Cloud computing environment provides the cost efficient solution to customers by the resource provisioning and flexible customized configuration. The interest of cloud computing is growing around the globe at very fast pace because it provides scalable virtualized infrastructure by mean of which extensive computing capabilities can be used by the cloud clients to execute their submitted jobs. It becomes challenge for the cloud infrastructure to manage and schedule these jobs originated by different cloud users to available resources in such a manner to strengthen the overall performance of the system. As the number of user increases the job scheduling become an intensive task. Energy efficient job scheduling is one constructive solution to streamline the resource utilization as well as to reduce the energy consumption. Though there are several scheduling algorithms available, this paper intends to present job scheduling based on two Heuristic approaches i.e. Efficient MQS (Multi-queue job scheduling) and ACO (Ant colony optimization) and further evaluating the effectiveness of both approaches by considering the parameter of energy consumption and time in cloud computing.