Token based security (ID Cards) have been used to restrict access to the Secured systems. The purpose of
Biometrics is to identify / verify the correctness of an individual by using certain physiological or
behavioural traits associated with the person. Current biometric systems make use of face, fingerprints,
iris, hand geometry, retina, signature, palm print, voiceprint and so on to establish a person’s identity.
Biometrics is one of the primary key concepts of real application domains such as aadhar card, passport,
pan card, etc. In this paper, we consider face and fingerprint patterns for identification/verification. Using
this data we proposed a novel model for authentication in multimodal biometrics often called ContextSensitive Exponent Associative Memory Model (CSEAM). It provides different stages of security for
biometrics fusion patterns. In stage 1, fusion of face and finger patterns using Principal Component
Analysis (PCA), in stage 2 by applying Sparse SVD decomposition to extract the feature patterns from the
fusion data and face pattern and then in stage 3, using CSEAM model, the extracted feature vectors can be
encoded. The final key will be stored in the smart cards as Associative Memory (M), which is often called
Context-Sensitive Associative Memory (CSAM). In CSEAM model, the CSEAM will be computed using
exponential kronecker product for encoding and verification of the chosen samples from the users. The
exponential of matrix can be computed in various ways such as Taylor Series, Pade Approximation and
also using Ordinary Differential Equations (O.D.E.). Among these approaches we considered first two
methods for computing exponential of a feature space. The result analysis of SVD and Sparse SVD for
feature extraction process and also authentication/verification process of the proposed system in terms of
performance measures as Mean square error rates will be presented.