SlideShare a Scribd company logo
PRESENTED BY:-     GUIDED BY:-

SUMEET S. KAKANI   PROF. V. M. UMALE


                                       1
   Introduction
   What is an Artificial Neural Network?
    ANN Structure
   System Overview
   Local image sampling
   The Self Organizing-Map
   Perceptron learning rule
   Convolutional Network
   System details
   Implementation
   Applications
   Conclusion
   References

                                            2
1. Why face recognition?
    Face Recognition systems enhance security, provide secure
     access control, and protect personal privacy
    Improvement in the performance and reliability of face
     recognition
    No need to remember any passwords or carry any ID

2.   Why neural network?
    Adaptive learning: An ability to learn how to do tasks
    Self-Organization: An ANN can create its own organisation
    Remarkable ability to derive meaning from complicated or
     imprecise data

                                                              3
   Definition: A Computing system made of a number of simple,
    highly interconnected processing elements, which process
    information by their dynamic state response to external input.

   Motivated right from its inception by the recognition.

   A machine that is designed to model the way in which the brain
    performs a particular task.

   A massively parallel distributed processor.

   Resembles the brain in two respects:

     1. Knowledge is acquired through a learning process.

     2. Synaptic weights, are used to store the acquired knowledge.


                                                              4
   A Layer with n inputs xi.

   correspondent weights Wji (i=1, 2, 3...n)

   The function ∑ sums the n weighted inputs and passes
    the result through a non-linear function φ(•), called
    the activation function.

   The function φ (•) processes the adding results plus a
    threshold value θ, thus producing the output Y.

                                                      5
a) Processing units
 Receive input
 The adjustment of the weights
 Three types of units: 1. input units 2. hidden units 3. output units
 During operation, units can be updated either synchronously or
  asynchronously.

b) Connections between units
                     n
           Y(t) = φ( ∑ wij(t) Xj(t) + θ)
                     j=1
c) Transfer Function:
    The behavior of an ANN depends on both the weights and the
   transfer function that is specified for the units.
 This function typically falls into one of two categories:

   Linear : the output activity is proportional to the total weighted
    output.

   Threshold: the output is set at one of two levels, depending on
    whether the total input is greater than or less than some threshold
    value.                                                         6
Following are the basic processes that are used by the system
 to capture and compare images:

1. Detection:
   Recognition software searches the field of view of a video
   camera for faces.
   Once the face is in view, it is detected within a fraction of a
   second .

2. Alignment:
   Once a face is detected, the head's position, size and pose
   is the first thing that is determined.

3. Normalization:
   The image of the head is scaled and rotated so that it can be
   registered and mapped into an appropriate size and pose.

                                                           7
4. Representation:
   Translation of facial data into unique code is done
   by the system.

5. Matching:
   The newly acquired facial data is compared to the
   stored data and (ideally) linked to at least one
   stored facial representation
   This includes-
   Local image sampling
   The Self Organizing-Map
   Convolutional Network

                                                 8
Figure : A representation of the local image sampling process.




• We have evaluated two different methods of representing
local image samples.

• In each method a window is scanned over the image as
shown in figure.




                                                                           9
   Used to reduce the dimensions of the image vector

   Self-Organizing Map(SOM), is an unsupervised learning
    process, which learns the distribution of a set of patterns
    without any class information.

   Unsupervised learning:
    a) No external teacher and is based upon only local information.
    b) It is also referred to as self-organization unsupervised learning.


The basic SOM consists of:
   I) A 2 dimensional lattice L of neurons.
   II) Each neuron ni belongs to L has an associated codebook
   vector μi belongs to Rn.
   III) The lattice is either rectangular or hexagonal as shown in figure


                                                                 10
Figure: Rectangular and hexagonal lattice

• Self-organizing maps learn both the distribution and topology of the
input vectors they are trained on.

• Here a self-organizing feature map network identifies a winning
neuron i using the same procedure as employed by a competitive
layer.

• However, instead of updating only the winning neuron, all neurons
within a certain neighborhood of the winning neuron are updated




                                                              11
   Perceptrons are trained on examples of
    desired behavior.

   The desired behavior can be summarized by a set of input,
    output pairs as:
    p1t1, p2t2,………….. pQtQ

   Where p is an input to the network and t is the corresponding
    correct (target) output.

   The perceptron learning rule can be written more succinctly in
    terms of the error e = t - a, and the change to be made to the
    weight vector Δw:

    Case 1: If e = 0, then make a change Δw equal to 0.

    Case 2: If e = 1, then make a change Δw equal to p T.

    Case 3: If e = -1, then make a change Δw equal to -p T.
                                                                12
Figure : A typical convolutional network.



                                            13
   Automatically synthesize simple problem specific
    feature extractor from training data.

   Feature detectors applied everywhere.

   Features get progressively more global and invariant.

   The whole system is trained “end-to-end” with
    gradient based method to minimize a global loss
    function.

   Integrate segmentation, feature extraction, and
    invariant classification in one stretch.

                                                   14
1. Convolutional Mechanism
Capable of extracting similar features in different
  places in the image.
Shifting the input only shifts the feature map
  (robust to shift).

2. Subsampling Mechanism
The exact positions of the extracted features
   are not important.
Only relative position of a feature to another
   feature is relevant.
Reduce spatial resolution – Reduce sensitivity
   to shift and distortion.
                                              15
   For the images in the training set, a fixed size window is
    stepped over the entire image.
   As shown in earlier figure and local image samples are
    extracted at each step.
   A self-organizing map is trained on the vectors from the
    previous stage
                                                         16
   The same window as in the first step is stepped over all
    of the images in the training and test sets.

   The local image samples are passed through the SOM
    at each step, thereby creating new training and test
    sets in the output space created by the self-organizing
    map.

   A convolutional neural network is trained on the
    newly created training set



                                                       17
Training:   Testing:




                       18
   Law Enforcement: Minimizing victim trauma by narrowing mug
    shot searches, Verifying identify for court records, and
    comparing school Surveillance camera Images to known child
    molesters.

   Security/Counter terrorism: Access control, comparing
    surveillance images to Known terrorists.

   Day Care: Verify identity of individuals picking up the children.

   Missing Children/Runaways Search surveillance images and the
    internet
    for missing children and runaways.

 Residential Security: Alert homeowners of approaching
  personnel.
 Healthcare: Minimize fraud by verifying identity.
 Banking: Minimize fraud by verifying identity.


                                                                19
    There are no explicit three-dimensional models
    in our system, however we have found that the
    quantized local image samples used as input
    to the convolutional network represent
    smoothly changing shading patterns.
   Higher level features are constructed from
    these building blocks in successive layers of the
    convolutional network.
   In comparison with the eigenfaces approach,
    we believe that the system presented here is
    able to learn more appropriate features in
    order to provide improved generalization.

                                               20
1.    Steve Lawrence, C. Lee Giles , “Face Recognition: A Convolutional Neural Network
      Approach”, IEEE transaction, St. Lucia, Australia.

2.    David a brown, Ian craw, Julian lewthwaite, “Interactive Face retrieval using self
      organizing maps-A SOM based approach to skin detection with application in real
      time systems”, IEEE 2008 conference, Berlin, Germany.

3.   Shahrin Azuan Nazeer, Nazaruddin Omar' and Marzuki Khalid, “Face Recognition
     System using Artificial Neural Networks Approach”, IEEE - ICSCN 2007, MIT Campus,
     Anna University, Chennai, India. Feb. 22-24, 2007. pp.420-425.


4.   M. Prakash and M. Narasimha Murty, “Recognition Methods and Their Neural-
     Network Models”, IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY
     2005.

5.   E. Oja, “Neural networks, principal components and subspaces”, Int. J. Neural Syst., vol.
     1, pp. 61–68, 2004.




                                                                                     21
THANK YOU


            22
Ad

More Related Content

What's hot (20)

Facial Expression Recognition System using Deep Convolutional Neural Networks.
Facial Expression Recognition  System using Deep Convolutional Neural Networks.Facial Expression Recognition  System using Deep Convolutional Neural Networks.
Facial Expression Recognition System using Deep Convolutional Neural Networks.
Sandeep Wakchaure
 
Attendance system based on face recognition using python by Raihan Sikdar
Attendance system based on face recognition using python by Raihan SikdarAttendance system based on face recognition using python by Raihan Sikdar
Attendance system based on face recognition using python by Raihan Sikdar
raihansikdar
 
Face recognization
Face recognizationFace recognization
Face recognization
leenak770
 
Face recognisation system
Face recognisation systemFace recognisation system
Face recognisation system
Saumya Ranjan Behura
 
Face Recognition Methods based on Convolutional Neural Networks
Face Recognition Methods based on Convolutional Neural NetworksFace Recognition Methods based on Convolutional Neural Networks
Face Recognition Methods based on Convolutional Neural Networks
Elaheh Rashedi
 
FACE RECOGNITION USING NEURAL NETWORK
FACE RECOGNITION USING NEURAL NETWORKFACE RECOGNITION USING NEURAL NETWORK
FACE RECOGNITION USING NEURAL NETWORK
codebangla
 
Facial emotion recognition
Facial emotion recognitionFacial emotion recognition
Facial emotion recognition
Rahin Patel
 
Facial Expression Recognition via Python
Facial Expression Recognition via PythonFacial Expression Recognition via Python
Facial Expression Recognition via Python
Saurav Gupta
 
Automatic Attendance system using Facial Recognition
Automatic Attendance system using Facial RecognitionAutomatic Attendance system using Facial Recognition
Automatic Attendance system using Facial Recognition
Nikyaa7
 
Face Detection and Recognition System
Face Detection and Recognition SystemFace Detection and Recognition System
Face Detection and Recognition System
Zara Tariq
 
Detection and recognition of face using neural network
Detection and recognition of face using neural networkDetection and recognition of face using neural network
Detection and recognition of face using neural network
Smriti Tikoo
 
Face Recognition Technology
Face Recognition TechnologyFace Recognition Technology
Face Recognition Technology
Shashidhar Reddy
 
Facial emotion detection on babies' emotional face using Deep Learning.
Facial emotion detection on babies' emotional face using Deep Learning.Facial emotion detection on babies' emotional face using Deep Learning.
Facial emotion detection on babies' emotional face using Deep Learning.
Takrim Ul Islam Laskar
 
face detection
face detectionface detection
face detection
Smriti Tikoo
 
Face recognition technology
Face recognition technologyFace recognition technology
Face recognition technology
ranjit banshpal
 
Region Splitting and Merging Technique For Image segmentation.
Region Splitting and Merging Technique For Image segmentation.Region Splitting and Merging Technique For Image segmentation.
Region Splitting and Merging Technique For Image segmentation.
SomitSamanto1
 
Face recognition Face Identification
Face recognition Face IdentificationFace recognition Face Identification
Face recognition Face Identification
Kalyan Acharjya
 
HANDWRITTEN DIGIT RECOGNITIONppt1.pptx
HANDWRITTEN DIGIT RECOGNITIONppt1.pptxHANDWRITTEN DIGIT RECOGNITIONppt1.pptx
HANDWRITTEN DIGIT RECOGNITIONppt1.pptx
ALLADURGAUMESHCHANDR
 
Image classification with Deep Neural Networks
Image classification with Deep Neural NetworksImage classification with Deep Neural Networks
Image classification with Deep Neural Networks
Yogendra Tamang
 
Face recognition
Face recognitionFace recognition
Face recognition
sandeepsharma1193
 
Facial Expression Recognition System using Deep Convolutional Neural Networks.
Facial Expression Recognition  System using Deep Convolutional Neural Networks.Facial Expression Recognition  System using Deep Convolutional Neural Networks.
Facial Expression Recognition System using Deep Convolutional Neural Networks.
Sandeep Wakchaure
 
Attendance system based on face recognition using python by Raihan Sikdar
Attendance system based on face recognition using python by Raihan SikdarAttendance system based on face recognition using python by Raihan Sikdar
Attendance system based on face recognition using python by Raihan Sikdar
raihansikdar
 
Face recognization
Face recognizationFace recognization
Face recognization
leenak770
 
Face Recognition Methods based on Convolutional Neural Networks
Face Recognition Methods based on Convolutional Neural NetworksFace Recognition Methods based on Convolutional Neural Networks
Face Recognition Methods based on Convolutional Neural Networks
Elaheh Rashedi
 
FACE RECOGNITION USING NEURAL NETWORK
FACE RECOGNITION USING NEURAL NETWORKFACE RECOGNITION USING NEURAL NETWORK
FACE RECOGNITION USING NEURAL NETWORK
codebangla
 
Facial emotion recognition
Facial emotion recognitionFacial emotion recognition
Facial emotion recognition
Rahin Patel
 
Facial Expression Recognition via Python
Facial Expression Recognition via PythonFacial Expression Recognition via Python
Facial Expression Recognition via Python
Saurav Gupta
 
Automatic Attendance system using Facial Recognition
Automatic Attendance system using Facial RecognitionAutomatic Attendance system using Facial Recognition
Automatic Attendance system using Facial Recognition
Nikyaa7
 
Face Detection and Recognition System
Face Detection and Recognition SystemFace Detection and Recognition System
Face Detection and Recognition System
Zara Tariq
 
Detection and recognition of face using neural network
Detection and recognition of face using neural networkDetection and recognition of face using neural network
Detection and recognition of face using neural network
Smriti Tikoo
 
Face Recognition Technology
Face Recognition TechnologyFace Recognition Technology
Face Recognition Technology
Shashidhar Reddy
 
Facial emotion detection on babies' emotional face using Deep Learning.
Facial emotion detection on babies' emotional face using Deep Learning.Facial emotion detection on babies' emotional face using Deep Learning.
Facial emotion detection on babies' emotional face using Deep Learning.
Takrim Ul Islam Laskar
 
Face recognition technology
Face recognition technologyFace recognition technology
Face recognition technology
ranjit banshpal
 
Region Splitting and Merging Technique For Image segmentation.
Region Splitting and Merging Technique For Image segmentation.Region Splitting and Merging Technique For Image segmentation.
Region Splitting and Merging Technique For Image segmentation.
SomitSamanto1
 
Face recognition Face Identification
Face recognition Face IdentificationFace recognition Face Identification
Face recognition Face Identification
Kalyan Acharjya
 
HANDWRITTEN DIGIT RECOGNITIONppt1.pptx
HANDWRITTEN DIGIT RECOGNITIONppt1.pptxHANDWRITTEN DIGIT RECOGNITIONppt1.pptx
HANDWRITTEN DIGIT RECOGNITIONppt1.pptx
ALLADURGAUMESHCHANDR
 
Image classification with Deep Neural Networks
Image classification with Deep Neural NetworksImage classification with Deep Neural Networks
Image classification with Deep Neural Networks
Yogendra Tamang
 

Similar to Face recognition using artificial neural network (20)

deep learning
deep learningdeep learning
deep learning
Hassanein Alwan
 
Som paper1.doc
Som paper1.docSom paper1.doc
Som paper1.doc
Abhi Mediratta
 
Open CV Implementation of Object Recognition Using Artificial Neural Networks
Open CV Implementation of Object Recognition Using Artificial Neural NetworksOpen CV Implementation of Object Recognition Using Artificial Neural Networks
Open CV Implementation of Object Recognition Using Artificial Neural Networks
ijceronline
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
Guru Nanak Technical Institutions
 
Face Recognition Based Intelligent Door Control System
Face Recognition Based Intelligent Door Control SystemFace Recognition Based Intelligent Door Control System
Face Recognition Based Intelligent Door Control System
ijtsrd
 
A Survey of Deep Learning Algorithms for Malware Detection
A Survey of Deep Learning Algorithms for Malware DetectionA Survey of Deep Learning Algorithms for Malware Detection
A Survey of Deep Learning Algorithms for Malware Detection
IJCSIS Research Publications
 
PADDY CROP DISEASE DETECTION USING SVM AND CNN ALGORITHM
PADDY CROP DISEASE DETECTION USING SVM AND CNN ALGORITHMPADDY CROP DISEASE DETECTION USING SVM AND CNN ALGORITHM
PADDY CROP DISEASE DETECTION USING SVM AND CNN ALGORITHM
IRJET Journal
 
Traffic Automation System
Traffic Automation SystemTraffic Automation System
Traffic Automation System
Prabal Chauhan
 
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
ijcsit
 
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
AIRCC Publishing Corporation
 
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network AlgorithmsWeb Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
aciijournal
 
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network AlgorithmsWeb Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
aciijournal
 
Deep learning and its applications in biomedicine
Deep learning and its applications in biomedicineDeep learning and its applications in biomedicine
Deep learning and its applications in biomedicine
Full Stack Developer at Electro Mizan Andisheh
 
Scene recognition using Convolutional Neural Network
Scene recognition using Convolutional Neural NetworkScene recognition using Convolutional Neural Network
Scene recognition using Convolutional Neural Network
DhirajGidde
 
Web spam classification using supervised artificial neural network algorithms
Web spam classification using supervised artificial neural network algorithmsWeb spam classification using supervised artificial neural network algorithms
Web spam classification using supervised artificial neural network algorithms
aciijournal
 
DL.pdf
DL.pdfDL.pdf
DL.pdf
ssuserd23711
 
Convolutional Neural Network and Its Applications
Convolutional Neural Network and Its ApplicationsConvolutional Neural Network and Its Applications
Convolutional Neural Network and Its Applications
Kasun Chinthaka Piyarathna
 
IRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET- Real-Time Object Detection using Deep Learning: A SurveyIRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET Journal
 
CNN and its applications by ketaki
CNN and its applications by ketakiCNN and its applications by ketaki
CNN and its applications by ketaki
Ketaki Patwari
 
NIPS2007: deep belief nets
NIPS2007: deep belief netsNIPS2007: deep belief nets
NIPS2007: deep belief nets
zukun
 
Open CV Implementation of Object Recognition Using Artificial Neural Networks
Open CV Implementation of Object Recognition Using Artificial Neural NetworksOpen CV Implementation of Object Recognition Using Artificial Neural Networks
Open CV Implementation of Object Recognition Using Artificial Neural Networks
ijceronline
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
Guru Nanak Technical Institutions
 
Face Recognition Based Intelligent Door Control System
Face Recognition Based Intelligent Door Control SystemFace Recognition Based Intelligent Door Control System
Face Recognition Based Intelligent Door Control System
ijtsrd
 
A Survey of Deep Learning Algorithms for Malware Detection
A Survey of Deep Learning Algorithms for Malware DetectionA Survey of Deep Learning Algorithms for Malware Detection
A Survey of Deep Learning Algorithms for Malware Detection
IJCSIS Research Publications
 
PADDY CROP DISEASE DETECTION USING SVM AND CNN ALGORITHM
PADDY CROP DISEASE DETECTION USING SVM AND CNN ALGORITHMPADDY CROP DISEASE DETECTION USING SVM AND CNN ALGORITHM
PADDY CROP DISEASE DETECTION USING SVM AND CNN ALGORITHM
IRJET Journal
 
Traffic Automation System
Traffic Automation SystemTraffic Automation System
Traffic Automation System
Prabal Chauhan
 
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
ijcsit
 
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
CONVOLUTIONAL NEURAL NETWORK BASED FEATURE EXTRACTION FOR IRIS RECOGNITION
AIRCC Publishing Corporation
 
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network AlgorithmsWeb Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
aciijournal
 
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network AlgorithmsWeb Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
aciijournal
 
Scene recognition using Convolutional Neural Network
Scene recognition using Convolutional Neural NetworkScene recognition using Convolutional Neural Network
Scene recognition using Convolutional Neural Network
DhirajGidde
 
Web spam classification using supervised artificial neural network algorithms
Web spam classification using supervised artificial neural network algorithmsWeb spam classification using supervised artificial neural network algorithms
Web spam classification using supervised artificial neural network algorithms
aciijournal
 
Convolutional Neural Network and Its Applications
Convolutional Neural Network and Its ApplicationsConvolutional Neural Network and Its Applications
Convolutional Neural Network and Its Applications
Kasun Chinthaka Piyarathna
 
IRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET- Real-Time Object Detection using Deep Learning: A SurveyIRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET- Real-Time Object Detection using Deep Learning: A Survey
IRJET Journal
 
CNN and its applications by ketaki
CNN and its applications by ketakiCNN and its applications by ketaki
CNN and its applications by ketaki
Ketaki Patwari
 
NIPS2007: deep belief nets
NIPS2007: deep belief netsNIPS2007: deep belief nets
NIPS2007: deep belief nets
zukun
 
Ad

Recently uploaded (20)

How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales moduleHow To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
Celine George
 
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
Celine George
 
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptxU3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
Mayuri Chavan
 
Chemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptxChemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptx
Mayuri Chavan
 
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptxANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
Mayuri Chavan
 
2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx
mansk2
 
Rock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian HistoryRock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian History
Virag Sontakke
 
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
Dr. Nasir Mustafa
 
Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Leonel Morgado
 
Cultivation Practice of Turmeric in Nepal.pptx
Cultivation Practice of Turmeric in Nepal.pptxCultivation Practice of Turmeric in Nepal.pptx
Cultivation Practice of Turmeric in Nepal.pptx
UmeshTimilsina1
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptxTERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
PoojaSen20
 
Transform tomorrow: Master benefits analysis with Gen AI today webinar, 30 A...
Transform tomorrow: Master benefits analysis with Gen AI today webinar,  30 A...Transform tomorrow: Master benefits analysis with Gen AI today webinar,  30 A...
Transform tomorrow: Master benefits analysis with Gen AI today webinar, 30 A...
Association for Project Management
 
spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)
Mohamed Rizk Khodair
 
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon DolabaniHistory Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
fruinkamel7m
 
E-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26ASE-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26AS
Abinash Palangdar
 
How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18
Celine George
 
Search Matching Applicants in Odoo 18 - Odoo Slides
Search Matching Applicants in Odoo 18 - Odoo SlidesSearch Matching Applicants in Odoo 18 - Odoo Slides
Search Matching Applicants in Odoo 18 - Odoo Slides
Celine George
 
How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18
Celine George
 
How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales moduleHow To Maximize Sales Performance using Odoo 18 Diverse views in sales module
How To Maximize Sales Performance using Odoo 18 Diverse views in sales module
Celine George
 
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
Celine George
 
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptxU3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
Mayuri Chavan
 
Chemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptxChemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptx
Mayuri Chavan
 
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptxANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
Mayuri Chavan
 
2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx
mansk2
 
Rock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian HistoryRock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian History
Virag Sontakke
 
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
MCQ PHYSIOLOGY II (DR. NASIR MUSTAFA) MCQS)
Dr. Nasir Mustafa
 
Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Redesigning Education as a Cognitive Ecosystem: Practical Insights into Emerg...
Leonel Morgado
 
Cultivation Practice of Turmeric in Nepal.pptx
Cultivation Practice of Turmeric in Nepal.pptxCultivation Practice of Turmeric in Nepal.pptx
Cultivation Practice of Turmeric in Nepal.pptx
UmeshTimilsina1
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptxTERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
TERMINOLOGIES,GRIEF PROCESS AND LOSS AMD ITS TYPES .pptx
PoojaSen20
 
Transform tomorrow: Master benefits analysis with Gen AI today webinar, 30 A...
Transform tomorrow: Master benefits analysis with Gen AI today webinar,  30 A...Transform tomorrow: Master benefits analysis with Gen AI today webinar,  30 A...
Transform tomorrow: Master benefits analysis with Gen AI today webinar, 30 A...
Association for Project Management
 
spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)spinal cord disorders (Myelopathies and radiculoapthies)
spinal cord disorders (Myelopathies and radiculoapthies)
Mohamed Rizk Khodair
 
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon DolabaniHistory Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
fruinkamel7m
 
E-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26ASE-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26AS
Abinash Palangdar
 
How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18
Celine George
 
Search Matching Applicants in Odoo 18 - Odoo Slides
Search Matching Applicants in Odoo 18 - Odoo SlidesSearch Matching Applicants in Odoo 18 - Odoo Slides
Search Matching Applicants in Odoo 18 - Odoo Slides
Celine George
 
How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18
Celine George
 
Ad

Face recognition using artificial neural network

  • 1. PRESENTED BY:- GUIDED BY:- SUMEET S. KAKANI PROF. V. M. UMALE 1
  • 2. Introduction  What is an Artificial Neural Network?  ANN Structure  System Overview  Local image sampling  The Self Organizing-Map  Perceptron learning rule  Convolutional Network  System details  Implementation  Applications  Conclusion  References 2
  • 3. 1. Why face recognition?  Face Recognition systems enhance security, provide secure access control, and protect personal privacy  Improvement in the performance and reliability of face recognition  No need to remember any passwords or carry any ID 2. Why neural network?  Adaptive learning: An ability to learn how to do tasks  Self-Organization: An ANN can create its own organisation  Remarkable ability to derive meaning from complicated or imprecise data 3
  • 4. Definition: A Computing system made of a number of simple, highly interconnected processing elements, which process information by their dynamic state response to external input.  Motivated right from its inception by the recognition.  A machine that is designed to model the way in which the brain performs a particular task.  A massively parallel distributed processor.  Resembles the brain in two respects: 1. Knowledge is acquired through a learning process. 2. Synaptic weights, are used to store the acquired knowledge. 4
  • 5. A Layer with n inputs xi.  correspondent weights Wji (i=1, 2, 3...n)  The function ∑ sums the n weighted inputs and passes the result through a non-linear function φ(•), called the activation function.  The function φ (•) processes the adding results plus a threshold value θ, thus producing the output Y. 5
  • 6. a) Processing units  Receive input  The adjustment of the weights  Three types of units: 1. input units 2. hidden units 3. output units  During operation, units can be updated either synchronously or asynchronously. b) Connections between units n Y(t) = φ( ∑ wij(t) Xj(t) + θ) j=1 c) Transfer Function: The behavior of an ANN depends on both the weights and the transfer function that is specified for the units. This function typically falls into one of two categories:  Linear : the output activity is proportional to the total weighted output.  Threshold: the output is set at one of two levels, depending on whether the total input is greater than or less than some threshold value. 6
  • 7. Following are the basic processes that are used by the system to capture and compare images: 1. Detection: Recognition software searches the field of view of a video camera for faces. Once the face is in view, it is detected within a fraction of a second . 2. Alignment: Once a face is detected, the head's position, size and pose is the first thing that is determined. 3. Normalization: The image of the head is scaled and rotated so that it can be registered and mapped into an appropriate size and pose. 7
  • 8. 4. Representation: Translation of facial data into unique code is done by the system. 5. Matching: The newly acquired facial data is compared to the stored data and (ideally) linked to at least one stored facial representation This includes- Local image sampling The Self Organizing-Map Convolutional Network 8
  • 9. Figure : A representation of the local image sampling process. • We have evaluated two different methods of representing local image samples. • In each method a window is scanned over the image as shown in figure. 9
  • 10. Used to reduce the dimensions of the image vector  Self-Organizing Map(SOM), is an unsupervised learning process, which learns the distribution of a set of patterns without any class information.  Unsupervised learning: a) No external teacher and is based upon only local information. b) It is also referred to as self-organization unsupervised learning. The basic SOM consists of: I) A 2 dimensional lattice L of neurons. II) Each neuron ni belongs to L has an associated codebook vector μi belongs to Rn. III) The lattice is either rectangular or hexagonal as shown in figure 10
  • 11. Figure: Rectangular and hexagonal lattice • Self-organizing maps learn both the distribution and topology of the input vectors they are trained on. • Here a self-organizing feature map network identifies a winning neuron i using the same procedure as employed by a competitive layer. • However, instead of updating only the winning neuron, all neurons within a certain neighborhood of the winning neuron are updated 11
  • 12. Perceptrons are trained on examples of desired behavior.  The desired behavior can be summarized by a set of input, output pairs as: p1t1, p2t2,………….. pQtQ  Where p is an input to the network and t is the corresponding correct (target) output.  The perceptron learning rule can be written more succinctly in terms of the error e = t - a, and the change to be made to the weight vector Δw: Case 1: If e = 0, then make a change Δw equal to 0. Case 2: If e = 1, then make a change Δw equal to p T. Case 3: If e = -1, then make a change Δw equal to -p T. 12
  • 13. Figure : A typical convolutional network. 13
  • 14. Automatically synthesize simple problem specific feature extractor from training data.  Feature detectors applied everywhere.  Features get progressively more global and invariant.  The whole system is trained “end-to-end” with gradient based method to minimize a global loss function.  Integrate segmentation, feature extraction, and invariant classification in one stretch. 14
  • 15. 1. Convolutional Mechanism Capable of extracting similar features in different places in the image. Shifting the input only shifts the feature map (robust to shift). 2. Subsampling Mechanism The exact positions of the extracted features are not important. Only relative position of a feature to another feature is relevant. Reduce spatial resolution – Reduce sensitivity to shift and distortion. 15
  • 16. For the images in the training set, a fixed size window is stepped over the entire image.  As shown in earlier figure and local image samples are extracted at each step.  A self-organizing map is trained on the vectors from the previous stage 16
  • 17. The same window as in the first step is stepped over all of the images in the training and test sets.  The local image samples are passed through the SOM at each step, thereby creating new training and test sets in the output space created by the self-organizing map.  A convolutional neural network is trained on the newly created training set 17
  • 18. Training: Testing: 18
  • 19. Law Enforcement: Minimizing victim trauma by narrowing mug shot searches, Verifying identify for court records, and comparing school Surveillance camera Images to known child molesters.  Security/Counter terrorism: Access control, comparing surveillance images to Known terrorists.  Day Care: Verify identity of individuals picking up the children.  Missing Children/Runaways Search surveillance images and the internet for missing children and runaways.  Residential Security: Alert homeowners of approaching personnel.  Healthcare: Minimize fraud by verifying identity.  Banking: Minimize fraud by verifying identity. 19
  • 20. There are no explicit three-dimensional models in our system, however we have found that the quantized local image samples used as input to the convolutional network represent smoothly changing shading patterns.  Higher level features are constructed from these building blocks in successive layers of the convolutional network.  In comparison with the eigenfaces approach, we believe that the system presented here is able to learn more appropriate features in order to provide improved generalization. 20
  • 21. 1. Steve Lawrence, C. Lee Giles , “Face Recognition: A Convolutional Neural Network Approach”, IEEE transaction, St. Lucia, Australia. 2. David a brown, Ian craw, Julian lewthwaite, “Interactive Face retrieval using self organizing maps-A SOM based approach to skin detection with application in real time systems”, IEEE 2008 conference, Berlin, Germany. 3. Shahrin Azuan Nazeer, Nazaruddin Omar' and Marzuki Khalid, “Face Recognition System using Artificial Neural Networks Approach”, IEEE - ICSCN 2007, MIT Campus, Anna University, Chennai, India. Feb. 22-24, 2007. pp.420-425. 4. M. Prakash and M. Narasimha Murty, “Recognition Methods and Their Neural- Network Models”, IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 2005. 5. E. Oja, “Neural networks, principal components and subspaces”, Int. J. Neural Syst., vol. 1, pp. 61–68, 2004. 21
  • 22. THANK YOU 22
  翻译: