This document discusses feature selection concepts and methods. It defines features as attributes that determine which class an instance belongs to. Feature selection aims to select a relevant subset of features by removing irrelevant, redundant and unnecessary data. This improves learning accuracy, model performance and interpretability. The document categorizes feature selection algorithms as filter, wrapper or embedded methods based on how they evaluate feature subsets. It also discusses concepts like feature relevance, search strategies, successor generation and evaluation measures used in feature selection algorithms.