SlideShare a Scribd company logo
Graph partitioning and eigen polynomials of
Laplacian matrices of Roach-type graphs
Yoshihiro Mizoguchi
Institute of Mathematics for Industry,
Kyushu University  
ym@imi.kyushu-u.ac.jp
Algebraic Graph Theory,
Spectral Graph Theory and Related Topics
5th Jan. 2013 at Nagoya University
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 1 / 32
Table of contents
...1 Introduction
...2 Chebyshev polynomials
...3 Tridiagonal matrices
...4 Laplacian Matrix
...5 Mcut, Lcut and spectral clustering
...6 Conclusion
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 2 / 32
Biogeography-Based Optimization (1)
Let Ps be the probability that the habitat contains exactly S species. We
can arrange ˙Ps equations into the single matrix equation


˙P0
˙P1
˙P2
...
˙Pn−1
˙Pn


=


−(λ0 + µ0) µ1 0 · · · 0
λ0 −(λ1 + µ1) µ2
...
...
...
...
...
...
...
...
... λn−2 −(λn−1 + µn−1) µn
0 . . . 0 λn−1 −(λn + µn)




P0
P1
P2
...
Pn−1
Pn


where λs and µs are the immigration and emigration rates when there are
S species in the habitat.
Generally λ0 > λ1 > · · · > λn and µ0 < µ1 < · · · < µn hold and we
assume λs = n−s
n and µs = s
n in this talk.
[Sim08] D.Simon, Biogeography-Based Optimization,
IEEE Trans. on evolutionary computation, 2008.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 3 / 32
Biogeography-Based Optimization (2)
.
Theorem
..
......
The (n + 1) eigenvalues of the biogeography matrix
A =


−1 1/n 0 · · · 0
n/n −1 2/n
...
...
...
...
...
...
...
...
... 2/n −1 n/n
0 . . . 0 1/n −1


are {0, −2/n, −4/n, . . . , −2}.
[IS11] B.Igelnik, D. Simon, The eigenvalues of a tridiagonal matrix in
biogeography, Appl. Mathematics and Computation, 2011.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 4 / 32
Heat equation (Crank-Nicolson method) (1)
ut = uxx x ∈ [0, 1] and t > 0
with initial and Dirichlet boundary condition given by:
u(x, 0) = f(x), u(0, t) = g(t) and u(1, t) = h(t)
The finite difference discretization can be expressed as:
Aun+1
= Bun
+ c
where
A =


1 + α −r/2 0
−r/2 1 + r −r/2
...
...
...
−r/2 1 + r −r/2
0 −r/2 1 + α


Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 5 / 32
Heat equation (Crank-Nicolson method) (2)
and
B =


1 − β r/2 0
r/2 1 − r r/2
...
...
...
r/2 1 − r r/2
0 r/2 1 − β


.
We note un = (un
1
, un
2
, . . . , un
m)T. The parapmeters α and β are given by:
α = β = 3r/2 for the implicit boundary conditions;
α = r and β = 2r for the explicit boundary conditions
The iteration matrix M(r) = A−1B controls the stability of the numerical
method to compute Aun+1 = Bun + c.
[CM10] J.A. Cuminato, S. McKee, A note on the eigenvalues of a special
class of matrices, J. of Computational and Applied Mathematics, 2010.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 6 / 32
Tridiagonal Matrix (1)
An =


−α + b c 0 0 · · · 0 0
a b c 0 · · · 0 0
0 a b c · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · b c
0 0 0 0 · · · a −β + b


n×n
.
Theorem
..
......
Suppose α = β =
√
ac 0. Then the eigenvalues λk of An are given by
λk = b + 2
√
ac cos
kπ
n
and the corresponding eigenvectors u(k) = (u(k)
j
)
are given by u(k)
j
= ρj−1
sin
k(2j − 1)π
2n
for k = 1, 2, · · · , n − 1 and
u(n)
j
= (−ρ)j−1 where ρ =
√
a/c.
[Yue05] W-C. Yueh, Eigenvalues of several tridiagonal matrices, Applied
Mathematics E-Notes, 2005.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 7 / 32
Tridiagonal Matrix (2)
Consider the n × n matrix C = (min{ai − b, aj − b})i,j=1,...,n.
.
Proposition
..
......
For a > 0 and a b, the tridiagonal matrix of order n
Tn =


1 + a
a−b
−1
−1 2 −1
...
...
...
−1 2 −1
−1 1


is the inverse of (1/a)C.
[dF07] C.M. da Fonseca, On the eigenvalues of some tridiagonal matrices,
J. of Computational and Applied Mathematics, 2007.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 8 / 32
Chebyshev polynomials
For n ∈ N and x ∈ R, we define functions Tn(x) and Un(x) as follows.
T0(x) = 1, T1(x) = x,
U0(x) = 1, U1(x) = 2x,
Tn+1(x) = 2xTn(x) − Tn−1(x), and
Un+1(x) = 2xUn(x) − Un−1(x).
We note cos nθ = Tn(cos θ), and sin(n + 1)θ = Un(cos θ) sin θ for θ ∈ R.
.
Proposition
..
......
Let x = cos θ. Then
Tn(x) = 0 ⇔ x = cos(
(2k + 1)π
2n
) (k = 0, · · · , n − 1).
Un(x) = 0 ⇔ x = cos(
kπ
n + 1
) (k = 1, · · · , n).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 9 / 32
Tridiagonal matrix An(a, b)
We define a n × n matrix An(a, b) as follows:
An(a, b) =


a b 0 · · · · · · · · · 0
b a b 0
...
0 b a b 0
...
...
...
...
...
...
...
...
... 0 b a b 0
... 0 b a b
0 · · · · · · · · · 0 b a


.
We put |A0(a, 1)| = 1, then |An(a, 1)| = a|An−1(a, 1)| − |An−2(a, 1)|,
|A1(a, 1)| = a and An(a, b) = bn
· An (a/b, 1).
.
Proposition
..
......
|An(a, b)| = bn
·
sin(n + 1)θ
sin θ
where cos θ =
a
2b
.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 10 / 32
Tridiagonal matrix Bn and Cn (1)
Let n ≥ 3.
Bn(a0, b0, a, b) =


a0 b0 0 · · · 0
b0
0 An−1(a, b)
...
0


Cn(a, b, a0, b0) =


0
An−1(a, b)
...
0
b0
0 · · · 0 b0 a0


We note that
|Bn(a0, b0, a, b)| = a0|An−1(a, b)| − b2
0
|An−2(a, b)|, and
||Cn(a, b, a0, b0)|| = |a0|An−1(a, b)| − b2
0
|An−2(a, b)||.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 11 / 32
Tridiagonal matrix Bn and Cn (2)
We define functions
gn(β) = 2 sin((n + 1)β) + sin nβ − sin((n − 1)β), and
hn(β) = 2 sin((n + 1)β) − sin nβ − sin((n − 1)β)
before introducing the next Lemma.
.
Proposition
..
......
Let n ≥ 3.
Bn(λ − 1,
1
√
2
, λ − 1,
1
2
) =
1
2n−1
cos nα, (λ = 1 + cos α),
Cn(η −
2
3
,
1
3
, η −
1
2
,
1
√
6
) =
1
2 · 3n · sin β
gn(β), (η =
2
3
(1 + cos β)),
Cn(µ −
4
3
,
1
3
, µ −
3
2
,
1
√
6
) =
1
2 · 3n · sin β
hn(β), (µ =
2
3
(2 + cos β)).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 12 / 32
Tridiagonal matrix Qn(a0, b0, a, b)
Let n ≥ 4. We define n × n matrix Qn(a0, b0, a, b) as follows:
Qn(a0, b0, a, b) =


a0 b0 0 · · · 0
b0
...
0 An−2(a, b) 0
... b0
0 · · · 0 b0 a0


We note that
|Qn(a0, b0, a, b)| = a0|Cn−1(a, b, a0, b0)| − b2
0
|Cn−2(a, b, a0, b0)|.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 13 / 32
Laplacian matrix of a graph
.
Definition (Weighted normalized Laplacian)
..
......
The weighted normalized Laplacian L(G) = (ℓij) is defined as
ℓij =



1 −
wj j
dj
if i = j,
−
wi j
√
didj
if vi and vj are adjacent and i j,
0 otherwise.
The adjacency matrix A(P5) and the normalized Laplacian matrix L(P5) of
a path graph P5.
A(P5) =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0


L(P5) =


1 − 1
√
2
0 0 0
− 1
√
2
1 −1
2
0 0
0 −1
2
1 −1
2
0
0 0 −1
2
1 − 1
√
2
0 0 0 − 1
√
2
1


Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 14 / 32
Characteristic polynomial of L(Pn)
.
Proposition
..
......
Let n ≥ 4.
|λIn − L(Pn)| = −
(
1
2
)n−2
(sin α sin((n − 1)α))
where λ = 1 + cos α. That is λ = 1 − cos(
kπ
n − 1
) (k = 0, . . . , n − 1).
We note
L(Pn) = Qn

1, −
1
√
2
, 1, −
1
2

 , and
λIn − L(Pn) = Qn

λ − 1,
1
√
2
, λ − 1,
1
2

 .
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 15 / 32
Characteristic polynomial of L(Pn,k) (1)
Let n ≥ 3 and k ≥ 3. Then
L(Pn,k) =


Bn(1, − 1
√
2
, 1, −1
2
) Xn,k
Xt
n,k
Ck(2
3
, −1
3
, 1
2
, − 1
√
6
)


where Xn,k is the n × k matrix defined by
Xn,k =


0 · · · · · · 0
...
...
0 0
...
− 1
√
6
0 · · · 0


.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 16 / 32
Characteristic polynomial of L(Pn,k) (2)
.
Proposition
..
......
Let
pn,k(λ) =
1
2n3k sin β
(gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)).
Then
λIn+k − L(Pn,k) = pn,k(λ),
where λ = 1 + cos α and λ =
2
3
(1 + cos β).
λIn+k − L(Pn,k) =
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) Xn,k
Xt
n,k
Ck(λ − 2
3
, 1
3
, λ − 1
2
, 1
√
6
)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 17 / 32
Characteristic polynomial of L(Rn,k) (1)
1 2 3 4 5 6
7 8 9 10 11 12
Let n ≥ 3 and k ≥ 3. Then L(Rn,k) =


Bn(1, − 1
√
2
, 1, −1
2
) Xn,k O O
Xt
n,k
Ck(1, −1
3
, 1, − 1
√
6
) O Ck(−1
3
, 0, −1
2
, 0)
O O Bn(1, − 1
√
2
, 1, −1
2
) Xn,k
O Ck(−1
3
, 0, −1
2
, 0) Xt
n,k
Ck(1, −1
3
, 1, − 1
√
6
)


.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 18 / 32
Characteristic polynomial of L(Rn,k) (2)
.
Proposition
..
......
Let n ≥ 3, k ≥ 3 and
pn,k(λ) =
1
2n3k sin β
(gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)), and
qn,k(λ) =
1
2n3k sin γ
(hk(γ) cos(nα) − hk−1(γ) cos((n − 1)α)). Then
|λIn+k − L(Rn,k)| = pn,k(λ) · qn,k(λ).
where λ = 1 + cos α =
2
3
(1 + cos β) =
2
3
(2 + cos γ).
λIn+k − L(Rn,k) =
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) Xn,k
Xt
n,k
Ck(λ − 2
3
, 1
3
, λ − 1
2
, 1
√
6
)
×
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) Xn,k
Xt
n,k
Ck(λ − 4
3
, 1
3
, λ − 3
2
, 1
√
6
)
= pn,k(λ) × qn,k(λ).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 19 / 32
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) (Calculation)
Let λ = 1 + cos α. Then we have
Bn(λ − 1,
1
√
2
, λ − 1,
1
2
) = (λ − 1) An−1(λ − 1,
1
2
) −
1
2
An−2(λ − 1,
1
2
)
= (λ − 1)
(
1
2
)n−1
sin nα
sin α
−
1
2
(
1
2
)n−2
sin(n − 1)α
sin α
=
(
1
2
)n−1
·
1
sin α
((λ − 1) sin nα − sin(n − 1)α)
=
(
1
2
)n−1
·
1
sin α
(cos α sin nα − sin(nα − α))
=
(
1
2
)n−1
·
1
sin α
(cos nα sin α)
=
(
1
2
)n−1
cos nα.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 20 / 32
Bn(λ − 1, 1
√
2
, λ − 1, 1
2
) (Mathematica)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 21 / 32
Cn(η − 2
3
, 1
3
, η − 1
2
, 1
√
6
) (Calculation)
Let η =
2
3
(1 + cos β) and gn(β) = 2 sin(n + 1)β + sin nβ − sin(n − 1)β. Then we have
Cn(η −
2
3
,
1
3
, η −
1
2
,
1
√
6
) =
(
η −
1
2
)
An−1
(
η −
2
3
,
1
3
)
−
1
6
An−2
(
η −
2
3
,
1
3
)
=
(
1
3
)n−1 ((
η −
1
2
)
sin nβ
sin β
−
1
2
sin(n − 1)β
sin β
)
=
(
1
3
)n−1 ((
1
6
+
2
3
cos β
)
sin nβ
sin β
−
1
2
sin(n − 1)β
sin β
)
=
(
1
3
)n−1
1
6 sin β
(sin nβ + 4 cos β sin nβ − 3 sin(nβ − β))
=
(
1
3
)n−1
1
6 sin β
(2 sin(n + 1)β + sin nβ − sin(n − 1)β)
=
(
1
3
)n
1
2 sin β
gn(β).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 22 / 32
Cn(η − 2
3
, 1
3
, η − 1
2
, 1
√
6
) (Mathematica)
Some manual computations for gn(θ) (× sin).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 23 / 32
pn,k(λ) (Mathematica)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 24 / 32
qn,k(λ) (Mathematica)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 25 / 32
Minimum Normalized Cut Mcut(G)
.
Definition (Normalized cut)
..
......
Let G = (V, E) be a connected graph. Let A, B ⊂ V, A ∅, B ∅ and
A ∩ B = ∅. Then the normalized cut Ncut(A, B) of G is defined by
Ncut(A, B) = cut(A, B)
(
1
vol(A)
+
1
vol(B)
)
.
.
Definition (Mcut(G))
..
......
Let G = (V, E) be a connected graph. The Mcut(G) is defined by
Mcut(G) = min{Mcut j(G) | j = 1, 2, . . . }.
Where,
Mcut j(G) = min{Ncut(A, V  A) | cut(A, V  A) = j, A ⊂ V}.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 26 / 32
Mcut(R6,3)
G0 (even) G1 (odd)
1 2 3 4 5 6
7 8 9 10 11 12
1 2 3 4 5 6
7 8 9 10 11 12
Ncut(A0, B0) = 2 × (
1
16
+
1
10
) =
13
40
= 0.325
Ncut(A1, B1) = 3 × (
1
13
+
1
13
) =
6
13
≈ 0.462
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 27 / 32
Spectral Clustering
.
Definition (Lcut(G))
..
......
Let G = (V, E) be a connected graph, λ2 the second smallest eigenvalue
of L(G), U2 = ((U2)i) (1 ≤ i ≤ |V|) a second eigenvector of L(G) with λ2.
We assume that λ2 is simple. Then Lcut(G) is defined as
Lcut(G) = Ncut(V+
(U2) ∪ V0
(U2), V−
(U2)).
1
2
3
4
5
6
7
1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22
Lcut(G) = Mcut(G) Lcut(R4,7) = Mcut(R4,7)
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
Mcut(R6,4) Lcut(R6,4)
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 28 / 32
Roach Graph Observation
.
Proposition
..
......
Let Rn,k be a roach-type graph. If Lcut(Rn,k) = Mcut(Rn,k) then a second
eigen vector of L(Rn,k) is an even vector.
.
Proposition
..
......
Let R2k,k be a roach-type graph, P2k,k a weighted path and P4k a path
graph.
1. λ2(L(P4k)) = 1 − π
4k−1
.
2. λ2(L(R2k,k)) < λ2(L(P4k)).
3. λ2(L(P4k)) < λ2(L(P2k,k)).
4. A second eigenvector of L(R2k,k) is an odd vector.
5. Mcut(R2k,k) < Lcut(R2k,k).
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 29 / 32
Conclusion
We give followings in this talks:
Tridiagonal matrices, Laplacian of graphs and spectral clustering
method.
Concrete formulae of characteristic polynomials of tridiagonal
matrices.
Mathematica computations for characteristic polynomials.
Concrete formulae of eigen-polynomials of (P2k,k) and L(R2k,k).
Proof of Lcut does not always give an optimal cut.
We are not able to decide the simpleness of the second eigenvalue for
Pn,k and Rn,k.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 30 / 32
Reference I
A. Behn, K. R. Driessel, and I. R. Hentzel.
The eigen-problem for some special near-toeplitz centro-skew
tridiagonal matrices.
arXiv:1101.5788v1 [math.SP], Jan 2011.
H-W. Chang, S-E. Liu, and R. Burridge.
Exact eigensystems for some matrices arising from discretizations.
Linear Algebra and its Applications, 430:999–1006, 2009.
J. A. Cuminato and S. McKee.
A note on the eigenvalues of a special class of matrices.
Journal of Computational and Applied Mathematics, 234:2724–2731,
2010.
C. M. da Fonseca.
On the eigenvalues of some tridiagonal matrices.
Journal of Computational and Applied Mathematics, 200:283–286,
2007.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 31 / 32
Reference II
B. Igelnik and D. Simon.
The eigenvalues of a tridiagonal matrix in biogeography.
Applied Mathematics and Computation, 218:195–201, 2011.
S. Kouachi.
Eigenvalues and eigenvectors of tridiagonal matrices.
Electronic Journal of Linear Algebra, 15:115–133, 2006.
D. Simon.
Biogeography-based optimization.
IEEE Transactions on Evolutionary Computation, 12(6):702–713,
2008.
W. Yueh.
Eigenvalues of several tridiagonal matrices.
Applied Mathematics E-Notes, 5:66–74, 2005.
Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 32 / 32
Ad

More Related Content

What's hot (20)

数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く
Yoshihiro Mizoguchi
 
定理証明支援系Coqについて
定理証明支援系Coqについて定理証明支援系Coqについて
定理証明支援系Coqについて
Yoshihiro Mizoguchi
 
Stochastic Variational Inference
Stochastic Variational InferenceStochastic Variational Inference
Stochastic Variational Inference
Kaede Hayashi
 
WebAssembly向け多倍長演算の実装
WebAssembly向け多倍長演算の実装WebAssembly向け多倍長演算の実装
WebAssembly向け多倍長演算の実装
MITSUNARI Shigeo
 
自由エネルギー原理(FEP)とはなにか 20190211
自由エネルギー原理(FEP)とはなにか 20190211自由エネルギー原理(FEP)とはなにか 20190211
自由エネルギー原理(FEP)とはなにか 20190211
Masatoshi Yoshida
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Ken'ichi Matsui
 
Coq関係計算ライブラリの開発と写像の性質の証明
Coq関係計算ライブラリの開発と写像の性質の証明Coq関係計算ライブラリの開発と写像の性質の証明
Coq関係計算ライブラリの開発と写像の性質の証明
Yoshihiro Mizoguchi
 
行列計算を利用したデータ解析技術
行列計算を利用したデータ解析技術行列計算を利用したデータ解析技術
行列計算を利用したデータ解析技術
Yoshihiro Mizoguchi
 
[論文解説]KGAT:Knowledge Graph Attention Network for Recommendation
[論文解説]KGAT:Knowledge Graph Attention Network for Recommendation[論文解説]KGAT:Knowledge Graph Attention Network for Recommendation
[論文解説]KGAT:Knowledge Graph Attention Network for Recommendation
ssuser3e398d
 
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
Ichigaku Takigawa
 
異常の定義と推定
異常の定義と推定異常の定義と推定
異常の定義と推定
Satoshi Hara
 
よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理
Masatoshi Yoshida
 
オントロジーとは?
オントロジーとは?オントロジーとは?
オントロジーとは?
Kouji Kozaki
 
純粋関数型アルゴリズム入門
純粋関数型アルゴリズム入門純粋関数型アルゴリズム入門
純粋関数型アルゴリズム入門
Kimikazu Kato
 
SAT/SMTソルバの仕組み
SAT/SMTソルバの仕組みSAT/SMTソルバの仕組み
SAT/SMTソルバの仕組み
Masahiro Sakai
 
PsychoPyを使った初学者向けの心理実験環境の構築
PsychoPyを使った初学者向けの心理実験環境の構築PsychoPyを使った初学者向けの心理実験環境の構築
PsychoPyを使った初学者向けの心理実験環境の構築
Hirokazu Ogawa
 
組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門
Norishige Fukushima
 
Deep learningの発展と化学反応への応用 - 日本化学会第101春季大会(2021)
Deep learningの発展と化学反応への応用 - 日本化学会第101春季大会(2021)Deep learningの発展と化学反応への応用 - 日本化学会第101春季大会(2021)
Deep learningの発展と化学反応への応用 - 日本化学会第101春季大会(2021)
Preferred Networks
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
Ken'ichi Matsui
 
Variational AutoEncoder
Variational AutoEncoderVariational AutoEncoder
Variational AutoEncoder
Kazuki Nitta
 
数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く
Yoshihiro Mizoguchi
 
定理証明支援系Coqについて
定理証明支援系Coqについて定理証明支援系Coqについて
定理証明支援系Coqについて
Yoshihiro Mizoguchi
 
Stochastic Variational Inference
Stochastic Variational InferenceStochastic Variational Inference
Stochastic Variational Inference
Kaede Hayashi
 
WebAssembly向け多倍長演算の実装
WebAssembly向け多倍長演算の実装WebAssembly向け多倍長演算の実装
WebAssembly向け多倍長演算の実装
MITSUNARI Shigeo
 
自由エネルギー原理(FEP)とはなにか 20190211
自由エネルギー原理(FEP)とはなにか 20190211自由エネルギー原理(FEP)とはなにか 20190211
自由エネルギー原理(FEP)とはなにか 20190211
Masatoshi Yoshida
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Ken'ichi Matsui
 
Coq関係計算ライブラリの開発と写像の性質の証明
Coq関係計算ライブラリの開発と写像の性質の証明Coq関係計算ライブラリの開発と写像の性質の証明
Coq関係計算ライブラリの開発と写像の性質の証明
Yoshihiro Mizoguchi
 
行列計算を利用したデータ解析技術
行列計算を利用したデータ解析技術行列計算を利用したデータ解析技術
行列計算を利用したデータ解析技術
Yoshihiro Mizoguchi
 
[論文解説]KGAT:Knowledge Graph Attention Network for Recommendation
[論文解説]KGAT:Knowledge Graph Attention Network for Recommendation[論文解説]KGAT:Knowledge Graph Attention Network for Recommendation
[論文解説]KGAT:Knowledge Graph Attention Network for Recommendation
ssuser3e398d
 
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
Ichigaku Takigawa
 
異常の定義と推定
異常の定義と推定異常の定義と推定
異常の定義と推定
Satoshi Hara
 
よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理
Masatoshi Yoshida
 
オントロジーとは?
オントロジーとは?オントロジーとは?
オントロジーとは?
Kouji Kozaki
 
純粋関数型アルゴリズム入門
純粋関数型アルゴリズム入門純粋関数型アルゴリズム入門
純粋関数型アルゴリズム入門
Kimikazu Kato
 
SAT/SMTソルバの仕組み
SAT/SMTソルバの仕組みSAT/SMTソルバの仕組み
SAT/SMTソルバの仕組み
Masahiro Sakai
 
PsychoPyを使った初学者向けの心理実験環境の構築
PsychoPyを使った初学者向けの心理実験環境の構築PsychoPyを使った初学者向けの心理実験環境の構築
PsychoPyを使った初学者向けの心理実験環境の構築
Hirokazu Ogawa
 
組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門
Norishige Fukushima
 
Deep learningの発展と化学反応への応用 - 日本化学会第101春季大会(2021)
Deep learningの発展と化学反応への応用 - 日本化学会第101春季大会(2021)Deep learningの発展と化学反応への応用 - 日本化学会第101春季大会(2021)
Deep learningの発展と化学反応への応用 - 日本化学会第101春季大会(2021)
Preferred Networks
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
Ken'ichi Matsui
 
Variational AutoEncoder
Variational AutoEncoderVariational AutoEncoder
Variational AutoEncoder
Kazuki Nitta
 

Similar to Graph partitioning and characteristic polynomials of Laplacian matrics of Roach-type graphs (20)

dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
Andy Hone
 
hone_durham
hone_durhamhone_durham
hone_durham
Andy Hone
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
VjekoslavKovac1
 
H function and a problem related to a string
H function and a problem related to a stringH function and a problem related to a string
H function and a problem related to a string
Alexander Decker
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
IOSR Journals
 
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
The Statistical and Applied Mathematical Sciences Institute
 
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf
d00a7ece
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
amnahnura
 
Adaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte CarloAdaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte Carlo
Christian Robert
 
Classification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeClassification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum plane
Steven Duplij (Stepan Douplii)
 
lec4.ppt
lec4.pptlec4.ppt
lec4.ppt
Rai Saheb Bhanwar Singh College Nasrullaganj
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
mathsjournal
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
mathsjournal
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
mathsjournal
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
mathsjournal
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan group
Keigo Nitadori
 
A note on variational inference for the univariate Gaussian
A note on variational inference for the univariate GaussianA note on variational inference for the univariate Gaussian
A note on variational inference for the univariate Gaussian
Tomonari Masada
 
MODULE 1_Calculus_part 1_Presentation.pdf
MODULE 1_Calculus_part 1_Presentation.pdfMODULE 1_Calculus_part 1_Presentation.pdf
MODULE 1_Calculus_part 1_Presentation.pdf
Shivanshu68
 
Linear_system, Linear_system, Linear_system.pdf
Linear_system, Linear_system, Linear_system.pdfLinear_system, Linear_system, Linear_system.pdf
Linear_system, Linear_system, Linear_system.pdf
FaheemAbbas82
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
inventionjournals
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
Andy Hone
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
VjekoslavKovac1
 
H function and a problem related to a string
H function and a problem related to a stringH function and a problem related to a string
H function and a problem related to a string
Alexander Decker
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
IOSR Journals
 
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf
d00a7ece
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
amnahnura
 
Adaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte CarloAdaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte Carlo
Christian Robert
 
Classification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum planeClassification of Uq(sl2)-module algebra structures on the quantum plane
Classification of Uq(sl2)-module algebra structures on the quantum plane
Steven Duplij (Stepan Douplii)
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
mathsjournal
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
mathsjournal
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
mathsjournal
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
mathsjournal
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan group
Keigo Nitadori
 
A note on variational inference for the univariate Gaussian
A note on variational inference for the univariate GaussianA note on variational inference for the univariate Gaussian
A note on variational inference for the univariate Gaussian
Tomonari Masada
 
MODULE 1_Calculus_part 1_Presentation.pdf
MODULE 1_Calculus_part 1_Presentation.pdfMODULE 1_Calculus_part 1_Presentation.pdf
MODULE 1_Calculus_part 1_Presentation.pdf
Shivanshu68
 
Linear_system, Linear_system, Linear_system.pdf
Linear_system, Linear_system, Linear_system.pdfLinear_system, Linear_system, Linear_system.pdf
Linear_system, Linear_system, Linear_system.pdf
FaheemAbbas82
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
inventionjournals
 
Ad

More from Yoshihiro Mizoguchi (16)

Amazon AWSの使い方
Amazon AWSの使い方Amazon AWSの使い方
Amazon AWSの使い方
Yoshihiro Mizoguchi
 
ShareLaTeXの使い方
ShareLaTeXの使い方ShareLaTeXの使い方
ShareLaTeXの使い方
Yoshihiro Mizoguchi
 
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional O...
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional  O...Symbolic Computations in Conformal Geometric Algebra for Three Dimensional  O...
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional O...
Yoshihiro Mizoguchi
 
Verification of a brick wang tiling algorithm
Verification of a brick wang tiling algorithmVerification of a brick wang tiling algorithm
Verification of a brick wang tiling algorithm
Yoshihiro Mizoguchi
 
A Coq Library for the Theory of Relational Calculus
A Coq Library for the Theory of Relational CalculusA Coq Library for the Theory of Relational Calculus
A Coq Library for the Theory of Relational Calculus
Yoshihiro Mizoguchi
 
Algebras for programming languages
Algebras for programming languagesAlgebras for programming languages
Algebras for programming languages
Yoshihiro Mizoguchi
 
Coqチュートリアル
CoqチュートリアルCoqチュートリアル
Coqチュートリアル
Yoshihiro Mizoguchi
 
Mac bookでwebサーバーを起動する方法
Mac bookでwebサーバーを起動する方法Mac bookでwebサーバーを起動する方法
Mac bookでwebサーバーを起動する方法
Yoshihiro Mizoguchi
 
有限オートマトンとスティッカー系に関するCoqによる形式証明について
有限オートマトンとスティッカー系に関するCoqによる形式証明について有限オートマトンとスティッカー系に関するCoqによる形式証明について
有限オートマトンとスティッカー系に関するCoqによる形式証明について
Yoshihiro Mizoguchi
 
計算可能実数とは
計算可能実数とは計算可能実数とは
計算可能実数とは
Yoshihiro Mizoguchi
 
複素数・四元数と図形の回転
複素数・四元数と図形の回転複素数・四元数と図形の回転
複素数・四元数と図形の回転
Yoshihiro Mizoguchi
 
グラフデータ構造と5色定理
グラフデータ構造と5色定理グラフデータ構造と5色定理
グラフデータ構造と5色定理
Yoshihiro Mizoguchi
 
圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド
Yoshihiro Mizoguchi
 
Theory of Relations (2)
Theory of Relations (2)Theory of Relations (2)
Theory of Relations (2)
Yoshihiro Mizoguchi
 
Generalization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on GroupsGeneralization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on Groups
Yoshihiro Mizoguchi
 
Theory of Relations (1)
Theory of Relations (1)Theory of Relations (1)
Theory of Relations (1)
Yoshihiro Mizoguchi
 
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional O...
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional  O...Symbolic Computations in Conformal Geometric Algebra for Three Dimensional  O...
Symbolic Computations in Conformal Geometric Algebra for Three Dimensional O...
Yoshihiro Mizoguchi
 
Verification of a brick wang tiling algorithm
Verification of a brick wang tiling algorithmVerification of a brick wang tiling algorithm
Verification of a brick wang tiling algorithm
Yoshihiro Mizoguchi
 
A Coq Library for the Theory of Relational Calculus
A Coq Library for the Theory of Relational CalculusA Coq Library for the Theory of Relational Calculus
A Coq Library for the Theory of Relational Calculus
Yoshihiro Mizoguchi
 
Algebras for programming languages
Algebras for programming languagesAlgebras for programming languages
Algebras for programming languages
Yoshihiro Mizoguchi
 
Mac bookでwebサーバーを起動する方法
Mac bookでwebサーバーを起動する方法Mac bookでwebサーバーを起動する方法
Mac bookでwebサーバーを起動する方法
Yoshihiro Mizoguchi
 
有限オートマトンとスティッカー系に関するCoqによる形式証明について
有限オートマトンとスティッカー系に関するCoqによる形式証明について有限オートマトンとスティッカー系に関するCoqによる形式証明について
有限オートマトンとスティッカー系に関するCoqによる形式証明について
Yoshihiro Mizoguchi
 
複素数・四元数と図形の回転
複素数・四元数と図形の回転複素数・四元数と図形の回転
複素数・四元数と図形の回転
Yoshihiro Mizoguchi
 
グラフデータ構造と5色定理
グラフデータ構造と5色定理グラフデータ構造と5色定理
グラフデータ構造と5色定理
Yoshihiro Mizoguchi
 
圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド
Yoshihiro Mizoguchi
 
Generalization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on GroupsGeneralization of Compositons of Cellular Automata on Groups
Generalization of Compositons of Cellular Automata on Groups
Yoshihiro Mizoguchi
 
Ad

Recently uploaded (20)

Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Leonel Morgado
 
How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18
Celine George
 
UPMVLE migration to ARAL. A step- by- step guide
UPMVLE migration to ARAL. A step- by- step guideUPMVLE migration to ARAL. A step- by- step guide
UPMVLE migration to ARAL. A step- by- step guide
abmerca
 
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
Dr. Nasir Mustafa
 
spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)
Mohamed Rizk Khodair
 
What is the Philosophy of Statistics? (and how I was drawn to it)
What is the Philosophy of Statistics? (and how I was drawn to it)What is the Philosophy of Statistics? (and how I was drawn to it)
What is the Philosophy of Statistics? (and how I was drawn to it)
jemille6
 
LDMMIA Reiki Yoga S5 Daily Living Workshop
LDMMIA Reiki Yoga S5 Daily Living WorkshopLDMMIA Reiki Yoga S5 Daily Living Workshop
LDMMIA Reiki Yoga S5 Daily Living Workshop
LDM Mia eStudios
 
2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx
mansk2
 
How to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo SlidesHow to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo Slides
Celine George
 
Final Evaluation.docx...........................
Final Evaluation.docx...........................Final Evaluation.docx...........................
Final Evaluation.docx...........................
l1bbyburrell
 
Cultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptxCultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptx
UmeshTimilsina1
 
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptxANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
Mayuri Chavan
 
Chemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptxChemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptx
Mayuri Chavan
 
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast BrooklynBridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
i4jd41bk
 
E-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26ASE-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26AS
Abinash Palangdar
 
Myopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduateMyopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduate
Mohamed Rizk Khodair
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
Nguyen Thanh Tu Collection
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
Rock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian HistoryRock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian History
Virag Sontakke
 
The History of Kashmir Karkota Dynasty NEP.pptx
The History of Kashmir Karkota Dynasty NEP.pptxThe History of Kashmir Karkota Dynasty NEP.pptx
The History of Kashmir Karkota Dynasty NEP.pptx
Arya Mahila P. G. College, Banaras Hindu University, Varanasi, India.
 
Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Leonel Morgado
 
How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18
Celine George
 
UPMVLE migration to ARAL. A step- by- step guide
UPMVLE migration to ARAL. A step- by- step guideUPMVLE migration to ARAL. A step- by- step guide
UPMVLE migration to ARAL. A step- by- step guide
abmerca
 
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
Dr. Nasir Mustafa
 
spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)
Mohamed Rizk Khodair
 
What is the Philosophy of Statistics? (and how I was drawn to it)
What is the Philosophy of Statistics? (and how I was drawn to it)What is the Philosophy of Statistics? (and how I was drawn to it)
What is the Philosophy of Statistics? (and how I was drawn to it)
jemille6
 
LDMMIA Reiki Yoga S5 Daily Living Workshop
LDMMIA Reiki Yoga S5 Daily Living WorkshopLDMMIA Reiki Yoga S5 Daily Living Workshop
LDMMIA Reiki Yoga S5 Daily Living Workshop
LDM Mia eStudios
 
2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx
mansk2
 
How to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo SlidesHow to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo Slides
Celine George
 
Final Evaluation.docx...........................
Final Evaluation.docx...........................Final Evaluation.docx...........................
Final Evaluation.docx...........................
l1bbyburrell
 
Cultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptxCultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptx
UmeshTimilsina1
 
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptxANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
Mayuri Chavan
 
Chemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptxChemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptx
Mayuri Chavan
 
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast BrooklynBridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
i4jd41bk
 
E-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26ASE-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26AS
Abinash Palangdar
 
Myopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduateMyopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduate
Mohamed Rizk Khodair
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
Nguyen Thanh Tu Collection
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
Rock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian HistoryRock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian History
Virag Sontakke
 

Graph partitioning and characteristic polynomials of Laplacian matrics of Roach-type graphs

  • 1. Graph partitioning and eigen polynomials of Laplacian matrices of Roach-type graphs Yoshihiro Mizoguchi Institute of Mathematics for Industry, Kyushu University   ym@imi.kyushu-u.ac.jp Algebraic Graph Theory, Spectral Graph Theory and Related Topics 5th Jan. 2013 at Nagoya University Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 1 / 32
  • 2. Table of contents ...1 Introduction ...2 Chebyshev polynomials ...3 Tridiagonal matrices ...4 Laplacian Matrix ...5 Mcut, Lcut and spectral clustering ...6 Conclusion Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 2 / 32
  • 3. Biogeography-Based Optimization (1) Let Ps be the probability that the habitat contains exactly S species. We can arrange ˙Ps equations into the single matrix equation   ˙P0 ˙P1 ˙P2 ... ˙Pn−1 ˙Pn   =   −(λ0 + µ0) µ1 0 · · · 0 λ0 −(λ1 + µ1) µ2 ... ... ... ... ... ... ... ... ... λn−2 −(λn−1 + µn−1) µn 0 . . . 0 λn−1 −(λn + µn)     P0 P1 P2 ... Pn−1 Pn   where λs and µs are the immigration and emigration rates when there are S species in the habitat. Generally λ0 > λ1 > · · · > λn and µ0 < µ1 < · · · < µn hold and we assume λs = n−s n and µs = s n in this talk. [Sim08] D.Simon, Biogeography-Based Optimization, IEEE Trans. on evolutionary computation, 2008. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 3 / 32
  • 4. Biogeography-Based Optimization (2) . Theorem .. ...... The (n + 1) eigenvalues of the biogeography matrix A =   −1 1/n 0 · · · 0 n/n −1 2/n ... ... ... ... ... ... ... ... ... 2/n −1 n/n 0 . . . 0 1/n −1   are {0, −2/n, −4/n, . . . , −2}. [IS11] B.Igelnik, D. Simon, The eigenvalues of a tridiagonal matrix in biogeography, Appl. Mathematics and Computation, 2011. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 4 / 32
  • 5. Heat equation (Crank-Nicolson method) (1) ut = uxx x ∈ [0, 1] and t > 0 with initial and Dirichlet boundary condition given by: u(x, 0) = f(x), u(0, t) = g(t) and u(1, t) = h(t) The finite difference discretization can be expressed as: Aun+1 = Bun + c where A =   1 + α −r/2 0 −r/2 1 + r −r/2 ... ... ... −r/2 1 + r −r/2 0 −r/2 1 + α   Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 5 / 32
  • 6. Heat equation (Crank-Nicolson method) (2) and B =   1 − β r/2 0 r/2 1 − r r/2 ... ... ... r/2 1 − r r/2 0 r/2 1 − β   . We note un = (un 1 , un 2 , . . . , un m)T. The parapmeters α and β are given by: α = β = 3r/2 for the implicit boundary conditions; α = r and β = 2r for the explicit boundary conditions The iteration matrix M(r) = A−1B controls the stability of the numerical method to compute Aun+1 = Bun + c. [CM10] J.A. Cuminato, S. McKee, A note on the eigenvalues of a special class of matrices, J. of Computational and Applied Mathematics, 2010. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 6 / 32
  • 7. Tridiagonal Matrix (1) An =   −α + b c 0 0 · · · 0 0 a b c 0 · · · 0 0 0 a b c · · · 0 0 · · · · · · · · · · · · · · · · · · · · · 0 0 0 0 · · · b c 0 0 0 0 · · · a −β + b   n×n . Theorem .. ...... Suppose α = β = √ ac 0. Then the eigenvalues λk of An are given by λk = b + 2 √ ac cos kπ n and the corresponding eigenvectors u(k) = (u(k) j ) are given by u(k) j = ρj−1 sin k(2j − 1)π 2n for k = 1, 2, · · · , n − 1 and u(n) j = (−ρ)j−1 where ρ = √ a/c. [Yue05] W-C. Yueh, Eigenvalues of several tridiagonal matrices, Applied Mathematics E-Notes, 2005. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 7 / 32
  • 8. Tridiagonal Matrix (2) Consider the n × n matrix C = (min{ai − b, aj − b})i,j=1,...,n. . Proposition .. ...... For a > 0 and a b, the tridiagonal matrix of order n Tn =   1 + a a−b −1 −1 2 −1 ... ... ... −1 2 −1 −1 1   is the inverse of (1/a)C. [dF07] C.M. da Fonseca, On the eigenvalues of some tridiagonal matrices, J. of Computational and Applied Mathematics, 2007. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 8 / 32
  • 9. Chebyshev polynomials For n ∈ N and x ∈ R, we define functions Tn(x) and Un(x) as follows. T0(x) = 1, T1(x) = x, U0(x) = 1, U1(x) = 2x, Tn+1(x) = 2xTn(x) − Tn−1(x), and Un+1(x) = 2xUn(x) − Un−1(x). We note cos nθ = Tn(cos θ), and sin(n + 1)θ = Un(cos θ) sin θ for θ ∈ R. . Proposition .. ...... Let x = cos θ. Then Tn(x) = 0 ⇔ x = cos( (2k + 1)π 2n ) (k = 0, · · · , n − 1). Un(x) = 0 ⇔ x = cos( kπ n + 1 ) (k = 1, · · · , n). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 9 / 32
  • 10. Tridiagonal matrix An(a, b) We define a n × n matrix An(a, b) as follows: An(a, b) =   a b 0 · · · · · · · · · 0 b a b 0 ... 0 b a b 0 ... ... ... ... ... ... ... ... ... 0 b a b 0 ... 0 b a b 0 · · · · · · · · · 0 b a   . We put |A0(a, 1)| = 1, then |An(a, 1)| = a|An−1(a, 1)| − |An−2(a, 1)|, |A1(a, 1)| = a and An(a, b) = bn · An (a/b, 1). . Proposition .. ...... |An(a, b)| = bn · sin(n + 1)θ sin θ where cos θ = a 2b . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 10 / 32
  • 11. Tridiagonal matrix Bn and Cn (1) Let n ≥ 3. Bn(a0, b0, a, b) =   a0 b0 0 · · · 0 b0 0 An−1(a, b) ... 0   Cn(a, b, a0, b0) =   0 An−1(a, b) ... 0 b0 0 · · · 0 b0 a0   We note that |Bn(a0, b0, a, b)| = a0|An−1(a, b)| − b2 0 |An−2(a, b)|, and ||Cn(a, b, a0, b0)|| = |a0|An−1(a, b)| − b2 0 |An−2(a, b)||. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 11 / 32
  • 12. Tridiagonal matrix Bn and Cn (2) We define functions gn(β) = 2 sin((n + 1)β) + sin nβ − sin((n − 1)β), and hn(β) = 2 sin((n + 1)β) − sin nβ − sin((n − 1)β) before introducing the next Lemma. . Proposition .. ...... Let n ≥ 3. Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) = 1 2n−1 cos nα, (λ = 1 + cos α), Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) = 1 2 · 3n · sin β gn(β), (η = 2 3 (1 + cos β)), Cn(µ − 4 3 , 1 3 , µ − 3 2 , 1 √ 6 ) = 1 2 · 3n · sin β hn(β), (µ = 2 3 (2 + cos β)). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 12 / 32
  • 13. Tridiagonal matrix Qn(a0, b0, a, b) Let n ≥ 4. We define n × n matrix Qn(a0, b0, a, b) as follows: Qn(a0, b0, a, b) =   a0 b0 0 · · · 0 b0 ... 0 An−2(a, b) 0 ... b0 0 · · · 0 b0 a0   We note that |Qn(a0, b0, a, b)| = a0|Cn−1(a, b, a0, b0)| − b2 0 |Cn−2(a, b, a0, b0)|. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 13 / 32
  • 14. Laplacian matrix of a graph . Definition (Weighted normalized Laplacian) .. ...... The weighted normalized Laplacian L(G) = (ℓij) is defined as ℓij =    1 − wj j dj if i = j, − wi j √ didj if vi and vj are adjacent and i j, 0 otherwise. The adjacency matrix A(P5) and the normalized Laplacian matrix L(P5) of a path graph P5. A(P5) =   0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0   L(P5) =   1 − 1 √ 2 0 0 0 − 1 √ 2 1 −1 2 0 0 0 −1 2 1 −1 2 0 0 0 −1 2 1 − 1 √ 2 0 0 0 − 1 √ 2 1   Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 14 / 32
  • 15. Characteristic polynomial of L(Pn) . Proposition .. ...... Let n ≥ 4. |λIn − L(Pn)| = − ( 1 2 )n−2 (sin α sin((n − 1)α)) where λ = 1 + cos α. That is λ = 1 − cos( kπ n − 1 ) (k = 0, . . . , n − 1). We note L(Pn) = Qn  1, − 1 √ 2 , 1, − 1 2   , and λIn − L(Pn) = Qn  λ − 1, 1 √ 2 , λ − 1, 1 2   . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 15 / 32
  • 16. Characteristic polynomial of L(Pn,k) (1) Let n ≥ 3 and k ≥ 3. Then L(Pn,k) =   Bn(1, − 1 √ 2 , 1, −1 2 ) Xn,k Xt n,k Ck(2 3 , −1 3 , 1 2 , − 1 √ 6 )   where Xn,k is the n × k matrix defined by Xn,k =   0 · · · · · · 0 ... ... 0 0 ... − 1 √ 6 0 · · · 0   . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 16 / 32
  • 17. Characteristic polynomial of L(Pn,k) (2) . Proposition .. ...... Let pn,k(λ) = 1 2n3k sin β (gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)). Then λIn+k − L(Pn,k) = pn,k(λ), where λ = 1 + cos α and λ = 2 3 (1 + cos β). λIn+k − L(Pn,k) = Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) Xn,k Xt n,k Ck(λ − 2 3 , 1 3 , λ − 1 2 , 1 √ 6 ) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 17 / 32
  • 18. Characteristic polynomial of L(Rn,k) (1) 1 2 3 4 5 6 7 8 9 10 11 12 Let n ≥ 3 and k ≥ 3. Then L(Rn,k) =   Bn(1, − 1 √ 2 , 1, −1 2 ) Xn,k O O Xt n,k Ck(1, −1 3 , 1, − 1 √ 6 ) O Ck(−1 3 , 0, −1 2 , 0) O O Bn(1, − 1 √ 2 , 1, −1 2 ) Xn,k O Ck(−1 3 , 0, −1 2 , 0) Xt n,k Ck(1, −1 3 , 1, − 1 √ 6 )   . Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 18 / 32
  • 19. Characteristic polynomial of L(Rn,k) (2) . Proposition .. ...... Let n ≥ 3, k ≥ 3 and pn,k(λ) = 1 2n3k sin β (gk(β) cos(nα)) − gk−1(β) cos((n − 1)α)), and qn,k(λ) = 1 2n3k sin γ (hk(γ) cos(nα) − hk−1(γ) cos((n − 1)α)). Then |λIn+k − L(Rn,k)| = pn,k(λ) · qn,k(λ). where λ = 1 + cos α = 2 3 (1 + cos β) = 2 3 (2 + cos γ). λIn+k − L(Rn,k) = Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) Xn,k Xt n,k Ck(λ − 2 3 , 1 3 , λ − 1 2 , 1 √ 6 ) × Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) Xn,k Xt n,k Ck(λ − 4 3 , 1 3 , λ − 3 2 , 1 √ 6 ) = pn,k(λ) × qn,k(λ). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 19 / 32
  • 20. Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) (Calculation) Let λ = 1 + cos α. Then we have Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) = (λ − 1) An−1(λ − 1, 1 2 ) − 1 2 An−2(λ − 1, 1 2 ) = (λ − 1) ( 1 2 )n−1 sin nα sin α − 1 2 ( 1 2 )n−2 sin(n − 1)α sin α = ( 1 2 )n−1 · 1 sin α ((λ − 1) sin nα − sin(n − 1)α) = ( 1 2 )n−1 · 1 sin α (cos α sin nα − sin(nα − α)) = ( 1 2 )n−1 · 1 sin α (cos nα sin α) = ( 1 2 )n−1 cos nα. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 20 / 32
  • 21. Bn(λ − 1, 1 √ 2 , λ − 1, 1 2 ) (Mathematica) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 21 / 32
  • 22. Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) (Calculation) Let η = 2 3 (1 + cos β) and gn(β) = 2 sin(n + 1)β + sin nβ − sin(n − 1)β. Then we have Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) = ( η − 1 2 ) An−1 ( η − 2 3 , 1 3 ) − 1 6 An−2 ( η − 2 3 , 1 3 ) = ( 1 3 )n−1 (( η − 1 2 ) sin nβ sin β − 1 2 sin(n − 1)β sin β ) = ( 1 3 )n−1 (( 1 6 + 2 3 cos β ) sin nβ sin β − 1 2 sin(n − 1)β sin β ) = ( 1 3 )n−1 1 6 sin β (sin nβ + 4 cos β sin nβ − 3 sin(nβ − β)) = ( 1 3 )n−1 1 6 sin β (2 sin(n + 1)β + sin nβ − sin(n − 1)β) = ( 1 3 )n 1 2 sin β gn(β). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 22 / 32
  • 23. Cn(η − 2 3 , 1 3 , η − 1 2 , 1 √ 6 ) (Mathematica) Some manual computations for gn(θ) (× sin). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 23 / 32
  • 24. pn,k(λ) (Mathematica) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 24 / 32
  • 25. qn,k(λ) (Mathematica) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 25 / 32
  • 26. Minimum Normalized Cut Mcut(G) . Definition (Normalized cut) .. ...... Let G = (V, E) be a connected graph. Let A, B ⊂ V, A ∅, B ∅ and A ∩ B = ∅. Then the normalized cut Ncut(A, B) of G is defined by Ncut(A, B) = cut(A, B) ( 1 vol(A) + 1 vol(B) ) . . Definition (Mcut(G)) .. ...... Let G = (V, E) be a connected graph. The Mcut(G) is defined by Mcut(G) = min{Mcut j(G) | j = 1, 2, . . . }. Where, Mcut j(G) = min{Ncut(A, V A) | cut(A, V A) = j, A ⊂ V}. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 26 / 32
  • 27. Mcut(R6,3) G0 (even) G1 (odd) 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 Ncut(A0, B0) = 2 × ( 1 16 + 1 10 ) = 13 40 = 0.325 Ncut(A1, B1) = 3 × ( 1 13 + 1 13 ) = 6 13 ≈ 0.462 Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 27 / 32
  • 28. Spectral Clustering . Definition (Lcut(G)) .. ...... Let G = (V, E) be a connected graph, λ2 the second smallest eigenvalue of L(G), U2 = ((U2)i) (1 ≤ i ≤ |V|) a second eigenvector of L(G) with λ2. We assume that λ2 is simple. Then Lcut(G) is defined as Lcut(G) = Ncut(V+ (U2) ∪ V0 (U2), V− (U2)). 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Lcut(G) = Mcut(G) Lcut(R4,7) = Mcut(R4,7) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mcut(R6,4) Lcut(R6,4) Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 28 / 32
  • 29. Roach Graph Observation . Proposition .. ...... Let Rn,k be a roach-type graph. If Lcut(Rn,k) = Mcut(Rn,k) then a second eigen vector of L(Rn,k) is an even vector. . Proposition .. ...... Let R2k,k be a roach-type graph, P2k,k a weighted path and P4k a path graph. 1. λ2(L(P4k)) = 1 − π 4k−1 . 2. λ2(L(R2k,k)) < λ2(L(P4k)). 3. λ2(L(P4k)) < λ2(L(P2k,k)). 4. A second eigenvector of L(R2k,k) is an odd vector. 5. Mcut(R2k,k) < Lcut(R2k,k). Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 29 / 32
  • 30. Conclusion We give followings in this talks: Tridiagonal matrices, Laplacian of graphs and spectral clustering method. Concrete formulae of characteristic polynomials of tridiagonal matrices. Mathematica computations for characteristic polynomials. Concrete formulae of eigen-polynomials of (P2k,k) and L(R2k,k). Proof of Lcut does not always give an optimal cut. We are not able to decide the simpleness of the second eigenvalue for Pn,k and Rn,k. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 30 / 32
  • 31. Reference I A. Behn, K. R. Driessel, and I. R. Hentzel. The eigen-problem for some special near-toeplitz centro-skew tridiagonal matrices. arXiv:1101.5788v1 [math.SP], Jan 2011. H-W. Chang, S-E. Liu, and R. Burridge. Exact eigensystems for some matrices arising from discretizations. Linear Algebra and its Applications, 430:999–1006, 2009. J. A. Cuminato and S. McKee. A note on the eigenvalues of a special class of matrices. Journal of Computational and Applied Mathematics, 234:2724–2731, 2010. C. M. da Fonseca. On the eigenvalues of some tridiagonal matrices. Journal of Computational and Applied Mathematics, 200:283–286, 2007. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 31 / 32
  • 32. Reference II B. Igelnik and D. Simon. The eigenvalues of a tridiagonal matrix in biogeography. Applied Mathematics and Computation, 218:195–201, 2011. S. Kouachi. Eigenvalues and eigenvectors of tridiagonal matrices. Electronic Journal of Linear Algebra, 15:115–133, 2006. D. Simon. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6):702–713, 2008. W. Yueh. Eigenvalues of several tridiagonal matrices. Applied Mathematics E-Notes, 5:66–74, 2005. Y.Mizoguchi (Kyushu University) Roach-type Graph Laplacian Matrices 2013/01/05 32 / 32
  翻译: