In this paper person identification is done based on sets of facial images. Each facial image is considered as the scattered point of logistic regression. The vertical distance of scattered point of facial image and the regression line is considered as the parameter to determine whether the image is of same person or not. The ratio of Euclidian distance (in terms of number of pixel of gray scale image based on ‘imtool’ of Matlab 13.0) between nasal and eye points are determined. The variance of the ration is considered another parameter to identify a facial image. The concept is combined with ghost image of Principal Component Analysis; where the mean square error and signal to noise ratio (SNR) in dB is considered as the parameters of detection. The combination of three methods, enhance the degree of accuracy compared to individual one.