SlideShare a Scribd company logo
Till Rohrmann
trohrmann@apache.org
@stsffap
Fabian Hueske
fhueske@apache.org
@fhueske
Streaming Analytics & CEP
Two sides of the same coin?
Streams are Everywhere
 Most data is continuously produced as stream
 Processing data as it arrives
is becoming very popular
 Many diverse applications
and use cases
2
Complex Event Processing
 Analyzing a stream of events and drawing conclusions
• Detect patterns and assemble new events
 Applications
• Network intrusion
• Process monitoring
• Algorithmic trading
 Demanding requirements on stream processor
• Low latency!
• Exactly-once semantics & event-time support
3
Batch Analytics
4
 The batch approach to data analytics
Streaming Analytics
 Online aggregation of streams
• No delay – Continuous results
 Stream analytics subsumes batch analytics
• Batch is a finite stream
 Demanding requirements on stream processor
• High throughput
• Exactly-once semantics
• Event-time & advanced window support
5
Apache Flink®
 Platform for scalable stream processing
 Meets requirements of CEP and stream analytics
• Low latency and high throughput
• Exactly-once semantics
• Event-time & advanced windowing
 Core DataStream API available for Java & Scala
6
This Talk is About
 Flink’s new APIs for CEP and Stream Analytics
• DSL to define CEP patterns and actions
• Stream SQL to define queries on streams
 Integration of CEP and Stream SQL
 Early stage  Work in progress
7
Tracking an Order Process
Use Case
8
Order Fulfillment Scenario
9
Order Events
 Process is reflected in a stream of order events
 Order(orderId, tStamp, “received”)
 Shipment(orderId, tStamp, “shipped”)
 Delivery(orderId, tStamp, “delivered”)
 orderId: Identifies the order
 tStamp: Time at which the event happened
10
Aggregating Massive Streams
Stream Analytics
11
Stream Analytics
 Traditional batch analytics
• Repeated queries on finite and changing data sets
• Queries join and aggregate large data sets
 Stream analytics
• “Standing” query produces continuous results
from infinite input stream
• Query computes aggregates on high-volume streams
 How to compute aggregates on infinite streams?
12
Compute Aggregates on Streams
 Split infinite stream into finite “windows”
• Split usually by time
 Tumbling windows
• Fixed size & consecutive
 Sliding windows
• Fixed size & may overlap
 Event time mandatory for correct & consistent results!
13
Example: Count Orders by Hour
14
Example: Count Orders by Hour
15
SELECT STREAM
TUMBLE_START(tStamp, INTERVAL ‘1’ HOUR) AS hour,
COUNT(*) AS cnt
FROM events
WHERE
status = ‘received’
GROUP BY
TUMBLE(tStamp, INTERVAL ‘1’ HOUR)
Stream SQL Architecture
 Flink features SQL on static
and streaming tables
 Parsing and optimization by
Apache Calcite
 SQL queries are translated
into native Flink programs
16
Pattern Matching on Streams
Complex Event Processing
17
Real-time Warnings
18
CEP to the Rescue
 Define processing and delivery intervals (SLAs)
 ProcessSucc(orderId, tStamp, duration)
 ProcessWarn(orderId, tStamp)
 DeliverySucc(orderId, tStamp, duration)
 DeliveryWarn(orderId, tStamp)
 orderId: Identifies the order
 tStamp: Time when the event happened
 duration: Duration of the processing/delivery
19
CEP Example
20
Processing: Order  Shipment
21
val processingPattern = Pattern
.begin[Event]("received").subtype(classOf[Order])
.followedBy("shipped").where(_.status == "shipped")
.within(Time.hours(1))
val processingPatternStream = CEP.pattern(
input.keyBy("orderId"),
processingPattern)
val procResult: DataStream[Either[ProcessWarn, ProcessSucc]] =
processingPatternStream.select {
(pP, timestamp) => // Timeout handler
ProcessWarn(pP("received").orderId, timestamp)
} {
fP => // Select function
ProcessSucc(
fP("received").orderId, fP("shipped").tStamp,
fP("shipped").tStamp – fP("received").tStamp)
}
… and both at the same time!
Integrated Stream Analytics with CEP
22
Count Delayed Shipments
23
Compute Avg Processing Time
24
CEP + Stream SQL
25
// complex event processing result
val delResult: DataStream[Either[DeliveryWarn, DeliverySucc]] = …
val delWarn: DataStream[DeliveryWarn] = delResult.flatMap(_.left.toOption)
val deliveryWarningTable: Table = delWarn.toTable(tableEnv)
tableEnv.registerTable(”deliveryWarnings”, deliveryWarningTable)
// calculate the delayed deliveries per day
val delayedDeliveriesPerDay = tableEnv.sql(
"""SELECT STREAM
| TUMBLE_START(tStamp, INTERVAL ‘1’ DAY) AS day,
| COUNT(*) AS cnt
|FROM deliveryWarnings
|GROUP BY TUMBLE(tStamp, INTERVAL ‘1’ DAY)""".stripMargin)
CEP-enriched Stream SQL
26
SELECT
TUMBLE_START(tStamp, INTERVAL '1' DAY) as day,
AVG(duration) as avgDuration
FROM (
// CEP pattern
SELECT (b.tStamp - a.tStamp) as duration, b.tStamp as tStamp
FROM inputs
PATTERN
a FOLLOW BY b PARTITION BY orderId ORDER BY tStamp
WITHIN INTERVAL '1’ HOUR
WHERE
a.status = ‘received’ AND b.status = ‘shipped’
)
GROUP BY
TUMBLE(tStamp, INTERVAL '1’ DAY)
Conclusion
 Apache Flink handles CEP and analytical
workloads
 Apache Flink offers intuitive APIs
 New class of applications by CEP and
Stream SQL integration 
27
Ad

More Related Content

What's hot (20)

Tzu-Li (Gordon) Tai - Stateful Stream Processing with Apache Flink
Tzu-Li (Gordon) Tai - Stateful Stream Processing with Apache FlinkTzu-Li (Gordon) Tai - Stateful Stream Processing with Apache Flink
Tzu-Li (Gordon) Tai - Stateful Stream Processing with Apache Flink
Ververica
 
Continuous Processing with Apache Flink - Strata London 2016
Continuous Processing with Apache Flink - Strata London 2016Continuous Processing with Apache Flink - Strata London 2016
Continuous Processing with Apache Flink - Strata London 2016
Stephan Ewen
 
Keynote: Stephan Ewen - Stream Processing as a Foundational Paradigm and Apac...
Keynote: Stephan Ewen - Stream Processing as a Foundational Paradigm and Apac...Keynote: Stephan Ewen - Stream Processing as a Foundational Paradigm and Apac...
Keynote: Stephan Ewen - Stream Processing as a Foundational Paradigm and Apac...
Ververica
 
Kostas Tzoumas - Apache Flink®: State of the Union and What's Next
Kostas Tzoumas - Apache Flink®: State of the Union and What's NextKostas Tzoumas - Apache Flink®: State of the Union and What's Next
Kostas Tzoumas - Apache Flink®: State of the Union and What's Next
Ververica
 
Flink Forward Berlin 2017: Fabian Hueske - Using Stream and Batch Processing ...
Flink Forward Berlin 2017: Fabian Hueske - Using Stream and Batch Processing ...Flink Forward Berlin 2017: Fabian Hueske - Using Stream and Batch Processing ...
Flink Forward Berlin 2017: Fabian Hueske - Using Stream and Batch Processing ...
Flink Forward
 
Flink Streaming @BudapestData
Flink Streaming @BudapestDataFlink Streaming @BudapestData
Flink Streaming @BudapestData
Gyula Fóra
 
Big Data Warsaw
Big Data WarsawBig Data Warsaw
Big Data Warsaw
Maximilian Michels
 
Fabian Hueske - Stream Analytics with SQL on Apache Flink
Fabian Hueske - Stream Analytics with SQL on Apache FlinkFabian Hueske - Stream Analytics with SQL on Apache Flink
Fabian Hueske - Stream Analytics with SQL on Apache Flink
Ververica
 
2018-04 Kafka Summit London: Stephan Ewen - "Apache Flink and Apache Kafka fo...
2018-04 Kafka Summit London: Stephan Ewen - "Apache Flink and Apache Kafka fo...2018-04 Kafka Summit London: Stephan Ewen - "Apache Flink and Apache Kafka fo...
2018-04 Kafka Summit London: Stephan Ewen - "Apache Flink and Apache Kafka fo...
Ververica
 
Stephan Ewen - Stream Processing as a Foundational Paradigm and Apache Flink'...
Stephan Ewen - Stream Processing as a Foundational Paradigm and Apache Flink'...Stephan Ewen - Stream Processing as a Foundational Paradigm and Apache Flink'...
Stephan Ewen - Stream Processing as a Foundational Paradigm and Apache Flink'...
Ververica
 
Stateful Distributed Stream Processing
Stateful Distributed Stream ProcessingStateful Distributed Stream Processing
Stateful Distributed Stream Processing
Gyula Fóra
 
Architecture of Flink's Streaming Runtime @ ApacheCon EU 2015
Architecture of Flink's Streaming Runtime @ ApacheCon EU 2015Architecture of Flink's Streaming Runtime @ ApacheCon EU 2015
Architecture of Flink's Streaming Runtime @ ApacheCon EU 2015
Robert Metzger
 
Stream Loops on Flink - Reinventing the wheel for the streaming era
Stream Loops on Flink - Reinventing the wheel for the streaming eraStream Loops on Flink - Reinventing the wheel for the streaming era
Stream Loops on Flink - Reinventing the wheel for the streaming era
Paris Carbone
 
A look at Flink 1.2
A look at Flink 1.2A look at Flink 1.2
A look at Flink 1.2
Stefan Richter
 
Kostas Kloudas - Complex Event Processing with Flink: the state of FlinkCEP
Kostas Kloudas - Complex Event Processing with Flink: the state of FlinkCEP Kostas Kloudas - Complex Event Processing with Flink: the state of FlinkCEP
Kostas Kloudas - Complex Event Processing with Flink: the state of FlinkCEP
Ververica
 
Flink Forward Berlin 2017: Zohar Mizrahi - Python Streaming API
Flink Forward Berlin 2017: Zohar Mizrahi - Python Streaming APIFlink Forward Berlin 2017: Zohar Mizrahi - Python Streaming API
Flink Forward Berlin 2017: Zohar Mizrahi - Python Streaming API
Flink Forward
 
Flink Streaming Hadoop Summit San Jose
Flink Streaming Hadoop Summit San JoseFlink Streaming Hadoop Summit San Jose
Flink Streaming Hadoop Summit San Jose
Kostas Tzoumas
 
Flink Forward Berlin 2017: Jörg Schad, Till Rohrmann - Apache Flink meets Apa...
Flink Forward Berlin 2017: Jörg Schad, Till Rohrmann - Apache Flink meets Apa...Flink Forward Berlin 2017: Jörg Schad, Till Rohrmann - Apache Flink meets Apa...
Flink Forward Berlin 2017: Jörg Schad, Till Rohrmann - Apache Flink meets Apa...
Flink Forward
 
Stephan Ewen - Experiences running Flink at Very Large Scale
Stephan Ewen -  Experiences running Flink at Very Large ScaleStephan Ewen -  Experiences running Flink at Very Large Scale
Stephan Ewen - Experiences running Flink at Very Large Scale
Ververica
 
Debunking Six Common Myths in Stream Processing
Debunking Six Common Myths in Stream ProcessingDebunking Six Common Myths in Stream Processing
Debunking Six Common Myths in Stream Processing
Kostas Tzoumas
 
Tzu-Li (Gordon) Tai - Stateful Stream Processing with Apache Flink
Tzu-Li (Gordon) Tai - Stateful Stream Processing with Apache FlinkTzu-Li (Gordon) Tai - Stateful Stream Processing with Apache Flink
Tzu-Li (Gordon) Tai - Stateful Stream Processing with Apache Flink
Ververica
 
Continuous Processing with Apache Flink - Strata London 2016
Continuous Processing with Apache Flink - Strata London 2016Continuous Processing with Apache Flink - Strata London 2016
Continuous Processing with Apache Flink - Strata London 2016
Stephan Ewen
 
Keynote: Stephan Ewen - Stream Processing as a Foundational Paradigm and Apac...
Keynote: Stephan Ewen - Stream Processing as a Foundational Paradigm and Apac...Keynote: Stephan Ewen - Stream Processing as a Foundational Paradigm and Apac...
Keynote: Stephan Ewen - Stream Processing as a Foundational Paradigm and Apac...
Ververica
 
Kostas Tzoumas - Apache Flink®: State of the Union and What's Next
Kostas Tzoumas - Apache Flink®: State of the Union and What's NextKostas Tzoumas - Apache Flink®: State of the Union and What's Next
Kostas Tzoumas - Apache Flink®: State of the Union and What's Next
Ververica
 
Flink Forward Berlin 2017: Fabian Hueske - Using Stream and Batch Processing ...
Flink Forward Berlin 2017: Fabian Hueske - Using Stream and Batch Processing ...Flink Forward Berlin 2017: Fabian Hueske - Using Stream and Batch Processing ...
Flink Forward Berlin 2017: Fabian Hueske - Using Stream and Batch Processing ...
Flink Forward
 
Flink Streaming @BudapestData
Flink Streaming @BudapestDataFlink Streaming @BudapestData
Flink Streaming @BudapestData
Gyula Fóra
 
Fabian Hueske - Stream Analytics with SQL on Apache Flink
Fabian Hueske - Stream Analytics with SQL on Apache FlinkFabian Hueske - Stream Analytics with SQL on Apache Flink
Fabian Hueske - Stream Analytics with SQL on Apache Flink
Ververica
 
2018-04 Kafka Summit London: Stephan Ewen - "Apache Flink and Apache Kafka fo...
2018-04 Kafka Summit London: Stephan Ewen - "Apache Flink and Apache Kafka fo...2018-04 Kafka Summit London: Stephan Ewen - "Apache Flink and Apache Kafka fo...
2018-04 Kafka Summit London: Stephan Ewen - "Apache Flink and Apache Kafka fo...
Ververica
 
Stephan Ewen - Stream Processing as a Foundational Paradigm and Apache Flink'...
Stephan Ewen - Stream Processing as a Foundational Paradigm and Apache Flink'...Stephan Ewen - Stream Processing as a Foundational Paradigm and Apache Flink'...
Stephan Ewen - Stream Processing as a Foundational Paradigm and Apache Flink'...
Ververica
 
Stateful Distributed Stream Processing
Stateful Distributed Stream ProcessingStateful Distributed Stream Processing
Stateful Distributed Stream Processing
Gyula Fóra
 
Architecture of Flink's Streaming Runtime @ ApacheCon EU 2015
Architecture of Flink's Streaming Runtime @ ApacheCon EU 2015Architecture of Flink's Streaming Runtime @ ApacheCon EU 2015
Architecture of Flink's Streaming Runtime @ ApacheCon EU 2015
Robert Metzger
 
Stream Loops on Flink - Reinventing the wheel for the streaming era
Stream Loops on Flink - Reinventing the wheel for the streaming eraStream Loops on Flink - Reinventing the wheel for the streaming era
Stream Loops on Flink - Reinventing the wheel for the streaming era
Paris Carbone
 
Kostas Kloudas - Complex Event Processing with Flink: the state of FlinkCEP
Kostas Kloudas - Complex Event Processing with Flink: the state of FlinkCEP Kostas Kloudas - Complex Event Processing with Flink: the state of FlinkCEP
Kostas Kloudas - Complex Event Processing with Flink: the state of FlinkCEP
Ververica
 
Flink Forward Berlin 2017: Zohar Mizrahi - Python Streaming API
Flink Forward Berlin 2017: Zohar Mizrahi - Python Streaming APIFlink Forward Berlin 2017: Zohar Mizrahi - Python Streaming API
Flink Forward Berlin 2017: Zohar Mizrahi - Python Streaming API
Flink Forward
 
Flink Streaming Hadoop Summit San Jose
Flink Streaming Hadoop Summit San JoseFlink Streaming Hadoop Summit San Jose
Flink Streaming Hadoop Summit San Jose
Kostas Tzoumas
 
Flink Forward Berlin 2017: Jörg Schad, Till Rohrmann - Apache Flink meets Apa...
Flink Forward Berlin 2017: Jörg Schad, Till Rohrmann - Apache Flink meets Apa...Flink Forward Berlin 2017: Jörg Schad, Till Rohrmann - Apache Flink meets Apa...
Flink Forward Berlin 2017: Jörg Schad, Till Rohrmann - Apache Flink meets Apa...
Flink Forward
 
Stephan Ewen - Experiences running Flink at Very Large Scale
Stephan Ewen -  Experiences running Flink at Very Large ScaleStephan Ewen -  Experiences running Flink at Very Large Scale
Stephan Ewen - Experiences running Flink at Very Large Scale
Ververica
 
Debunking Six Common Myths in Stream Processing
Debunking Six Common Myths in Stream ProcessingDebunking Six Common Myths in Stream Processing
Debunking Six Common Myths in Stream Processing
Kostas Tzoumas
 

Viewers also liked (20)

Jamie Grier - Robust Stream Processing with Apache Flink
Jamie Grier - Robust Stream Processing with Apache FlinkJamie Grier - Robust Stream Processing with Apache Flink
Jamie Grier - Robust Stream Processing with Apache Flink
Flink Forward
 
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Flink Forward
 
Aljoscha Krettek - The Future of Apache Flink
Aljoscha Krettek - The Future of Apache FlinkAljoscha Krettek - The Future of Apache Flink
Aljoscha Krettek - The Future of Apache Flink
Flink Forward
 
Robert Metzger - Connecting Apache Flink to the World - Reviewing the streami...
Robert Metzger - Connecting Apache Flink to the World - Reviewing the streami...Robert Metzger - Connecting Apache Flink to the World - Reviewing the streami...
Robert Metzger - Connecting Apache Flink to the World - Reviewing the streami...
Flink Forward
 
Apache Flink Community Updates November 2016 @ Berlin Meetup
Apache Flink Community Updates November 2016 @ Berlin MeetupApache Flink Community Updates November 2016 @ Berlin Meetup
Apache Flink Community Updates November 2016 @ Berlin Meetup
Robert Metzger
 
Ted Dunning-Faster and Furiouser- Flink Drift
Ted Dunning-Faster and Furiouser- Flink DriftTed Dunning-Faster and Furiouser- Flink Drift
Ted Dunning-Faster and Furiouser- Flink Drift
Flink Forward
 
Julian Hyde - Streaming SQL
Julian Hyde - Streaming SQLJulian Hyde - Streaming SQL
Julian Hyde - Streaming SQL
Flink Forward
 
Stephan Ewen - Running Flink Everywhere
Stephan Ewen - Running Flink EverywhereStephan Ewen - Running Flink Everywhere
Stephan Ewen - Running Flink Everywhere
Flink Forward
 
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with FlinkSanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Flink Forward
 
Till Rohrmann - Dynamic Scaling - How Apache Flink adapts to changing workloads
Till Rohrmann - Dynamic Scaling - How Apache Flink adapts to changing workloadsTill Rohrmann - Dynamic Scaling - How Apache Flink adapts to changing workloads
Till Rohrmann - Dynamic Scaling - How Apache Flink adapts to changing workloads
Flink Forward
 
Stephan Ewen - Scaling to large State
Stephan Ewen - Scaling to large StateStephan Ewen - Scaling to large State
Stephan Ewen - Scaling to large State
Flink Forward
 
Márton Balassi Streaming ML with Flink-
Márton Balassi Streaming ML with Flink- Márton Balassi Streaming ML with Flink-
Márton Balassi Streaming ML with Flink-
Flink Forward
 
Kostas Tzoumas - Stream Processing with Apache Flink®
Kostas Tzoumas - Stream Processing with Apache Flink®Kostas Tzoumas - Stream Processing with Apache Flink®
Kostas Tzoumas - Stream Processing with Apache Flink®
Ververica
 
Trevor Grant - Apache Zeppelin - A friendlier way to Flink
Trevor Grant - Apache Zeppelin - A friendlier way to FlinkTrevor Grant - Apache Zeppelin - A friendlier way to Flink
Trevor Grant - Apache Zeppelin - A friendlier way to Flink
Flink Forward
 
Automatic Detection of Web Trackers by Vasia Kalavri
Automatic Detection of Web Trackers by Vasia KalavriAutomatic Detection of Web Trackers by Vasia Kalavri
Automatic Detection of Web Trackers by Vasia Kalavri
Flink Forward
 
Alexander Kolb - Flinkspector – Taming the squirrel
Alexander Kolb - Flinkspector – Taming the squirrelAlexander Kolb - Flinkspector – Taming the squirrel
Alexander Kolb - Flinkspector – Taming the squirrel
Flink Forward
 
Ana M Martinez - AMIDST Toolbox- Scalable probabilistic machine learning with...
Ana M Martinez - AMIDST Toolbox- Scalable probabilistic machine learning with...Ana M Martinez - AMIDST Toolbox- Scalable probabilistic machine learning with...
Ana M Martinez - AMIDST Toolbox- Scalable probabilistic machine learning with...
Flink Forward
 
Maxim Fateev - Beyond the Watermark- On-Demand Backfilling in Flink
Maxim Fateev - Beyond the Watermark- On-Demand Backfilling in FlinkMaxim Fateev - Beyond the Watermark- On-Demand Backfilling in Flink
Maxim Fateev - Beyond the Watermark- On-Demand Backfilling in Flink
Flink Forward
 
Eron Wright - Introducing Flink on Mesos
Eron Wright - Introducing Flink on MesosEron Wright - Introducing Flink on Mesos
Eron Wright - Introducing Flink on Mesos
Flink Forward
 
Ted Dunning - Keynote: How Can We Take Flink Forward?
Ted Dunning -  Keynote: How Can We Take Flink Forward?Ted Dunning -  Keynote: How Can We Take Flink Forward?
Ted Dunning - Keynote: How Can We Take Flink Forward?
Flink Forward
 
Jamie Grier - Robust Stream Processing with Apache Flink
Jamie Grier - Robust Stream Processing with Apache FlinkJamie Grier - Robust Stream Processing with Apache Flink
Jamie Grier - Robust Stream Processing with Apache Flink
Flink Forward
 
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Kostas Tzoumas_Stephan Ewen - Keynote -The maturing data streaming ecosystem ...
Flink Forward
 
Aljoscha Krettek - The Future of Apache Flink
Aljoscha Krettek - The Future of Apache FlinkAljoscha Krettek - The Future of Apache Flink
Aljoscha Krettek - The Future of Apache Flink
Flink Forward
 
Robert Metzger - Connecting Apache Flink to the World - Reviewing the streami...
Robert Metzger - Connecting Apache Flink to the World - Reviewing the streami...Robert Metzger - Connecting Apache Flink to the World - Reviewing the streami...
Robert Metzger - Connecting Apache Flink to the World - Reviewing the streami...
Flink Forward
 
Apache Flink Community Updates November 2016 @ Berlin Meetup
Apache Flink Community Updates November 2016 @ Berlin MeetupApache Flink Community Updates November 2016 @ Berlin Meetup
Apache Flink Community Updates November 2016 @ Berlin Meetup
Robert Metzger
 
Ted Dunning-Faster and Furiouser- Flink Drift
Ted Dunning-Faster and Furiouser- Flink DriftTed Dunning-Faster and Furiouser- Flink Drift
Ted Dunning-Faster and Furiouser- Flink Drift
Flink Forward
 
Julian Hyde - Streaming SQL
Julian Hyde - Streaming SQLJulian Hyde - Streaming SQL
Julian Hyde - Streaming SQL
Flink Forward
 
Stephan Ewen - Running Flink Everywhere
Stephan Ewen - Running Flink EverywhereStephan Ewen - Running Flink Everywhere
Stephan Ewen - Running Flink Everywhere
Flink Forward
 
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with FlinkSanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Sanjar Akhmedov - Joining Infinity – Windowless Stream Processing with Flink
Flink Forward
 
Till Rohrmann - Dynamic Scaling - How Apache Flink adapts to changing workloads
Till Rohrmann - Dynamic Scaling - How Apache Flink adapts to changing workloadsTill Rohrmann - Dynamic Scaling - How Apache Flink adapts to changing workloads
Till Rohrmann - Dynamic Scaling - How Apache Flink adapts to changing workloads
Flink Forward
 
Stephan Ewen - Scaling to large State
Stephan Ewen - Scaling to large StateStephan Ewen - Scaling to large State
Stephan Ewen - Scaling to large State
Flink Forward
 
Márton Balassi Streaming ML with Flink-
Márton Balassi Streaming ML with Flink- Márton Balassi Streaming ML with Flink-
Márton Balassi Streaming ML with Flink-
Flink Forward
 
Kostas Tzoumas - Stream Processing with Apache Flink®
Kostas Tzoumas - Stream Processing with Apache Flink®Kostas Tzoumas - Stream Processing with Apache Flink®
Kostas Tzoumas - Stream Processing with Apache Flink®
Ververica
 
Trevor Grant - Apache Zeppelin - A friendlier way to Flink
Trevor Grant - Apache Zeppelin - A friendlier way to FlinkTrevor Grant - Apache Zeppelin - A friendlier way to Flink
Trevor Grant - Apache Zeppelin - A friendlier way to Flink
Flink Forward
 
Automatic Detection of Web Trackers by Vasia Kalavri
Automatic Detection of Web Trackers by Vasia KalavriAutomatic Detection of Web Trackers by Vasia Kalavri
Automatic Detection of Web Trackers by Vasia Kalavri
Flink Forward
 
Alexander Kolb - Flinkspector – Taming the squirrel
Alexander Kolb - Flinkspector – Taming the squirrelAlexander Kolb - Flinkspector – Taming the squirrel
Alexander Kolb - Flinkspector – Taming the squirrel
Flink Forward
 
Ana M Martinez - AMIDST Toolbox- Scalable probabilistic machine learning with...
Ana M Martinez - AMIDST Toolbox- Scalable probabilistic machine learning with...Ana M Martinez - AMIDST Toolbox- Scalable probabilistic machine learning with...
Ana M Martinez - AMIDST Toolbox- Scalable probabilistic machine learning with...
Flink Forward
 
Maxim Fateev - Beyond the Watermark- On-Demand Backfilling in Flink
Maxim Fateev - Beyond the Watermark- On-Demand Backfilling in FlinkMaxim Fateev - Beyond the Watermark- On-Demand Backfilling in Flink
Maxim Fateev - Beyond the Watermark- On-Demand Backfilling in Flink
Flink Forward
 
Eron Wright - Introducing Flink on Mesos
Eron Wright - Introducing Flink on MesosEron Wright - Introducing Flink on Mesos
Eron Wright - Introducing Flink on Mesos
Flink Forward
 
Ted Dunning - Keynote: How Can We Take Flink Forward?
Ted Dunning -  Keynote: How Can We Take Flink Forward?Ted Dunning -  Keynote: How Can We Take Flink Forward?
Ted Dunning - Keynote: How Can We Take Flink Forward?
Flink Forward
 
Ad

Similar to Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL and CEP (20)

Unifying Stream, SWL and CEP for Declarative Stream Processing with Apache Flink
Unifying Stream, SWL and CEP for Declarative Stream Processing with Apache FlinkUnifying Stream, SWL and CEP for Declarative Stream Processing with Apache Flink
Unifying Stream, SWL and CEP for Declarative Stream Processing with Apache Flink
DataWorks Summit/Hadoop Summit
 
Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)
Stephan Ewen
 
Apache Flink @ Tel Aviv / Herzliya Meetup
Apache Flink @ Tel Aviv / Herzliya MeetupApache Flink @ Tel Aviv / Herzliya Meetup
Apache Flink @ Tel Aviv / Herzliya Meetup
Robert Metzger
 
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan EwenAdvanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
confluent
 
K. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward KeynoteK. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward Keynote
Flink Forward
 
Streaming SQL
Streaming SQLStreaming SQL
Streaming SQL
Julian Hyde
 
Streaming SQL
Streaming SQLStreaming SQL
Streaming SQL
Julian Hyde
 
Streaming SQL
Streaming SQLStreaming SQL
Streaming SQL
DataWorks Summit/Hadoop Summit
 
Flink Forward SF 2017: Konstantinos Kloudas - Extending Flink’s Streaming APIs
Flink Forward SF 2017: Konstantinos Kloudas -  Extending Flink’s Streaming APIsFlink Forward SF 2017: Konstantinos Kloudas -  Extending Flink’s Streaming APIs
Flink Forward SF 2017: Konstantinos Kloudas - Extending Flink’s Streaming APIs
Flink Forward
 
WSO2 Complex Event Processor
WSO2 Complex Event ProcessorWSO2 Complex Event Processor
WSO2 Complex Event Processor
Sriskandarajah Suhothayan
 
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Julian Hyde
 
Arbitrary Stateful Aggregations using Structured Streaming in Apache Spark
Arbitrary Stateful Aggregations using Structured Streaming in Apache SparkArbitrary Stateful Aggregations using Structured Streaming in Apache Spark
Arbitrary Stateful Aggregations using Structured Streaming in Apache Spark
Databricks
 
Stream Processing with Ballerina
Stream Processing with BallerinaStream Processing with Ballerina
Stream Processing with Ballerina
Ballerina
 
Kafka Streams: the easiest way to start with stream processing
Kafka Streams: the easiest way to start with stream processingKafka Streams: the easiest way to start with stream processing
Kafka Streams: the easiest way to start with stream processing
Yaroslav Tkachenko
 
Cloud Dataflow - A Unified Model for Batch and Streaming Data Processing
Cloud Dataflow - A Unified Model for Batch and Streaming Data ProcessingCloud Dataflow - A Unified Model for Batch and Streaming Data Processing
Cloud Dataflow - A Unified Model for Batch and Streaming Data Processing
DoiT International
 
Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014
Raja Chiky
 
Scalable Event Processing with WSO2CEP @ WSO2Con2015eu
Scalable Event Processing with WSO2CEP @  WSO2Con2015euScalable Event Processing with WSO2CEP @  WSO2Con2015eu
Scalable Event Processing with WSO2CEP @ WSO2Con2015eu
Sriskandarajah Suhothayan
 
Strtio Spark Streaming + Siddhi CEP Engine
Strtio Spark Streaming + Siddhi CEP EngineStrtio Spark Streaming + Siddhi CEP Engine
Strtio Spark Streaming + Siddhi CEP Engine
Myung Ho Yun
 
Microsoft SQL Server - StreamInsight Overview Presentation
Microsoft SQL Server - StreamInsight Overview PresentationMicrosoft SQL Server - StreamInsight Overview Presentation
Microsoft SQL Server - StreamInsight Overview Presentation
Microsoft Private Cloud
 
Anton Moldovan "Load testing which you always wanted"
Anton Moldovan "Load testing which you always wanted"Anton Moldovan "Load testing which you always wanted"
Anton Moldovan "Load testing which you always wanted"
Fwdays
 
Unifying Stream, SWL and CEP for Declarative Stream Processing with Apache Flink
Unifying Stream, SWL and CEP for Declarative Stream Processing with Apache FlinkUnifying Stream, SWL and CEP for Declarative Stream Processing with Apache Flink
Unifying Stream, SWL and CEP for Declarative Stream Processing with Apache Flink
DataWorks Summit/Hadoop Summit
 
Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)
Stephan Ewen
 
Apache Flink @ Tel Aviv / Herzliya Meetup
Apache Flink @ Tel Aviv / Herzliya MeetupApache Flink @ Tel Aviv / Herzliya Meetup
Apache Flink @ Tel Aviv / Herzliya Meetup
Robert Metzger
 
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan EwenAdvanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
confluent
 
K. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward KeynoteK. Tzoumas & S. Ewen – Flink Forward Keynote
K. Tzoumas & S. Ewen – Flink Forward Keynote
Flink Forward
 
Flink Forward SF 2017: Konstantinos Kloudas - Extending Flink’s Streaming APIs
Flink Forward SF 2017: Konstantinos Kloudas -  Extending Flink’s Streaming APIsFlink Forward SF 2017: Konstantinos Kloudas -  Extending Flink’s Streaming APIs
Flink Forward SF 2017: Konstantinos Kloudas - Extending Flink’s Streaming APIs
Flink Forward
 
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Julian Hyde
 
Arbitrary Stateful Aggregations using Structured Streaming in Apache Spark
Arbitrary Stateful Aggregations using Structured Streaming in Apache SparkArbitrary Stateful Aggregations using Structured Streaming in Apache Spark
Arbitrary Stateful Aggregations using Structured Streaming in Apache Spark
Databricks
 
Stream Processing with Ballerina
Stream Processing with BallerinaStream Processing with Ballerina
Stream Processing with Ballerina
Ballerina
 
Kafka Streams: the easiest way to start with stream processing
Kafka Streams: the easiest way to start with stream processingKafka Streams: the easiest way to start with stream processing
Kafka Streams: the easiest way to start with stream processing
Yaroslav Tkachenko
 
Cloud Dataflow - A Unified Model for Batch and Streaming Data Processing
Cloud Dataflow - A Unified Model for Batch and Streaming Data ProcessingCloud Dataflow - A Unified Model for Batch and Streaming Data Processing
Cloud Dataflow - A Unified Model for Batch and Streaming Data Processing
DoiT International
 
Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014Introduction to Data streaming - 05/12/2014
Introduction to Data streaming - 05/12/2014
Raja Chiky
 
Scalable Event Processing with WSO2CEP @ WSO2Con2015eu
Scalable Event Processing with WSO2CEP @  WSO2Con2015euScalable Event Processing with WSO2CEP @  WSO2Con2015eu
Scalable Event Processing with WSO2CEP @ WSO2Con2015eu
Sriskandarajah Suhothayan
 
Strtio Spark Streaming + Siddhi CEP Engine
Strtio Spark Streaming + Siddhi CEP EngineStrtio Spark Streaming + Siddhi CEP Engine
Strtio Spark Streaming + Siddhi CEP Engine
Myung Ho Yun
 
Microsoft SQL Server - StreamInsight Overview Presentation
Microsoft SQL Server - StreamInsight Overview PresentationMicrosoft SQL Server - StreamInsight Overview Presentation
Microsoft SQL Server - StreamInsight Overview Presentation
Microsoft Private Cloud
 
Anton Moldovan "Load testing which you always wanted"
Anton Moldovan "Load testing which you always wanted"Anton Moldovan "Load testing which you always wanted"
Anton Moldovan "Load testing which you always wanted"
Fwdays
 
Ad

More from Flink Forward (20)

Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...
Flink Forward
 
Evening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in FlinkEvening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in Flink
Flink Forward
 
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
Flink Forward
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Flink Forward
 
Introducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes OperatorIntroducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes Operator
Flink Forward
 
Autoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive ModeAutoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive Mode
Flink Forward
 
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Flink Forward
 
One sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async SinkOne sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async Sink
Flink Forward
 
Tuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptxTuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptx
Flink Forward
 
Flink powered stream processing platform at Pinterest
Flink powered stream processing platform at PinterestFlink powered stream processing platform at Pinterest
Flink powered stream processing platform at Pinterest
Flink Forward
 
Apache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native EraApache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native Era
Flink Forward
 
Where is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in FlinkWhere is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in Flink
Flink Forward
 
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production DeploymentUsing the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Flink Forward
 
The Current State of Table API in 2022
The Current State of Table API in 2022The Current State of Table API in 2022
The Current State of Table API in 2022
Flink Forward
 
Flink SQL on Pulsar made easy
Flink SQL on Pulsar made easyFlink SQL on Pulsar made easy
Flink SQL on Pulsar made easy
Flink Forward
 
Dynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data AlertsDynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data Alerts
Flink Forward
 
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and PinotExactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Flink Forward
 
Processing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial ServicesProcessing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial Services
Flink Forward
 
Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...
Flink Forward
 
Batch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & Iceberg
Flink Forward
 
Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...Building a fully managed stream processing platform on Flink at scale for Lin...
Building a fully managed stream processing platform on Flink at scale for Lin...
Flink Forward
 
Evening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in FlinkEvening out the uneven: dealing with skew in Flink
Evening out the uneven: dealing with skew in Flink
Flink Forward
 
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
“Alexa, be quiet!”: End-to-end near-real time model building and evaluation i...
Flink Forward
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Flink Forward
 
Introducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes OperatorIntroducing the Apache Flink Kubernetes Operator
Introducing the Apache Flink Kubernetes Operator
Flink Forward
 
Autoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive ModeAutoscaling Flink with Reactive Mode
Autoscaling Flink with Reactive Mode
Flink Forward
 
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Dynamically Scaling Data Streams across Multiple Kafka Clusters with Zero Fli...
Flink Forward
 
One sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async SinkOne sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async Sink
Flink Forward
 
Tuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptxTuning Apache Kafka Connectors for Flink.pptx
Tuning Apache Kafka Connectors for Flink.pptx
Flink Forward
 
Flink powered stream processing platform at Pinterest
Flink powered stream processing platform at PinterestFlink powered stream processing platform at Pinterest
Flink powered stream processing platform at Pinterest
Flink Forward
 
Apache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native EraApache Flink in the Cloud-Native Era
Apache Flink in the Cloud-Native Era
Flink Forward
 
Where is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in FlinkWhere is my bottleneck? Performance troubleshooting in Flink
Where is my bottleneck? Performance troubleshooting in Flink
Flink Forward
 
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production DeploymentUsing the New Apache Flink Kubernetes Operator in a Production Deployment
Using the New Apache Flink Kubernetes Operator in a Production Deployment
Flink Forward
 
The Current State of Table API in 2022
The Current State of Table API in 2022The Current State of Table API in 2022
The Current State of Table API in 2022
Flink Forward
 
Flink SQL on Pulsar made easy
Flink SQL on Pulsar made easyFlink SQL on Pulsar made easy
Flink SQL on Pulsar made easy
Flink Forward
 
Dynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data AlertsDynamic Rule-based Real-time Market Data Alerts
Dynamic Rule-based Real-time Market Data Alerts
Flink Forward
 
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and PinotExactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Flink Forward
 
Processing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial ServicesProcessing Semantically-Ordered Streams in Financial Services
Processing Semantically-Ordered Streams in Financial Services
Flink Forward
 
Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...
Flink Forward
 
Batch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & Iceberg
Flink Forward
 

Recently uploaded (20)

Language Learning App Data Research by Globibo [2025]
Language Learning App Data Research by Globibo [2025]Language Learning App Data Research by Globibo [2025]
Language Learning App Data Research by Globibo [2025]
globibo
 
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docxAnalysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
hershtara1
 
Lagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdfLagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdf
benuju2016
 
Automated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptxAutomated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptx
handrymaharjan23
 
Fundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithmsFundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithms
priyaiyerkbcsc
 
Process Mining as Enabler for Digital Transformations
Process Mining as Enabler for Digital TransformationsProcess Mining as Enabler for Digital Transformations
Process Mining as Enabler for Digital Transformations
Process mining Evangelist
 
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
muhammed84essa
 
Dr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug - Expert In Artificial IntelligenceDr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug
 
L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?
Process mining Evangelist
 
Ann Naser Nabil- Data Scientist Portfolio.pdf
Ann Naser Nabil- Data Scientist Portfolio.pdfAnn Naser Nabil- Data Scientist Portfolio.pdf
Ann Naser Nabil- Data Scientist Portfolio.pdf
আন্ নাসের নাবিল
 
Dynamics 365 Business Rules Dynamics Dynamics
Dynamics 365 Business Rules Dynamics DynamicsDynamics 365 Business Rules Dynamics Dynamics
Dynamics 365 Business Rules Dynamics Dynamics
heyoubro69
 
AWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdfAWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdf
philsparkshome
 
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Jayantilal Bhanushali
 
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
bastakwyry
 
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
Taqyea
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
national income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptxnational income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptx
j2492618
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
lecture_13 tree in mmmmmmmm mmmmmfftro.pptx
lecture_13 tree in mmmmmmmm     mmmmmfftro.pptxlecture_13 tree in mmmmmmmm     mmmmmfftro.pptx
lecture_13 tree in mmmmmmmm mmmmmfftro.pptx
sarajafffri058
 
Language Learning App Data Research by Globibo [2025]
Language Learning App Data Research by Globibo [2025]Language Learning App Data Research by Globibo [2025]
Language Learning App Data Research by Globibo [2025]
globibo
 
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docxAnalysis of Billboards hot 100 toop five hit makers on the chart.docx
Analysis of Billboards hot 100 toop five hit makers on the chart.docx
hershtara1
 
Lagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdfLagos School of Programming Final Project Updated.pdf
Lagos School of Programming Final Project Updated.pdf
benuju2016
 
Automated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptxAutomated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptx
handrymaharjan23
 
Fundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithmsFundamentals of Data Analysis, its types, tools, algorithms
Fundamentals of Data Analysis, its types, tools, algorithms
priyaiyerkbcsc
 
Process Mining as Enabler for Digital Transformations
Process Mining as Enabler for Digital TransformationsProcess Mining as Enabler for Digital Transformations
Process Mining as Enabler for Digital Transformations
Process mining Evangelist
 
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
muhammed84essa
 
Dr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug - Expert In Artificial IntelligenceDr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug - Expert In Artificial Intelligence
Dr. Robert Krug
 
L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?How to Set Up Process Mining in a Decentralized Organization?
How to Set Up Process Mining in a Decentralized Organization?
Process mining Evangelist
 
Dynamics 365 Business Rules Dynamics Dynamics
Dynamics 365 Business Rules Dynamics DynamicsDynamics 365 Business Rules Dynamics Dynamics
Dynamics 365 Business Rules Dynamics Dynamics
heyoubro69
 
AWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdfAWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdf
philsparkshome
 
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Day 1 MS Excel Basics #.pptxDay 1 MS Excel Basics #.pptxDay 1 MS Excel Basics...
Jayantilal Bhanushali
 
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
2-Raction quotient_١٠٠١٤٦.ppt of physical chemisstry
bastakwyry
 
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
录取通知书加拿大TMU毕业证多伦多都会大学电子版毕业证成绩单
Taqyea
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
national income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptxnational income & related aggregates (1)(1).pptx
national income & related aggregates (1)(1).pptx
j2492618
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
lecture_13 tree in mmmmmmmm mmmmmfftro.pptx
lecture_13 tree in mmmmmmmm     mmmmmfftro.pptxlecture_13 tree in mmmmmmmm     mmmmmfftro.pptx
lecture_13 tree in mmmmmmmm mmmmmfftro.pptx
sarajafffri058
 

Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL and CEP

  • 2. Streams are Everywhere  Most data is continuously produced as stream  Processing data as it arrives is becoming very popular  Many diverse applications and use cases 2
  • 3. Complex Event Processing  Analyzing a stream of events and drawing conclusions • Detect patterns and assemble new events  Applications • Network intrusion • Process monitoring • Algorithmic trading  Demanding requirements on stream processor • Low latency! • Exactly-once semantics & event-time support 3
  • 4. Batch Analytics 4  The batch approach to data analytics
  • 5. Streaming Analytics  Online aggregation of streams • No delay – Continuous results  Stream analytics subsumes batch analytics • Batch is a finite stream  Demanding requirements on stream processor • High throughput • Exactly-once semantics • Event-time & advanced window support 5
  • 6. Apache Flink®  Platform for scalable stream processing  Meets requirements of CEP and stream analytics • Low latency and high throughput • Exactly-once semantics • Event-time & advanced windowing  Core DataStream API available for Java & Scala 6
  • 7. This Talk is About  Flink’s new APIs for CEP and Stream Analytics • DSL to define CEP patterns and actions • Stream SQL to define queries on streams  Integration of CEP and Stream SQL  Early stage  Work in progress 7
  • 8. Tracking an Order Process Use Case 8
  • 10. Order Events  Process is reflected in a stream of order events  Order(orderId, tStamp, “received”)  Shipment(orderId, tStamp, “shipped”)  Delivery(orderId, tStamp, “delivered”)  orderId: Identifies the order  tStamp: Time at which the event happened 10
  • 12. Stream Analytics  Traditional batch analytics • Repeated queries on finite and changing data sets • Queries join and aggregate large data sets  Stream analytics • “Standing” query produces continuous results from infinite input stream • Query computes aggregates on high-volume streams  How to compute aggregates on infinite streams? 12
  • 13. Compute Aggregates on Streams  Split infinite stream into finite “windows” • Split usually by time  Tumbling windows • Fixed size & consecutive  Sliding windows • Fixed size & may overlap  Event time mandatory for correct & consistent results! 13
  • 14. Example: Count Orders by Hour 14
  • 15. Example: Count Orders by Hour 15 SELECT STREAM TUMBLE_START(tStamp, INTERVAL ‘1’ HOUR) AS hour, COUNT(*) AS cnt FROM events WHERE status = ‘received’ GROUP BY TUMBLE(tStamp, INTERVAL ‘1’ HOUR)
  • 16. Stream SQL Architecture  Flink features SQL on static and streaming tables  Parsing and optimization by Apache Calcite  SQL queries are translated into native Flink programs 16
  • 17. Pattern Matching on Streams Complex Event Processing 17
  • 19. CEP to the Rescue  Define processing and delivery intervals (SLAs)  ProcessSucc(orderId, tStamp, duration)  ProcessWarn(orderId, tStamp)  DeliverySucc(orderId, tStamp, duration)  DeliveryWarn(orderId, tStamp)  orderId: Identifies the order  tStamp: Time when the event happened  duration: Duration of the processing/delivery 19
  • 21. Processing: Order  Shipment 21 val processingPattern = Pattern .begin[Event]("received").subtype(classOf[Order]) .followedBy("shipped").where(_.status == "shipped") .within(Time.hours(1)) val processingPatternStream = CEP.pattern( input.keyBy("orderId"), processingPattern) val procResult: DataStream[Either[ProcessWarn, ProcessSucc]] = processingPatternStream.select { (pP, timestamp) => // Timeout handler ProcessWarn(pP("received").orderId, timestamp) } { fP => // Select function ProcessSucc( fP("received").orderId, fP("shipped").tStamp, fP("shipped").tStamp – fP("received").tStamp) }
  • 22. … and both at the same time! Integrated Stream Analytics with CEP 22
  • 25. CEP + Stream SQL 25 // complex event processing result val delResult: DataStream[Either[DeliveryWarn, DeliverySucc]] = … val delWarn: DataStream[DeliveryWarn] = delResult.flatMap(_.left.toOption) val deliveryWarningTable: Table = delWarn.toTable(tableEnv) tableEnv.registerTable(”deliveryWarnings”, deliveryWarningTable) // calculate the delayed deliveries per day val delayedDeliveriesPerDay = tableEnv.sql( """SELECT STREAM | TUMBLE_START(tStamp, INTERVAL ‘1’ DAY) AS day, | COUNT(*) AS cnt |FROM deliveryWarnings |GROUP BY TUMBLE(tStamp, INTERVAL ‘1’ DAY)""".stripMargin)
  • 26. CEP-enriched Stream SQL 26 SELECT TUMBLE_START(tStamp, INTERVAL '1' DAY) as day, AVG(duration) as avgDuration FROM ( // CEP pattern SELECT (b.tStamp - a.tStamp) as duration, b.tStamp as tStamp FROM inputs PATTERN a FOLLOW BY b PARTITION BY orderId ORDER BY tStamp WITHIN INTERVAL '1’ HOUR WHERE a.status = ‘received’ AND b.status = ‘shipped’ ) GROUP BY TUMBLE(tStamp, INTERVAL '1’ DAY)
  • 27. Conclusion  Apache Flink handles CEP and analytical workloads  Apache Flink offers intuitive APIs  New class of applications by CEP and Stream SQL integration  27
  翻译: