies
 
Python for R Users
Python for R UsersPython for R Users
Python for R Users
Ajay Ohri
 
An introduction to scala
An introduction to scalaAn introduction to scala
An introduction to scala
Mohsen Zainalpour
 
PostgreSQL Modules Tutorial - chkpass, hstore, fuzzystrmach, isn
PostgreSQL Modules Tutorial - chkpass, hstore, fuzzystrmach, isn PostgreSQL Modules Tutorial - chkpass, hstore, fuzzystrmach, isn
PostgreSQL Modules Tutorial - chkpass, hstore, fuzzystrmach, isn
Sagar Arlekar
 
Java collections concept
Java collections conceptJava collections concept
Java collections concept
kumar gaurav
 
Hadoop + Clojure
Hadoop + ClojureHadoop + Clojure
Hadoop + Clojure
elliando dias
 
Laporan Resmi Algoritma dan Struktur Data :
Laporan Resmi Algoritma dan Struktur Data : Laporan Resmi Algoritma dan Struktur Data :
Laporan Resmi Algoritma dan Struktur Data :
Siska Amelia
 
Scala Collections : Java 8 on Steroids
Scala Collections : Java 8 on SteroidsScala Collections : Java 8 on Steroids
Scala Collections : Java 8 on Steroids
François Garillot
 
Model-based GUI testing using UPPAAL
Model-based GUI testing using UPPAALModel-based GUI testing using UPPAAL
Model-based GUI testing using UPPAAL
Ulrik Hørlyk Hjort
 
Pragmatic Real-World Scala (short version)
Pragmatic Real-World Scala (short version)Pragmatic Real-World Scala (short version)
Pragmatic Real-World Scala (short version)
Jonas Bonér
 
جلسه هفتم پایتون برای هکر های قانونی دوره مقدماتی پاییز ۹۲
جلسه هفتم پایتون برای هکر های قانونی دوره مقدماتی پاییز ۹۲جلسه هفتم پایتون برای هکر های قانونی دوره مقدماتی پاییز ۹۲
جلسه هفتم پایتون برای هکر های قانونی دوره مقدماتی پاییز ۹۲
Mohammad Reza Kamalifard
 
scalaliftoff2009.pdf
scalaliftoff2009.pdfscalaliftoff2009.pdf
scalaliftoff2009.pdf
Hiroshi Ono
 
Java Collection framework
Java Collection frameworkJava Collection framework
Java Collection framework
ankitgarg_er
 
Underscore.js
Underscore.jsUnderscore.js
Underscore.js
timourian
 
Scala collections api expressivity and brevity upgrade from java
Scala collections api  expressivity and brevity upgrade from javaScala collections api  expressivity and brevity upgrade from java
Scala collections api expressivity and brevity upgrade from java
IndicThreads
 
Scala parallel-collections
Scala parallel-collectionsScala parallel-collections
Scala parallel-collections
Knoldus Inc.
 
Indexing and Query Optimizer (Richard Kreuter)
Indexing and Query Optimizer (Richard Kreuter)Indexing and Query Optimizer (Richard Kreuter)
Indexing and Query Optimizer (Richard Kreuter)
MongoDB
 
Python for R Users
Python for R UsersPython for R Users
Python for R Users
Ajay Ohri
 
PostgreSQL Modules Tutorial - chkpass, hstore, fuzzystrmach, isn
PostgreSQL Modules Tutorial - chkpass, hstore, fuzzystrmach, isn PostgreSQL Modules Tutorial - chkpass, hstore, fuzzystrmach, isn
PostgreSQL Modules Tutorial - chkpass, hstore, fuzzystrmach, isn
Sagar Arlekar
 
Java collections concept
Java collections conceptJava collections concept
Java collections concept
kumar gaurav
 

Viewers also liked (20)

Reactive Machine Learning On and Beyond the JVM
Reactive Machine Learning On and Beyond the JVMReactive Machine Learning On and Beyond the JVM
Reactive Machine Learning On and Beyond the JVM
Jeff Smith
 
Reactive Learning Agents
Reactive Learning AgentsReactive Learning Agents
Reactive Learning Agents
Jeff Smith
 
Reactive Machine Learning and Functional Programming
Reactive Machine Learning and Functional ProgrammingReactive Machine Learning and Functional Programming
Reactive Machine Learning and Functional Programming
Jeff Smith
 
Bringing Data Scientists and Engineers Together
Bringing Data Scientists and Engineers TogetherBringing Data Scientists and Engineers Together
Bringing Data Scientists and Engineers Together
Jeff Smith
 
NoSQL isn't NO SQL
NoSQL isn't NO SQLNoSQL isn't NO SQL
NoSQL isn't NO SQL
Matthew McCullough
 
NoSQL in Perspective
NoSQL in PerspectiveNoSQL in Perspective
NoSQL in Perspective
Jeff Smith
 
Functional Programming and Concurrency Patterns in Scala
Functional Programming and Concurrency Patterns in ScalaFunctional Programming and Concurrency Patterns in Scala
Functional Programming and Concurrency Patterns in Scala
kellogh
 
Effective Scala: Programming Patterns
Effective Scala: Programming PatternsEffective Scala: Programming Patterns
Effective Scala: Programming Patterns
Vasil Remeniuk
 
Community engagement through social networking
Community engagement through social networkingCommunity engagement through social networking
Community engagement through social networking
Dave Briggs
 
Outreach 2.0: the Digital Revolution of Public Relations
Outreach 2.0: the Digital Revolution of Public RelationsOutreach 2.0: the Digital Revolution of Public Relations
Outreach 2.0: the Digital Revolution of Public Relations
David King
 
Brandstorm 2014 - Gr8 Uppsala University
Brandstorm 2014 - Gr8 Uppsala UniversityBrandstorm 2014 - Gr8 Uppsala University
Brandstorm 2014 - Gr8 Uppsala University
Erik Abelsson
 
Top mobile internet trends feb11
Top mobile internet trends feb11Top mobile internet trends feb11
Top mobile internet trends feb11
Hope Hong
 
6 questions-social-media-strategymarkschaefer-140427123305-phpapp02
6 questions-social-media-strategymarkschaefer-140427123305-phpapp026 questions-social-media-strategymarkschaefer-140427123305-phpapp02
6 questions-social-media-strategymarkschaefer-140427123305-phpapp02
Vera Kovaleva
 
Notions de fond structure de la terre
Notions de fond structure de la terreNotions de fond structure de la terre
Notions de fond structure de la terre
Mining Matters
 
¿POR QUÉ TANGO?
¿POR QUÉ TANGO?¿POR QUÉ TANGO?
¿POR QUÉ TANGO?
Orlando Nieto
 
Cómo preparar alumnos para el siglo x xl con pocos recursos @globaledcon 2016...
Cómo preparar alumnos para el siglo x xl con pocos recursos @globaledcon 2016...Cómo preparar alumnos para el siglo x xl con pocos recursos @globaledcon 2016...
Cómo preparar alumnos para el siglo x xl con pocos recursos @globaledcon 2016...
Fabiana Casella
 
The Emerging Workforce Data Ecosystem: New Strategies, Partners & Tools Helpi...
The Emerging Workforce Data Ecosystem: New Strategies, Partners & Tools Helpi...The Emerging Workforce Data Ecosystem: New Strategies, Partners & Tools Helpi...
The Emerging Workforce Data Ecosystem: New Strategies, Partners & Tools Helpi...
Kristin Wolff
 
Realidad Aumentada fotorrealista al alcance de todos
Realidad Aumentada fotorrealista al alcance de todosRealidad Aumentada fotorrealista al alcance de todos
Realidad Aumentada fotorrealista al alcance de todos
Raúl Reinoso
 
Pilonidaldisease 141115134308-conversion-gate01
Pilonidaldisease 141115134308-conversion-gate01Pilonidaldisease 141115134308-conversion-gate01
Pilonidaldisease 141115134308-conversion-gate01
Haliunaa Battulga
 
Reactive Machine Learning On and Beyond the JVM
Reactive Machine Learning On and Beyond the JVMReactive Machine Learning On and Beyond the JVM
Reactive Machine Learning On and Beyond the JVM
Jeff Smith
 
Reactive Learning Agents
Reactive Learning AgentsReactive Learning Agents
Reactive Learning Agents
Jeff Smith
 
Reactive Machine Learning and Functional Programming
Reactive Machine Learning and Functional ProgrammingReactive Machine Learning and Functional Programming
Reactive Machine Learning and Functional Programming
Jeff Smith
 
Bringing Data Scientists and Engineers Together
Bringing Data Scientists and Engineers TogetherBringing Data Scientists and Engineers Together
Bringing Data Scientists and Engineers Together
Jeff Smith
 
NoSQL in Perspective
NoSQL in PerspectiveNoSQL in Perspective
NoSQL in Perspective
Jeff Smith
 
Functional Programming and Concurrency Patterns in Scala
Functional Programming and Concurrency Patterns in ScalaFunctional Programming and Concurrency Patterns in Scala
Functional Programming and Concurrency Patterns in Scala
kellogh
 
Effective Scala: Programming Patterns
Effective Scala: Programming PatternsEffective Scala: Programming Patterns
Effective Scala: Programming Patterns
Vasil Remeniuk
 
Community engagement through social networking
Community engagement through social networkingCommunity engagement through social networking
Community engagement through social networking
Dave Briggs
 
Outreach 2.0: the Digital Revolution of Public Relations
Outreach 2.0: the Digital Revolution of Public RelationsOutreach 2.0: the Digital Revolution of Public Relations
Outreach 2.0: the Digital Revolution of Public Relations
David King
 
Brandstorm 2014 - Gr8 Uppsala University
Brandstorm 2014 - Gr8 Uppsala UniversityBrandstorm 2014 - Gr8 Uppsala University
Brandstorm 2014 - Gr8 Uppsala University
Erik Abelsson
 
Top mobile internet trends feb11
Top mobile internet trends feb11Top mobile internet trends feb11
Top mobile internet trends feb11
Hope Hong
 
6 questions-social-media-strategymarkschaefer-140427123305-phpapp02
6 questions-social-media-strategymarkschaefer-140427123305-phpapp026 questions-social-media-strategymarkschaefer-140427123305-phpapp02
6 questions-social-media-strategymarkschaefer-140427123305-phpapp02
Vera Kovaleva
 
Notions de fond structure de la terre
Notions de fond structure de la terreNotions de fond structure de la terre
Notions de fond structure de la terre
Mining Matters
 
Cómo preparar alumnos para el siglo x xl con pocos recursos @globaledcon 2016...
Cómo preparar alumnos para el siglo x xl con pocos recursos @globaledcon 2016...Cómo preparar alumnos para el siglo x xl con pocos recursos @globaledcon 2016...
Cómo preparar alumnos para el siglo x xl con pocos recursos @globaledcon 2016...
Fabiana Casella
 
The Emerging Workforce Data Ecosystem: New Strategies, Partners & Tools Helpi...
The Emerging Workforce Data Ecosystem: New Strategies, Partners & Tools Helpi...The Emerging Workforce Data Ecosystem: New Strategies, Partners & Tools Helpi...
The Emerging Workforce Data Ecosystem: New Strategies, Partners & Tools Helpi...
Kristin Wolff
 
Realidad Aumentada fotorrealista al alcance de todos
Realidad Aumentada fotorrealista al alcance de todosRealidad Aumentada fotorrealista al alcance de todos
Realidad Aumentada fotorrealista al alcance de todos
Raúl Reinoso
 
Pilonidaldisease 141115134308-conversion-gate01
Pilonidaldisease 141115134308-conversion-gate01Pilonidaldisease 141115134308-conversion-gate01
Pilonidaldisease 141115134308-conversion-gate01
Haliunaa Battulga
 
Ad

Similar to Introducing Reactive Machine Learning (20)

R Basics
R BasicsR Basics
R Basics
AllsoftSolutions
 
R Cheat Sheet
R Cheat SheetR Cheat Sheet
R Cheat Sheet
Dr. Volkan OBAN
 
The Scala Programming Language
The Scala Programming LanguageThe Scala Programming Language
The Scala Programming Language
league
 
Practical data science_public
Practical data science_publicPractical data science_public
Practical data science_public
Long Nguyen
 
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
Jürgen Ambrosi
 
EVERYTHING ABOUT STATIC CODE ANALYSIS FOR A JAVA PROGRAMMER
EVERYTHING ABOUT STATIC CODE ANALYSIS FOR A JAVA PROGRAMMEREVERYTHING ABOUT STATIC CODE ANALYSIS FOR A JAVA PROGRAMMER
EVERYTHING ABOUT STATIC CODE ANALYSIS FOR A JAVA PROGRAMMER
Andrey Karpov
 
Feature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive modelsFeature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive models
Gabriel Moreira
 
Visual diagnostics at scale
Visual diagnostics at scaleVisual diagnostics at scale
Visual diagnostics at scale
Rebecca Bilbro
 
First fare 2010 java-introduction
First fare 2010 java-introductionFirst fare 2010 java-introduction
First fare 2010 java-introduction
Oregon FIRST Robotics
 
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Gabriel Moreira
 
Hadoop metric을 이용한 알람 개발
Hadoop metric을 이용한 알람 개발Hadoop metric을 이용한 알람 개발
Hadoop metric을 이용한 알람 개발
효근 박
 
Next Generation Programming in R
Next Generation Programming in RNext Generation Programming in R
Next Generation Programming in R
Florian Uhlitz
 
Fingerprinting Chemical Structures
Fingerprinting Chemical StructuresFingerprinting Chemical Structures
Fingerprinting Chemical Structures
Rajarshi Guha
 
OpenCog Developer Workshop
OpenCog Developer WorkshopOpenCog Developer Workshop
OpenCog Developer Workshop
Ibby Benali
 
Static analysis: Around Java in 60 minutes
Static analysis: Around Java in 60 minutesStatic analysis: Around Java in 60 minutes
Static analysis: Around Java in 60 minutes
Andrey Karpov
 
NumPy/SciPy Statistics
NumPy/SciPy StatisticsNumPy/SciPy Statistics
NumPy/SciPy Statistics
Enthought, Inc.
 
Hadoop Integration in Cassandra
Hadoop Integration in CassandraHadoop Integration in Cassandra
Hadoop Integration in Cassandra
Jairam Chandar
 
What is new in Java 8
What is new in Java 8What is new in Java 8
What is new in Java 8
Sandeep Kr. Singh
 
Ahda exploration
Ahda explorationAhda exploration
Ahda exploration
Giewee Hammond, M.ScAn
 
Sparklyr
SparklyrSparklyr
Sparklyr
Dieudonne Nahigombeye
 
The Scala Programming Language
The Scala Programming LanguageThe Scala Programming Language
The Scala Programming Language
league
 
Practical data science_public
Practical data science_publicPractical data science_public
Practical data science_public
Long Nguyen
 
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
Jürgen Ambrosi
 
EVERYTHING ABOUT STATIC CODE ANALYSIS FOR A JAVA PROGRAMMER
EVERYTHING ABOUT STATIC CODE ANALYSIS FOR A JAVA PROGRAMMEREVERYTHING ABOUT STATIC CODE ANALYSIS FOR A JAVA PROGRAMMER
EVERYTHING ABOUT STATIC CODE ANALYSIS FOR A JAVA PROGRAMMER
Andrey Karpov
 
Feature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive modelsFeature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive models
Gabriel Moreira
 
Visual diagnostics at scale
Visual diagnostics at scaleVisual diagnostics at scale
Visual diagnostics at scale
Rebecca Bilbro
 
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Gabriel Moreira
 
Hadoop metric을 이용한 알람 개발
Hadoop metric을 이용한 알람 개발Hadoop metric을 이용한 알람 개발
Hadoop metric을 이용한 알람 개발
효근 박
 
Next Generation Programming in R
Next Generation Programming in RNext Generation Programming in R
Next Generation Programming in R
Florian Uhlitz
 
Fingerprinting Chemical Structures
Fingerprinting Chemical StructuresFingerprinting Chemical Structures
Fingerprinting Chemical Structures
Rajarshi Guha
 
OpenCog Developer Workshop
OpenCog Developer WorkshopOpenCog Developer Workshop
OpenCog Developer Workshop
Ibby Benali
 
Static analysis: Around Java in 60 minutes
Static analysis: Around Java in 60 minutesStatic analysis: Around Java in 60 minutes
Static analysis: Around Java in 60 minutes
Andrey Karpov
 
Hadoop Integration in Cassandra
Hadoop Integration in CassandraHadoop Integration in Cassandra
Hadoop Integration in Cassandra
Jairam Chandar
 
Ad

More from Jeff Smith (9)

Questioning Conversational AI
Questioning Conversational AIQuestioning Conversational AI
Questioning Conversational AI
Jeff Smith
 
Neuroevolution in Elixir
Neuroevolution in ElixirNeuroevolution in Elixir
Neuroevolution in Elixir
Jeff Smith
 
Tools for Making Machine Learning more Reactive
Tools for Making Machine Learning more ReactiveTools for Making Machine Learning more Reactive
Tools for Making Machine Learning more Reactive
Jeff Smith
 
Building Learning Agents
Building Learning AgentsBuilding Learning Agents
Building Learning Agents
Jeff Smith
 
Reactive for Machine Learning Teams
Reactive for Machine Learning TeamsReactive for Machine Learning Teams
Reactive for Machine Learning Teams
Jeff Smith
 
Characterizing Intelligence with Elixir
Characterizing Intelligence with ElixirCharacterizing Intelligence with Elixir
Characterizing Intelligence with Elixir
Jeff Smith
 
Huhdoop?: Uncertain Data Management on Non-Relational Database Systems
Huhdoop?: Uncertain Data Management on Non-Relational Database SystemsHuhdoop?: Uncertain Data Management on Non-Relational Database Systems
Huhdoop?: Uncertain Data Management on Non-Relational Database Systems
Jeff Smith
 
Breadth or Depth: What's in a column-store?
Breadth or Depth: What's in a column-store?Breadth or Depth: What's in a column-store?
Breadth or Depth: What's in a column-store?
Jeff Smith
 
Save the server, Save the world
Save the server, Save the worldSave the server, Save the world
Save the server, Save the world
Jeff Smith
 
Questioning Conversational AI
Questioning Conversational AIQuestioning Conversational AI
Questioning Conversational AI
Jeff Smith
 
Neuroevolution in Elixir
Neuroevolution in ElixirNeuroevolution in Elixir
Neuroevolution in Elixir
Jeff Smith
 
Tools for Making Machine Learning more Reactive
Tools for Making Machine Learning more ReactiveTools for Making Machine Learning more Reactive
Tools for Making Machine Learning more Reactive
Jeff Smith
 
Building Learning Agents
Building Learning AgentsBuilding Learning Agents
Building Learning Agents
Jeff Smith
 
Reactive for Machine Learning Teams
Reactive for Machine Learning TeamsReactive for Machine Learning Teams
Reactive for Machine Learning Teams
Jeff Smith
 
Characterizing Intelligence with Elixir
Characterizing Intelligence with ElixirCharacterizing Intelligence with Elixir
Characterizing Intelligence with Elixir
Jeff Smith
 
Huhdoop?: Uncertain Data Management on Non-Relational Database Systems
Huhdoop?: Uncertain Data Management on Non-Relational Database SystemsHuhdoop?: Uncertain Data Management on Non-Relational Database Systems
Huhdoop?: Uncertain Data Management on Non-Relational Database Systems
Jeff Smith
 
Breadth or Depth: What's in a column-store?
Breadth or Depth: What's in a column-store?Breadth or Depth: What's in a column-store?
Breadth or Depth: What's in a column-store?
Jeff Smith
 
Save the server, Save the world
Save the server, Save the worldSave the server, Save the world
Save the server, Save the world
Jeff Smith
 

Recently uploaded (20)

DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
Build With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdfBuild With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdf
Google Developer Group - Harare
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptxWebinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
MSP360
 
Does Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should KnowDoes Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should Know
Pornify CC
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
Agentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community MeetupAgentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community Meetup
Manoj Batra (1600 + Connections)
 
Financial Services Technology Summit 2025
Financial Services Technology Summit 2025Financial Services Technology Summit 2025
Financial Services Technology Summit 2025
Ray Bugg
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptxWebinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
MSP360
 
Does Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should KnowDoes Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should Know
Pornify CC
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
Financial Services Technology Summit 2025
Financial Services Technology Summit 2025Financial Services Technology Summit 2025
Financial Services Technology Summit 2025
Ray Bugg
 

Introducing Reactive Machine Learning

  翻译: