SlideShare a Scribd company logo
プログラマのためのHadoop入門 2010/09/15 id:shiumachi
Agenda BackGround
Hadoop って何?
MapReduce って何?
で、何に使うの?
MapReduce プログラミング
Hadoop バッチ処理の設計
今日の話 タイトル通り、プログラマ向けのHadoop入門
以下のような話がメイン MapReduceによるシステム設計
MapReduceプログラミング 以下のような話はあまりしない Hadoopをどういうシステムに入れるべきか
Hadoopの構築・運用・インフラレベルのチューニング
BackGround
Big Dataの時代! Big Data(数十TB以上)を扱うのは当たり前
そもそも現実世界は Big Data である [1] だから現実世界のシステムはこれに立ち向かわなければならない Big Data を扱うのは技術がいる 分散処理、アルゴリズム、etc...
世界の企業が扱うBig Data Googleは2008年時点で20PBをMapReduceで処理してた [1]
eBayは約10PB [1]
FaceBookは2010年時点で15PB [2]
Hadoopって何?
Hadoopとは Google 社の MapReduce という仕組みを実現するためのオープンソース実装
HDFS, MapReduce という2つのコンポーネントからなる どちらも Google 社のプロプライエタリのオープンソースクローンとなる。(GFS と Google MapReduce) Big Data  に立ち向かうための強力な武器
プログラマにとってのHadoopとは 例えば、WebアプリケーションならRails や CakePHP などのフレームワークを使う
スマートフォンならAndroidのフレームワークを使う
Hadoopは、 高スループット が要求される バッチ処理 のためのフレームワーク ただのプログラミングフレームワークの一つです
MapReduceって何?
MapReduceとは データ全体に等しく処理を適用する Map と、 Map により生成されたデータをまとめて処理する Reduce からなるアルゴリズム
プログラミング言語の map 関数、 reduce 関数が元となっている
Hadoop を使うには、以下の例における  lambda  関数の部分さえ実装するだけでいい python の例 :  ある多次元ベクトルのノルムを求める def norm(V): return reduce( lambda x,y: x+y, map( lambda x: x**2, V ) ) ** 0.5
プログラマはもう少し知るべき Map の出力(=Reduceの入力)は必ず<Key,Value>の形式でなければならない ただし、セパレータの指定ができるのでそんなに問題ではない 本当は Map -> Shuffle -> Reduce
Shuffle フェーズとは、Mapで得られたデータをソート・分割し、Reduceに送る処理のこと
Shuffleの例 ソート処理 分割処理 ソート、分割ともにユーザが定義する必要がある (abc 順か数字扱いか、分割する数は、など ) デフォルトはハッシュをとってソートする hello, 1 world, 1 hello, 1 hadoop, 1 I, 1 like, 1 hadoop, 1 programming, 1 I, 1 like, 1 programming, 1 world, 1 hadoop, 1 hadoop, 1 hello, 1 hello, 1 hadoop, 1 hadoop, 1 hello, 1 hello, 1 I, 1 like, 1 programming, 1 world, 1
で、何に使うの?
Hadoopの使いどころ あっちこっちでなんかすごそうな使い方されてるようですが、基本は ただのバッチ処理 です あるデータの平均を求めたい
ソートしたい
URL数をカウントしたい
etc...
それ、Hadoopいらなくね? ワンライナーで一発じゃん uniq, sort, grep, sed, awk, ... データがメモリに載るサイズだったらHadoop使うのは無駄です
Ad

More Related Content

What's hot (20)

Hadoop入門
Hadoop入門Hadoop入門
Hadoop入門
Preferred Networks
 
40分でわかるHadoop徹底入門 (Cloudera World Tokyo 2014 講演資料)
40分でわかるHadoop徹底入門 (Cloudera World Tokyo 2014 講演資料) 40分でわかるHadoop徹底入門 (Cloudera World Tokyo 2014 講演資料)
40分でわかるHadoop徹底入門 (Cloudera World Tokyo 2014 講演資料)
hamaken
 
世界一簡単なHadoopの話
世界一簡単なHadoopの話世界一簡単なHadoopの話
世界一簡単なHadoopの話
Koichi Shimazaki
 
ただいまHadoop勉強中
ただいまHadoop勉強中ただいまHadoop勉強中
ただいまHadoop勉強中
Satoshi Noto
 
SASとHadoopとの連携
SASとHadoopとの連携SASとHadoopとの連携
SASとHadoopとの連携
SAS Institute Japan
 
並列データベースシステムの概念と原理
並列データベースシステムの概念と原理並列データベースシステムの概念と原理
並列データベースシステムの概念と原理
Makoto Yui
 
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 Fall
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 FallAmazon Elastic MapReduce@Hadoop Conference Japan 2011 Fall
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 Fall
Shinpei Ohtani
 
Hadoop / Elastic MapReduceつまみ食い
Hadoop / Elastic MapReduceつまみ食いHadoop / Elastic MapReduceつまみ食い
Hadoop / Elastic MapReduceつまみ食い
Ryuji Tamagawa
 
Hadoopのシステム設計・運用のポイント
Hadoopのシステム設計・運用のポイントHadoopのシステム設計・運用のポイント
Hadoopのシステム設計・運用のポイント
Cloudera Japan
 
Hadoop概要説明
Hadoop概要説明Hadoop概要説明
Hadoop概要説明
Satoshi Noto
 
Hadoop 基礎
Hadoop 基礎Hadoop 基礎
Hadoop 基礎
hideaki honda
 
Hadoopの概念と基本的知識
Hadoopの概念と基本的知識Hadoopの概念と基本的知識
Hadoopの概念と基本的知識
Ken SASAKI
 
並列分散処理基盤Hadoopの紹介と、開発者が語るHadoopの使いどころ (Silicon Valley x 日本 / Tech x Business ...
並列分散処理基盤Hadoopの紹介と、開発者が語るHadoopの使いどころ (Silicon Valley x 日本 / Tech x Business ...並列分散処理基盤Hadoopの紹介と、開発者が語るHadoopの使いどころ (Silicon Valley x 日本 / Tech x Business ...
並列分散処理基盤Hadoopの紹介と、開発者が語るHadoopの使いどころ (Silicon Valley x 日本 / Tech x Business ...
NTT DATA OSS Professional Services
 
FluentdやNorikraを使った データ集約基盤への取り組み紹介
FluentdやNorikraを使った データ集約基盤への取り組み紹介FluentdやNorikraを使った データ集約基盤への取り組み紹介
FluentdやNorikraを使った データ集約基盤への取り組み紹介
Recruit Technologies
 
実践機械学習 — MahoutとSolrを活用したレコメンデーションにおけるイノベーション - 2014/07/08 Hadoop Conference ...
実践機械学習 — MahoutとSolrを活用したレコメンデーションにおけるイノベーション - 2014/07/08 Hadoop Conference ...実践機械学習 — MahoutとSolrを活用したレコメンデーションにおけるイノベーション - 2014/07/08 Hadoop Conference ...
実践機械学習 — MahoutとSolrを活用したレコメンデーションにおけるイノベーション - 2014/07/08 Hadoop Conference ...
MapR Technologies Japan
 
MapReduceプログラミング入門
MapReduceプログラミング入門MapReduceプログラミング入門
MapReduceプログラミング入門
Satoshi Noto
 
Apache Drill を利用した実データの分析
Apache Drill を利用した実データの分析Apache Drill を利用した実データの分析
Apache Drill を利用した実データの分析
MapR Technologies Japan
 
40分でわかるHadoop徹底入門 (Cloudera World Tokyo 2014 講演資料)
40分でわかるHadoop徹底入門 (Cloudera World Tokyo 2014 講演資料) 40分でわかるHadoop徹底入門 (Cloudera World Tokyo 2014 講演資料)
40分でわかるHadoop徹底入門 (Cloudera World Tokyo 2014 講演資料)
hamaken
 
世界一簡単なHadoopの話
世界一簡単なHadoopの話世界一簡単なHadoopの話
世界一簡単なHadoopの話
Koichi Shimazaki
 
ただいまHadoop勉強中
ただいまHadoop勉強中ただいまHadoop勉強中
ただいまHadoop勉強中
Satoshi Noto
 
並列データベースシステムの概念と原理
並列データベースシステムの概念と原理並列データベースシステムの概念と原理
並列データベースシステムの概念と原理
Makoto Yui
 
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 Fall
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 FallAmazon Elastic MapReduce@Hadoop Conference Japan 2011 Fall
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 Fall
Shinpei Ohtani
 
Hadoop / Elastic MapReduceつまみ食い
Hadoop / Elastic MapReduceつまみ食いHadoop / Elastic MapReduceつまみ食い
Hadoop / Elastic MapReduceつまみ食い
Ryuji Tamagawa
 
Hadoopのシステム設計・運用のポイント
Hadoopのシステム設計・運用のポイントHadoopのシステム設計・運用のポイント
Hadoopのシステム設計・運用のポイント
Cloudera Japan
 
Hadoop概要説明
Hadoop概要説明Hadoop概要説明
Hadoop概要説明
Satoshi Noto
 
Hadoopの概念と基本的知識
Hadoopの概念と基本的知識Hadoopの概念と基本的知識
Hadoopの概念と基本的知識
Ken SASAKI
 
並列分散処理基盤Hadoopの紹介と、開発者が語るHadoopの使いどころ (Silicon Valley x 日本 / Tech x Business ...
並列分散処理基盤Hadoopの紹介と、開発者が語るHadoopの使いどころ (Silicon Valley x 日本 / Tech x Business ...並列分散処理基盤Hadoopの紹介と、開発者が語るHadoopの使いどころ (Silicon Valley x 日本 / Tech x Business ...
並列分散処理基盤Hadoopの紹介と、開発者が語るHadoopの使いどころ (Silicon Valley x 日本 / Tech x Business ...
NTT DATA OSS Professional Services
 
FluentdやNorikraを使った データ集約基盤への取り組み紹介
FluentdやNorikraを使った データ集約基盤への取り組み紹介FluentdやNorikraを使った データ集約基盤への取り組み紹介
FluentdやNorikraを使った データ集約基盤への取り組み紹介
Recruit Technologies
 
実践機械学習 — MahoutとSolrを活用したレコメンデーションにおけるイノベーション - 2014/07/08 Hadoop Conference ...
実践機械学習 — MahoutとSolrを活用したレコメンデーションにおけるイノベーション - 2014/07/08 Hadoop Conference ...実践機械学習 — MahoutとSolrを活用したレコメンデーションにおけるイノベーション - 2014/07/08 Hadoop Conference ...
実践機械学習 — MahoutとSolrを活用したレコメンデーションにおけるイノベーション - 2014/07/08 Hadoop Conference ...
MapR Technologies Japan
 
MapReduceプログラミング入門
MapReduceプログラミング入門MapReduceプログラミング入門
MapReduceプログラミング入門
Satoshi Noto
 
Apache Drill を利用した実データの分析
Apache Drill を利用した実データの分析Apache Drill を利用した実データの分析
Apache Drill を利用した実データの分析
MapR Technologies Japan
 

Viewers also liked (10)

ソーシャルゲームログ解析基盤のHadoop活用事例
ソーシャルゲームログ解析基盤のHadoop活用事例ソーシャルゲームログ解析基盤のHadoop活用事例
ソーシャルゲームログ解析基盤のHadoop活用事例
知教 本間
 
Hadoopを40分で理解する #cwt2013
Hadoopを40分で理解する #cwt2013Hadoopを40分で理解する #cwt2013
Hadoopを40分で理解する #cwt2013
Cloudera Japan
 
『ストーリーテリング ~概要~』第7回 POStudy 〜プロダクトオーナーシップ勉強会〜
『ストーリーテリング ~概要~』第7回 POStudy 〜プロダクトオーナーシップ勉強会〜『ストーリーテリング ~概要~』第7回 POStudy 〜プロダクトオーナーシップ勉強会〜
『ストーリーテリング ~概要~』第7回 POStudy 〜プロダクトオーナーシップ勉強会〜
満徳 関
 
主人が外資系IT企業に転職して4ヶ月が過ぎました
主人が外資系IT企業に転職して4ヶ月が過ぎました主人が外資系IT企業に転職して4ヶ月が過ぎました
主人が外資系IT企業に転職して4ヶ月が過ぎました
Aki Ariga
 
Hadoopを用いた大規模ログ解析
Hadoopを用いた大規模ログ解析Hadoopを用いた大規模ログ解析
Hadoopを用いた大規模ログ解析
shuichi iida
 
How to read linux kernel
How to read linux kernelHow to read linux kernel
How to read linux kernel
Naoya Ito
 
ちょっと理解に自信がないな という皆さまに贈るHadoop/Sparkのキホン (IBM Datapalooza Tokyo 2016講演資料)
ちょっと理解に自信がないなという皆さまに贈るHadoop/Sparkのキホン (IBM Datapalooza Tokyo 2016講演資料)ちょっと理解に自信がないなという皆さまに贈るHadoop/Sparkのキホン (IBM Datapalooza Tokyo 2016講演資料)
ちょっと理解に自信がないな という皆さまに贈るHadoop/Sparkのキホン (IBM Datapalooza Tokyo 2016講演資料)
hamaken
 
最新業界事情から見るデータサイエンティストの「実像」
最新業界事情から見るデータサイエンティストの「実像」最新業界事情から見るデータサイエンティストの「実像」
最新業界事情から見るデータサイエンティストの「実像」
Takashi J OZAKI
 
ソーシャルゲームログ解析基盤のHadoop活用事例
ソーシャルゲームログ解析基盤のHadoop活用事例ソーシャルゲームログ解析基盤のHadoop活用事例
ソーシャルゲームログ解析基盤のHadoop活用事例
知教 本間
 
Hadoopを40分で理解する #cwt2013
Hadoopを40分で理解する #cwt2013Hadoopを40分で理解する #cwt2013
Hadoopを40分で理解する #cwt2013
Cloudera Japan
 
『ストーリーテリング ~概要~』第7回 POStudy 〜プロダクトオーナーシップ勉強会〜
『ストーリーテリング ~概要~』第7回 POStudy 〜プロダクトオーナーシップ勉強会〜『ストーリーテリング ~概要~』第7回 POStudy 〜プロダクトオーナーシップ勉強会〜
『ストーリーテリング ~概要~』第7回 POStudy 〜プロダクトオーナーシップ勉強会〜
満徳 関
 
主人が外資系IT企業に転職して4ヶ月が過ぎました
主人が外資系IT企業に転職して4ヶ月が過ぎました主人が外資系IT企業に転職して4ヶ月が過ぎました
主人が外資系IT企業に転職して4ヶ月が過ぎました
Aki Ariga
 
Hadoopを用いた大規模ログ解析
Hadoopを用いた大規模ログ解析Hadoopを用いた大規模ログ解析
Hadoopを用いた大規模ログ解析
shuichi iida
 
How to read linux kernel
How to read linux kernelHow to read linux kernel
How to read linux kernel
Naoya Ito
 
ちょっと理解に自信がないな という皆さまに贈るHadoop/Sparkのキホン (IBM Datapalooza Tokyo 2016講演資料)
ちょっと理解に自信がないなという皆さまに贈るHadoop/Sparkのキホン (IBM Datapalooza Tokyo 2016講演資料)ちょっと理解に自信がないなという皆さまに贈るHadoop/Sparkのキホン (IBM Datapalooza Tokyo 2016講演資料)
ちょっと理解に自信がないな という皆さまに贈るHadoop/Sparkのキホン (IBM Datapalooza Tokyo 2016講演資料)
hamaken
 
最新業界事情から見るデータサイエンティストの「実像」
最新業界事情から見るデータサイエンティストの「実像」最新業界事情から見るデータサイエンティストの「実像」
最新業界事情から見るデータサイエンティストの「実像」
Takashi J OZAKI
 
Ad

Similar to Hadoop for programmer (20)

Googleの基盤クローン Hadoopについて
Googleの基盤クローン HadoopについてGoogleの基盤クローン Hadoopについて
Googleの基盤クローン Hadoopについて
Kazuki Ohta
 
リクルート式Hadoopの使い方
リクルート式Hadoopの使い方リクルート式Hadoopの使い方
リクルート式Hadoopの使い方
Recruit Technologies
 
Streamlitを用いた音響信号処理ダッシュボードの開発
Streamlitを用いた音響信号処理ダッシュボードの開発Streamlitを用いた音響信号処理ダッシュボードの開発
Streamlitを用いた音響信号処理ダッシュボードの開発
Hiromasa Ohashi
 
Hadoop Conference Japan 2009 #2
Hadoop Conference Japan 2009 #2Hadoop Conference Japan 2009 #2
Hadoop Conference Japan 2009 #2
Rakuten Group, Inc.
 
株式会社インタースペース 守安様 登壇資料
株式会社インタースペース 守安様 登壇資料株式会社インタースペース 守安様 登壇資料
株式会社インタースペース 守安様 登壇資料
leverages_event
 
OSC2012 Tokyo/Spring - Hadoop入門
OSC2012 Tokyo/Spring - Hadoop入門OSC2012 Tokyo/Spring - Hadoop入門
OSC2012 Tokyo/Spring - Hadoop入門
Shinichi YAMASHITA
 
Asakusa Enterprise Batch Processing Framework for Hadoop
Asakusa Enterprise Batch Processing Framework for HadoopAsakusa Enterprise Batch Processing Framework for Hadoop
Asakusa Enterprise Batch Processing Framework for Hadoop
Takashi Kambayashi
 
B34 Extremely Tuned Hadoop Cluster by Daisuke Hirama
B34 Extremely Tuned Hadoop Cluster by  Daisuke HiramaB34 Extremely Tuned Hadoop Cluster by  Daisuke Hirama
B34 Extremely Tuned Hadoop Cluster by Daisuke Hirama
Insight Technology, Inc.
 
RPALT_20200309Aomori
RPALT_20200309AomoriRPALT_20200309Aomori
RPALT_20200309Aomori
yoko tsushima
 
クラウド時代の並列分散処理技術
クラウド時代の並列分散処理技術クラウド時代の並列分散処理技術
クラウド時代の並列分散処理技術
Koichi Fujikawa
 
分散処理基盤Apache Hadoop入門とHadoopエコシステムの最新技術動向 (オープンソースカンファレンス 2015 Tokyo/Spring 講...
分散処理基盤Apache Hadoop入門とHadoopエコシステムの最新技術動向 (オープンソースカンファレンス 2015 Tokyo/Spring 講...分散処理基盤Apache Hadoop入門とHadoopエコシステムの最新技術動向 (オープンソースカンファレンス 2015 Tokyo/Spring 講...
分散処理基盤Apache Hadoop入門とHadoopエコシステムの最新技術動向 (オープンソースカンファレンス 2015 Tokyo/Spring 講...
NTT DATA OSS Professional Services
 
Hadoop ecosystem NTTDATA osc15tk
Hadoop ecosystem NTTDATA osc15tkHadoop ecosystem NTTDATA osc15tk
Hadoop ecosystem NTTDATA osc15tk
NTT DATA OSS Professional Services
 
Hadoop事始め
Hadoop事始めHadoop事始め
Hadoop事始め
You&I
 
OSC2011 Tokyo/Spring Hadoop入門
OSC2011 Tokyo/Spring Hadoop入門OSC2011 Tokyo/Spring Hadoop入門
OSC2011 Tokyo/Spring Hadoop入門
Shinichi YAMASHITA
 
分散処理基盤ApacheHadoop入門とHadoopエコシステムの最新技術動向(OSC2015 Kansai発表資料)
分散処理基盤ApacheHadoop入門とHadoopエコシステムの最新技術動向(OSC2015 Kansai発表資料)分散処理基盤ApacheHadoop入門とHadoopエコシステムの最新技術動向(OSC2015 Kansai発表資料)
分散処理基盤ApacheHadoop入門とHadoopエコシステムの最新技術動向(OSC2015 Kansai発表資料)
NTT DATA OSS Professional Services
 
MapReduceを使った並列化 20111212
MapReduceを使った並列化 20111212MapReduceを使った並列化 20111212
MapReduceを使った並列化 20111212
marony
 
Beginner must-see! A future that can be opened by learning Hadoop
Beginner must-see! A future that can be opened by learning HadoopBeginner must-see! A future that can be opened by learning Hadoop
Beginner must-see! A future that can be opened by learning Hadoop
DataWorks Summit
 
WordPressで始めるphp入門
WordPressで始めるphp入門WordPressで始めるphp入門
WordPressで始めるphp入門
Hiroaki Murayama
 
ライトプランで利用可能な分析基盤「IBM Analytics Engine (IAE)」とは
ライトプランで利用可能な分析基盤「IBM Analytics Engine (IAE)」とはライトプランで利用可能な分析基盤「IBM Analytics Engine (IAE)」とは
ライトプランで利用可能な分析基盤「IBM Analytics Engine (IAE)」とは
Kimihiko Kitase
 
[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data Platform[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data Platform
Naoki (Neo) SATO
 
Googleの基盤クローン Hadoopについて
Googleの基盤クローン HadoopについてGoogleの基盤クローン Hadoopについて
Googleの基盤クローン Hadoopについて
Kazuki Ohta
 
リクルート式Hadoopの使い方
リクルート式Hadoopの使い方リクルート式Hadoopの使い方
リクルート式Hadoopの使い方
Recruit Technologies
 
Streamlitを用いた音響信号処理ダッシュボードの開発
Streamlitを用いた音響信号処理ダッシュボードの開発Streamlitを用いた音響信号処理ダッシュボードの開発
Streamlitを用いた音響信号処理ダッシュボードの開発
Hiromasa Ohashi
 
株式会社インタースペース 守安様 登壇資料
株式会社インタースペース 守安様 登壇資料株式会社インタースペース 守安様 登壇資料
株式会社インタースペース 守安様 登壇資料
leverages_event
 
OSC2012 Tokyo/Spring - Hadoop入門
OSC2012 Tokyo/Spring - Hadoop入門OSC2012 Tokyo/Spring - Hadoop入門
OSC2012 Tokyo/Spring - Hadoop入門
Shinichi YAMASHITA
 
Asakusa Enterprise Batch Processing Framework for Hadoop
Asakusa Enterprise Batch Processing Framework for HadoopAsakusa Enterprise Batch Processing Framework for Hadoop
Asakusa Enterprise Batch Processing Framework for Hadoop
Takashi Kambayashi
 
B34 Extremely Tuned Hadoop Cluster by Daisuke Hirama
B34 Extremely Tuned Hadoop Cluster by  Daisuke HiramaB34 Extremely Tuned Hadoop Cluster by  Daisuke Hirama
B34 Extremely Tuned Hadoop Cluster by Daisuke Hirama
Insight Technology, Inc.
 
RPALT_20200309Aomori
RPALT_20200309AomoriRPALT_20200309Aomori
RPALT_20200309Aomori
yoko tsushima
 
クラウド時代の並列分散処理技術
クラウド時代の並列分散処理技術クラウド時代の並列分散処理技術
クラウド時代の並列分散処理技術
Koichi Fujikawa
 
分散処理基盤Apache Hadoop入門とHadoopエコシステムの最新技術動向 (オープンソースカンファレンス 2015 Tokyo/Spring 講...
分散処理基盤Apache Hadoop入門とHadoopエコシステムの最新技術動向 (オープンソースカンファレンス 2015 Tokyo/Spring 講...分散処理基盤Apache Hadoop入門とHadoopエコシステムの最新技術動向 (オープンソースカンファレンス 2015 Tokyo/Spring 講...
分散処理基盤Apache Hadoop入門とHadoopエコシステムの最新技術動向 (オープンソースカンファレンス 2015 Tokyo/Spring 講...
NTT DATA OSS Professional Services
 
OSC2011 Tokyo/Spring Hadoop入門
OSC2011 Tokyo/Spring Hadoop入門OSC2011 Tokyo/Spring Hadoop入門
OSC2011 Tokyo/Spring Hadoop入門
Shinichi YAMASHITA
 
分散処理基盤ApacheHadoop入門とHadoopエコシステムの最新技術動向(OSC2015 Kansai発表資料)
分散処理基盤ApacheHadoop入門とHadoopエコシステムの最新技術動向(OSC2015 Kansai発表資料)分散処理基盤ApacheHadoop入門とHadoopエコシステムの最新技術動向(OSC2015 Kansai発表資料)
分散処理基盤ApacheHadoop入門とHadoopエコシステムの最新技術動向(OSC2015 Kansai発表資料)
NTT DATA OSS Professional Services
 
MapReduceを使った並列化 20111212
MapReduceを使った並列化 20111212MapReduceを使った並列化 20111212
MapReduceを使った並列化 20111212
marony
 
Beginner must-see! A future that can be opened by learning Hadoop
Beginner must-see! A future that can be opened by learning HadoopBeginner must-see! A future that can be opened by learning Hadoop
Beginner must-see! A future that can be opened by learning Hadoop
DataWorks Summit
 
WordPressで始めるphp入門
WordPressで始めるphp入門WordPressで始めるphp入門
WordPressで始めるphp入門
Hiroaki Murayama
 
ライトプランで利用可能な分析基盤「IBM Analytics Engine (IAE)」とは
ライトプランで利用可能な分析基盤「IBM Analytics Engine (IAE)」とはライトプランで利用可能な分析基盤「IBM Analytics Engine (IAE)」とは
ライトプランで利用可能な分析基盤「IBM Analytics Engine (IAE)」とは
Kimihiko Kitase
 
[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data Platform[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data Platform
Naoki (Neo) SATO
 
Ad

Recently uploaded (7)

AIの心臓部を支える力 ― ニューラルネットワークプロセッサの進化と未来.pdf
AIの心臓部を支える力 ― ニューラルネットワークプロセッサの進化と未来.pdfAIの心臓部を支える力 ― ニューラルネットワークプロセッサの進化と未来.pdf
AIの心臓部を支える力 ― ニューラルネットワークプロセッサの進化と未来.pdf
Data Source
 
論文紹介:What, when, and where? ​Self-Supervised Spatio-Temporal Grounding​in Unt...
論文紹介:What, when, and where? ​Self-Supervised Spatio-Temporal Grounding​in Unt...論文紹介:What, when, and where? ​Self-Supervised Spatio-Temporal Grounding​in Unt...
論文紹介:What, when, and where? ​Self-Supervised Spatio-Temporal Grounding​in Unt...
Toru Tamaki
 
論文紹介:"Visual Genome:Connecting Language and Vision​Using Crowdsourced Dense I...
論文紹介:"Visual Genome:Connecting Language and Vision​Using Crowdsourced Dense I...論文紹介:"Visual Genome:Connecting Language and Vision​Using Crowdsourced Dense I...
論文紹介:"Visual Genome:Connecting Language and Vision​Using Crowdsourced Dense I...
Toru Tamaki
 
論文紹介:PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics
論文紹介:PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics論文紹介:PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics
論文紹介:PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics
Toru Tamaki
 
【第28回redmine.tokyo LT】RedmineProjectImporterのご紹介.pptx
【第28回redmine.tokyo LT】RedmineProjectImporterのご紹介.pptx【第28回redmine.tokyo LT】RedmineProjectImporterのご紹介.pptx
【第28回redmine.tokyo LT】RedmineProjectImporterのご紹介.pptx
Hidehisa Matsutani
 
「Technology×Business×生成AI」株式会社CoToMaで未来を作る仲間募集!
「Technology×Business×生成AI」株式会社CoToMaで未来を作る仲間募集!「Technology×Business×生成AI」株式会社CoToMaで未来を作る仲間募集!
「Technology×Business×生成AI」株式会社CoToMaで未来を作る仲間募集!
fujishiman
 
俺SoC (Laxer Chip, AX1001)の Prolog加速命令.New multiple branch instruction for RIS...
俺SoC (Laxer Chip, AX1001)の Prolog加速命令.New multiple branch instruction for RIS...俺SoC (Laxer Chip, AX1001)の Prolog加速命令.New multiple branch instruction for RIS...
俺SoC (Laxer Chip, AX1001)の Prolog加速命令.New multiple branch instruction for RIS...
たけおか しょうぞう
 
AIの心臓部を支える力 ― ニューラルネットワークプロセッサの進化と未来.pdf
AIの心臓部を支える力 ― ニューラルネットワークプロセッサの進化と未来.pdfAIの心臓部を支える力 ― ニューラルネットワークプロセッサの進化と未来.pdf
AIの心臓部を支える力 ― ニューラルネットワークプロセッサの進化と未来.pdf
Data Source
 
論文紹介:What, when, and where? ​Self-Supervised Spatio-Temporal Grounding​in Unt...
論文紹介:What, when, and where? ​Self-Supervised Spatio-Temporal Grounding​in Unt...論文紹介:What, when, and where? ​Self-Supervised Spatio-Temporal Grounding​in Unt...
論文紹介:What, when, and where? ​Self-Supervised Spatio-Temporal Grounding​in Unt...
Toru Tamaki
 
論文紹介:"Visual Genome:Connecting Language and Vision​Using Crowdsourced Dense I...
論文紹介:"Visual Genome:Connecting Language and Vision​Using Crowdsourced Dense I...論文紹介:"Visual Genome:Connecting Language and Vision​Using Crowdsourced Dense I...
論文紹介:"Visual Genome:Connecting Language and Vision​Using Crowdsourced Dense I...
Toru Tamaki
 
論文紹介:PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics
論文紹介:PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics論文紹介:PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics
論文紹介:PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics
Toru Tamaki
 
【第28回redmine.tokyo LT】RedmineProjectImporterのご紹介.pptx
【第28回redmine.tokyo LT】RedmineProjectImporterのご紹介.pptx【第28回redmine.tokyo LT】RedmineProjectImporterのご紹介.pptx
【第28回redmine.tokyo LT】RedmineProjectImporterのご紹介.pptx
Hidehisa Matsutani
 
「Technology×Business×生成AI」株式会社CoToMaで未来を作る仲間募集!
「Technology×Business×生成AI」株式会社CoToMaで未来を作る仲間募集!「Technology×Business×生成AI」株式会社CoToMaで未来を作る仲間募集!
「Technology×Business×生成AI」株式会社CoToMaで未来を作る仲間募集!
fujishiman
 
俺SoC (Laxer Chip, AX1001)の Prolog加速命令.New multiple branch instruction for RIS...
俺SoC (Laxer Chip, AX1001)の Prolog加速命令.New multiple branch instruction for RIS...俺SoC (Laxer Chip, AX1001)の Prolog加速命令.New multiple branch instruction for RIS...
俺SoC (Laxer Chip, AX1001)の Prolog加速命令.New multiple branch instruction for RIS...
たけおか しょうぞう
 

Hadoop for programmer

  翻译: