The document discusses image denoising using wavelet transforms and thresholding techniques. It first provides background on image denoising and wavelet transforms. It then reviews several existing studies that used wavelet transforms like Haar, db4, and sym4 along with thresholding to denoise images corrupted with Gaussian and salt-and-pepper noise. Next, it describes the proposed denoising algorithm which involves adding noise to test images, decomposing the noisy images using different wavelet transforms, applying thresholding, and calculating metrics like PSNR to evaluate performance. The algorithm aims to eliminate noise in the wavelet domain using soft and hard thresholding followed by reconstruction.