SlideShare a Scribd company logo
ISSN (e): 2250 – 3005 || Volume, 06 || Issue, 06|| June – 2016 ||
International Journal of Computational Engineering Research (IJCER)
www.ijceronline.com Open Access Journal Page 1
Efficient Cluster Based Data Collection Using Mobile Data
Collector for Wireless Sensor Network
Dhanya L Salian1
, Ravi B2
, Udaya Kumar K Shenoy3
1
P G Scholar, Department of CSE, NMAM Institute of Technology, Nitte, Udupi District, Karnataka, India,
2
Assistant Professor, Department of CSE, NMAM Institute of Technology, Nitte, Udupi District, Karnataka,
India
3
Professor, Department of CSE, NMAM Institute of Technology, Nitte, Udupi District, Karnataka, India
I. INTRODUCTION
Wireless Sensor Network (WSN) has been emerged as a new paradigm for information gathering in recent
years. WSN is a collection of sensor nodes which are deployed in an application area to monitor certain events
[1]. WSN plays a significant role in diverse applications such as health monitoring, emergency response,
agriculture, smart transportation, military applications etc. [2]. In spite of the application of WSNs being
diverse, most of them have a common feature i.e. collection of data at the sink. While collecting the data at the
sink, the nodes near the sink consume more energy as they receive heavy traffic. These nodes have the
responsibility of forwarding the data to the sink which results in their early depletion compared to the nodes
which are farther away from the sink. When these sensor nodes fail, the faraway sensors cannot reach the sink.
This results in disconnected network and network failure. Therefore, to collect the data efficiently without these
negative impacts is known as data gathering problem [3].
Finding an effective solution to the data gathering problem is a challenging task as it determines the network
lifetime. By establishing a well-organized data gathering scheme, the network lifetime of the WSN can be
increased. Mobility can be introduced in the WSNs to reduce the uneven energy consumption among the sensor
nodes and to solve the data gathering problem. In this paper we introduce mobility into the WSN via mobile
data collector.
In this paper, we propose a data gathering scheme which employs clustering and mobility in WSNs for data
collection. Clusters are formed and the sensor nodes send data to the cluster heads. The shortest traversal order
is calculated for the mobile data collector to visit the cluster heads in the WSN. The mobile data collector visits
the cluster heads in the calculated traversal order and collects data from the cluster heads and finally delivers the
data to the sink. The shortest traversal order saves time and energy in data gathering and hence is an effective
data gathering approach which increases the network lifetime.
The rest of the paper is designed as follows: Related work is discussed in section II. Section III discusses the
proposed scheme. Simulation results are discussed in section IV. Section V summarizes the paper.
II. RELATED WORK
Establishing energy efficient data gathering scheme has been a challenging research work and lot of researches
have been carried out to achieve this. Researches already carried out in this field are discussed in this section.
Data gathering problem is considered in the paper proposed by Ming Ma et al. [4]. Here, the mobile collector
(M-collector) visits the communication range of each sensor and collects data within a single hop
communication. The data is collected without relay. Here, the focus is on prolonging the network lifetime.
ABSTRACT
Establishing an efficient data gathering scheme in wireless sensor networks is a challenging task. Lot
of researches has been carried out to establish energy efficient data gathering scheme to avoid heavy
traffic received by the nodes near the sink. Data gathering scheme is a significant factor in
determining the network lifetime. In this paper we propose an efficient data gathering scheme by
introducing clustering and mobility into the wireless sensor network. We consider data collection in
wireless sensor networks by utilizing mobile data collector and cluster heads. Cluster heads are
chosen and clusters are formed to collect data from the sensor nodes. The proposed scheme finds the
shortest tour for the mobile data collector to collect data from the cluster heads. The shortest tour
saves time and energy in data gathering.
Keywords: Wireless Sensor Networks, Mobile Data Collector, Sink, Cluster Heads, Minimum
Spanning Tree, LEACH, Network Lifetime
Efficient Cluster Based Data Collection Using Mobile Data Collector For Wireless Sensor Network
www.ijceronline.com Open Access Journal Page 2
Usage of multiple mobile data collectors and spatial division multiple access (SDMA) technique for data-
aggregation in WSNs has been introduced by Miao Zhao et al. [5]. Here, mobile collector known as SenCar is
employed in the divided non-overlapping regions of the sensing field. The data gathering problem is solved
using multiple mobile collectors and the network lifetime is increased.
Upasana Sharma et al. [3] have proposed mobile data gathering scheme which uses Mobile Data Collector
(MDC) to collect data from the cluster heads. MDC dynamically changes its gathering tour by making use of
information in a Neighbour Information Table (NIT). Cluster heads create NIT by learning about its neighbours.
MDC utilizes the information in NIT and decides its traversal tour. This paper discusses the dynamic path
reduction and data filtration in WSNs.
Controllable mobility approach is considered in the paper proposed by S. Chowdhury et al. [6]. Here, the
minimum set of sensors is chosen as Data Collection Points (DCPs). The mobile data collector visits these DCPs
in a specific sequence. Minimization of hop count and tour length of mobile data collector to conserve energy is
discussed in this paper.
Minimizing the data gathering cost has been discussed in the paper proposed by S. Guo et al. [7]. Here, the
mobile data collector collects the data at the anchor points. The mobile data collector moves in the sensing field
to collect data from the anchor points. The mobile data collector stays at the anchor point for a short duration to
gather the data forwarded by the sensor nodes. Nonuniform energy consumption among the sensor nodes is
eliminated and the data gathering latency is shortened in this approach.
III. PROPOSED SCHEME
Proposed scheme creates well organized wireless sensor network for data collection by creating clusters. Mobile
node i.e. Mobile Data Collector (MDC) is used to move and collect data from the Cluster Heads (CHs). Data is
collected from CHs at low cost via. MDC. MDC visits the CHs in the shortest path and hence it results in
efficient data collection. Fig-1 gives the basic idea of the proposed scheme. Fig-1 shows an example of shortest
tour path of MDC visiting each CHs. Sensor nodes are randomly distributed in the WSN and they result in
homogeneous network as the nodes are of similar type. It is assumed that the sensor nodes are aware of their
coordinates.
Fig 1 Proposed scheme
The goal of the proposed scheme is to increase the network lifetime and also to reduce traffic load and energy
consumption of the sensor nodes near the sink. In this scheme, initially we select the CHs among the randomly
distributed nodes using CH selection algorithm of LEACH. Next we form cluster of nodes and find the shortest
traversal path for the MDC to collect data from the CHs. The MDC then has to approach each CH in this path
and collect data from the CHs and finally transfer the data to the sink. We use a TSP solver to find the shortest
path for MDC.
1.1. LEACH Protocol
One of the clustering based hierarchical-routing protocols is Low-Energy Adaptive Clustering Hierarchy
(LEACH). Based on the threshold values the CHs are randomly selected in LEACH protocol.
1.2. CH Selection Algorithm of LEACH Protocol
Here, the nodes are randomly distributed in a network. Each node takes a decision whether to become a CH for
current round or not. Here, each node will generate a random number in the range of 0-1. If the number is less
than threshold value, then node is CH for the current round. Threshold is given by equation (1).
Efficient Cluster Based Data Collection Using Mobile Data Collector For Wireless Sensor Network
www.ijceronline.com Open Access Journal Page 3
where Tn is the threshold value calculated for the node, Pn is the percentage of CHs in each round, R is the
current round. Pn is calculated using equation (2).
To determine the number of clusters i.e. K, heuristics used in LEACH is used. Given N number of nodes,
partition the sensor field into K uniform-sized clusters using equation (3), where K is a squared number.
Thus the CHs are selected using the CH selection algorithm of the LEACH protocol. Once the CHs are selected,
the sensor nodes form clusters by using the clustering approach which is discussed below.
1.3 Clustering approach
The clustering algorithm given below forms the cluster of nodes under the selected CHs. Each sensor nodes with
co-ordinates (x, y) calculates minimum distance using equation (4).
Sensor nodes form clusters by assigning themselves to the CHs which is at minimum distance to them. The
clusters are formed using clustering algorithm and the traffic is set between CHs and the sensor nodes. Once the
clusters are formed, the shortest traversal path for MDC is calculated.
1.4 Finding Shortest Traversal Path
The shortest traversal tour planning is required for MDC. The shortest traversal tour of MDC consists of CH
nodes to be visited. For example, let denote CH nodes selected for traversal and M be the
MDC then the traversal tour for MDC can be denoted as . The problem of finding
shortest traversal path is to determine the shortest visiting order for CH nodes.
First calculate the distance between each CH nodes and create a complete weighted graph G(Vi,Ei), where Vi is
the set of homogeneous sensor nodes selected as CHs and Ei is the set of edges between the CH nodes present in
G. Find the Minimum Spanning Tree possible for this complete graph using Prims algorithm. This MST gives a
tree with minimum weight of edges connecting any two vertices in a graph.
Efficient Cluster Based Data Collection Using Mobile Data Collector For Wireless Sensor Network
www.ijceronline.com Open Access Journal Page 4
Applying Depth First Search to the MST we find the traversal order of CH nodes to be visited by MDC. The
MDC traverses the CHs in the calculated order and collects data from CHs and finally hands over data to the
sink.
IV. SIMULATION RESULTS
The proposed scheme is simulated using ns2. It is simulated for different topologies with 20, 40, 60, 80 and 100
nodes. The shortest traversal path is calculated in C++. Mobile node moves with a speed of 5m/s and gathers
data from the CHs. The simulation parameters used in this project are shown in Table-1.
Table 1. Simulation parameters
Parameter Values
Number of Nodes 20,40,60,80,100
Simulation area 500*500
Initial Energy of Sensor
Node
100J
Traffic Source CBR
Transmission Protocol UDP
Packet size 512 bytes
Communication range 50 meters
The simulation of proposed scheme is shown in Figure 1. The CHs selected are highlighted and even the MDC
and the sink. The network lifetime is determined for various topologies and the graphs are plotted with number
of nodes in X-axis and network lifetime along Y-axis.
Fig 2. Simulation of proposed scheme for 40 nodes
The sensor nodes are randomly distributed as shown in Fig-2.The nodes selected as cluster heads are labeled as
CH as shown in the Fig-2.
Fig 3. Number of nodes vs. network lifetime
Efficient Cluster Based Data Collection Using Mobile Data Collector For Wireless Sensor Network
www.ijceronline.com Open Access Journal Page 5
Fig-3 shows the graph plotted for network lifetime. The threshold value is fixed and the network lifetime is
calculated for 20, 40, 60, 80 and 100 nodes. Fig-4 shows the graph plotted for the average energy consumption
of the network for 20, 40, 60, 80 and 100 nodes.
Fig 4. Number of nodes vs. average energy consumption
V. CONCLUSION
The proposed scheme achieves efficient data collection using MDC and it is more effective compared to the
static data collector. This scheme can be improvised to reduce the energy consumption between the MDC and
the sink by reducing the data transmission between MDC and the sink. Cluster based approach is used in the
proposed scheme where sensor nodes form clusters and send data to the CHs. The data aggregated at the CHs
are forwarded to the sink via MDC. The best traversal order is used by the MDC to visit the CHs to collect data.
The shortest traversal order used by the MDC saves time and energy in data collection and hence is an effective
solution for data gathering problem. The proposed scheme increases the network lifetime and reduces the load
on the sensor nodes near the sink.
REFERENCES
[1]. Mohammad A. Matin, “Wireless Sensor Networks Technology and Protocols”, InTec publications, Inc. Croatia,p. cm.ISBN 978-
953-51-0735-4,2012.
[2]. Amiya Nayak and Ivan Stojmenovic, “Algorithms and Protocols for Scalable Coordination and Data Communication”, John
Wiley & Sons, Inc. Hoboken, New Jersey, pp-153-181, 2010.
[3]. Upasana Sharma, Dr. C. Rama Krishna and Dr. T.P. Sharma, “An Efficient Mobile Data Collector Based Data Aggregation
Scheme for Wireless Sensor Networks” IEEE International Conference on Computational Intelligence & Communication
Technology, 2015.
[4]. M. Ma and Y. Yang, “Data Gathering in Wireless Sensor Networks with Mobile Collectors,” Proceedings of IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), pages 1-9, 2008.
[5]. M. Zhao and Y. Yang, “Data Gathering in Wireless Sensor Networks with Multiple Mobile Collectors and SDMA Technique
Sensor Networks,” Proceedings of IEEE Wireless Communication and Networking Conference (WCNC ), pages 1-6, 2010.
[6]. S. Chowdhury and C. Giri, “Data Collection Point Based Mobile Data Gathering Scheme Relay Hop Constraint,” Proceedings of
IEEE International Conference on Advances in Computing, Communications and Informatics (ICACCI ), pages 282-287, 2013.
[7]. S. Guo and Y. Yang, “A Distributed Optimal Framework for Mobile Data Gathering with Concurrent Data Uploading in
Wireless Sensor Networks,” Proceedings of IEEE Conference on Computer Communications (INFOCOM), pages 1305-
1313, 2012.
Ad

More Related Content

What's hot (15)

A seminar report on data aggregation in wireless sensor networks
A seminar report on data aggregation in wireless sensor networksA seminar report on data aggregation in wireless sensor networks
A seminar report on data aggregation in wireless sensor networks
praveen369
 
34 9141 it ns2-tentative route selection approach for edit septian
34 9141 it  ns2-tentative route selection approach for edit septian34 9141 it  ns2-tentative route selection approach for edit septian
34 9141 it ns2-tentative route selection approach for edit septian
IAESIJEECS
 
Data gathering in wireless sensor networks using intermediate nodes
Data gathering in wireless sensor networks using intermediate nodesData gathering in wireless sensor networks using intermediate nodes
Data gathering in wireless sensor networks using intermediate nodes
IJCNCJournal
 
Iisrt divya nagaraj (networks)
Iisrt divya nagaraj (networks)Iisrt divya nagaraj (networks)
Iisrt divya nagaraj (networks)
IISRT
 
Ed33777782
Ed33777782Ed33777782
Ed33777782
IJERA Editor
 
Cluster Head Selection Techniques for Energy Efficient Wireless Sensor Networ...
Cluster Head Selection Techniques for Energy Efficient Wireless Sensor Networ...Cluster Head Selection Techniques for Energy Efficient Wireless Sensor Networ...
Cluster Head Selection Techniques for Energy Efficient Wireless Sensor Networ...
ijsrd.com
 
INCREASING WIRELESS SENSOR NETWORKS LIFETIME WITH NEW METHOD
INCREASING WIRELESS SENSOR NETWORKS LIFETIME WITH NEW METHODINCREASING WIRELESS SENSOR NETWORKS LIFETIME WITH NEW METHOD
INCREASING WIRELESS SENSOR NETWORKS LIFETIME WITH NEW METHOD
ijwmn
 
C018141418
C018141418C018141418
C018141418
IOSR Journals
 
Ca mwsn clustering algorithm for mobile wireless senor network [
Ca mwsn clustering algorithm for mobile wireless senor network  [Ca mwsn clustering algorithm for mobile wireless senor network  [
Ca mwsn clustering algorithm for mobile wireless senor network [
graphhoc
 
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSNOptimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSN
IJCNCJournal
 
Optimizing the Data Collection in Wireless Sensor Network
Optimizing the Data Collection in Wireless Sensor NetworkOptimizing the Data Collection in Wireless Sensor Network
Optimizing the Data Collection in Wireless Sensor Network
IRJET Journal
 
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
Editor IJCATR
 
Proactive Data Reporting of Wireless sensor Network using Wake Up Scheduling ...
Proactive Data Reporting of Wireless sensor Network using Wake Up Scheduling ...Proactive Data Reporting of Wireless sensor Network using Wake Up Scheduling ...
Proactive Data Reporting of Wireless sensor Network using Wake Up Scheduling ...
ijsrd.com
 
Wireless sensor networks, clustering, Energy efficient protocols, Particles S...
Wireless sensor networks, clustering, Energy efficient protocols, Particles S...Wireless sensor networks, clustering, Energy efficient protocols, Particles S...
Wireless sensor networks, clustering, Energy efficient protocols, Particles S...
IJMIT JOURNAL
 
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...
ijdmtaiir
 
A seminar report on data aggregation in wireless sensor networks
A seminar report on data aggregation in wireless sensor networksA seminar report on data aggregation in wireless sensor networks
A seminar report on data aggregation in wireless sensor networks
praveen369
 
34 9141 it ns2-tentative route selection approach for edit septian
34 9141 it  ns2-tentative route selection approach for edit septian34 9141 it  ns2-tentative route selection approach for edit septian
34 9141 it ns2-tentative route selection approach for edit septian
IAESIJEECS
 
Data gathering in wireless sensor networks using intermediate nodes
Data gathering in wireless sensor networks using intermediate nodesData gathering in wireless sensor networks using intermediate nodes
Data gathering in wireless sensor networks using intermediate nodes
IJCNCJournal
 
Iisrt divya nagaraj (networks)
Iisrt divya nagaraj (networks)Iisrt divya nagaraj (networks)
Iisrt divya nagaraj (networks)
IISRT
 
Cluster Head Selection Techniques for Energy Efficient Wireless Sensor Networ...
Cluster Head Selection Techniques for Energy Efficient Wireless Sensor Networ...Cluster Head Selection Techniques for Energy Efficient Wireless Sensor Networ...
Cluster Head Selection Techniques for Energy Efficient Wireless Sensor Networ...
ijsrd.com
 
INCREASING WIRELESS SENSOR NETWORKS LIFETIME WITH NEW METHOD
INCREASING WIRELESS SENSOR NETWORKS LIFETIME WITH NEW METHODINCREASING WIRELESS SENSOR NETWORKS LIFETIME WITH NEW METHOD
INCREASING WIRELESS SENSOR NETWORKS LIFETIME WITH NEW METHOD
ijwmn
 
Ca mwsn clustering algorithm for mobile wireless senor network [
Ca mwsn clustering algorithm for mobile wireless senor network  [Ca mwsn clustering algorithm for mobile wireless senor network  [
Ca mwsn clustering algorithm for mobile wireless senor network [
graphhoc
 
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSNOptimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSN
IJCNCJournal
 
Optimizing the Data Collection in Wireless Sensor Network
Optimizing the Data Collection in Wireless Sensor NetworkOptimizing the Data Collection in Wireless Sensor Network
Optimizing the Data Collection in Wireless Sensor Network
IRJET Journal
 
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
Editor IJCATR
 
Proactive Data Reporting of Wireless sensor Network using Wake Up Scheduling ...
Proactive Data Reporting of Wireless sensor Network using Wake Up Scheduling ...Proactive Data Reporting of Wireless sensor Network using Wake Up Scheduling ...
Proactive Data Reporting of Wireless sensor Network using Wake Up Scheduling ...
ijsrd.com
 
Wireless sensor networks, clustering, Energy efficient protocols, Particles S...
Wireless sensor networks, clustering, Energy efficient protocols, Particles S...Wireless sensor networks, clustering, Energy efficient protocols, Particles S...
Wireless sensor networks, clustering, Energy efficient protocols, Particles S...
IJMIT JOURNAL
 
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...
Anchor Positioning using Sensor Transmission Range Based Clustering for Mobil...
ijdmtaiir
 

Viewers also liked (12)

Conheça meu trabalho para o bairro Saraiva, Vigilato e Lagoainha
Conheça meu trabalho para o bairro Saraiva, Vigilato e LagoainhaConheça meu trabalho para o bairro Saraiva, Vigilato e Lagoainha
Conheça meu trabalho para o bairro Saraiva, Vigilato e Lagoainha
Helvico Vico
 
Проект Посібника з вуличного дизайну Києва (частина 2)
Проект Посібника з вуличного дизайну Києва (частина 2)Проект Посібника з вуличного дизайну Києва (частина 2)
Проект Посібника з вуличного дизайну Києва (частина 2)
Mistosite
 
Стратегия и план действий в отношении здоровья беженцев и мигрантов в Европей...
Стратегия и план действий в отношении здоровья беженцев и мигрантов в Европей...Стратегия и план действий в отношении здоровья беженцев и мигрантов в Европей...
Стратегия и план действий в отношении здоровья беженцев и мигрантов в Европей...
WHO Regional Office for Europe
 
Frank d-hammond-cerdos-en-la-sala2
Frank d-hammond-cerdos-en-la-sala2Frank d-hammond-cerdos-en-la-sala2
Frank d-hammond-cerdos-en-la-sala2
MARYCIELO RODRIGUEZ
 
7-Habits
7-Habits7-Habits
7-Habits
Sanjay Gaggar
 
Santa cena
Santa cenaSanta cena
Santa cena
MARYCIELO RODRIGUEZ
 
Como oir a_dios
Como oir a_diosComo oir a_dios
Como oir a_dios
MARYCIELO RODRIGUEZ
 
El campo de_batalla
El campo de_batallaEl campo de_batalla
El campo de_batalla
MARYCIELO RODRIGUEZ
 
Recursos naturales
Recursos naturalesRecursos naturales
Recursos naturales
David Peredo Perez
 
761 _yugo_desigual
761  _yugo_desigual761  _yugo_desigual
761 _yugo_desigual
MARYCIELO RODRIGUEZ
 
conquistemos-las-puertas-del-enemigo
 conquistemos-las-puertas-del-enemigo conquistemos-las-puertas-del-enemigo
conquistemos-las-puertas-del-enemigo
MARYCIELO RODRIGUEZ
 
Big Creative Idea Revitalizes Small Science Museum
Big Creative Idea Revitalizes Small Science MuseumBig Creative Idea Revitalizes Small Science Museum
Big Creative Idea Revitalizes Small Science Museum
David Smith
 
Conheça meu trabalho para o bairro Saraiva, Vigilato e Lagoainha
Conheça meu trabalho para o bairro Saraiva, Vigilato e LagoainhaConheça meu trabalho para o bairro Saraiva, Vigilato e Lagoainha
Conheça meu trabalho para o bairro Saraiva, Vigilato e Lagoainha
Helvico Vico
 
Проект Посібника з вуличного дизайну Києва (частина 2)
Проект Посібника з вуличного дизайну Києва (частина 2)Проект Посібника з вуличного дизайну Києва (частина 2)
Проект Посібника з вуличного дизайну Києва (частина 2)
Mistosite
 
Стратегия и план действий в отношении здоровья беженцев и мигрантов в Европей...
Стратегия и план действий в отношении здоровья беженцев и мигрантов в Европей...Стратегия и план действий в отношении здоровья беженцев и мигрантов в Европей...
Стратегия и план действий в отношении здоровья беженцев и мигрантов в Европей...
WHO Regional Office for Europe
 
Frank d-hammond-cerdos-en-la-sala2
Frank d-hammond-cerdos-en-la-sala2Frank d-hammond-cerdos-en-la-sala2
Frank d-hammond-cerdos-en-la-sala2
MARYCIELO RODRIGUEZ
 
conquistemos-las-puertas-del-enemigo
 conquistemos-las-puertas-del-enemigo conquistemos-las-puertas-del-enemigo
conquistemos-las-puertas-del-enemigo
MARYCIELO RODRIGUEZ
 
Big Creative Idea Revitalizes Small Science Museum
Big Creative Idea Revitalizes Small Science MuseumBig Creative Idea Revitalizes Small Science Museum
Big Creative Idea Revitalizes Small Science Museum
David Smith
 
Ad

Similar to Efficient Cluster Based Data Collection Using Mobile Data Collector for Wireless Sensor Network (20)

2 ijcse-01208
2 ijcse-012082 ijcse-01208
2 ijcse-01208
Shivlal Mewada
 
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...
IOSR Journals
 
Ijarcet vol-2-issue-2-576-581
Ijarcet vol-2-issue-2-576-581Ijarcet vol-2-issue-2-576-581
Ijarcet vol-2-issue-2-576-581
Editor IJARCET
 
E035425030
E035425030E035425030
E035425030
ijceronline
 
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
theijes
 
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...
ijcsa
 
Fuzzy-Clustering Based Data Gathering in Wireless Sensor Network
Fuzzy-Clustering Based Data Gathering in Wireless Sensor Network Fuzzy-Clustering Based Data Gathering in Wireless Sensor Network
Fuzzy-Clustering Based Data Gathering in Wireless Sensor Network
ijsc
 
International Journal of Advanced Smart Sensor Network Systems ( IJASSN )
International Journal of Advanced Smart Sensor Network Systems ( IJASSN )International Journal of Advanced Smart Sensor Network Systems ( IJASSN )
International Journal of Advanced Smart Sensor Network Systems ( IJASSN )
ijassn
 
A Review Study on Shortest Path in WSN to detect the Abnormal Packet for savi...
A Review Study on Shortest Path in WSN to detect the Abnormal Packet for savi...A Review Study on Shortest Path in WSN to detect the Abnormal Packet for savi...
A Review Study on Shortest Path in WSN to detect the Abnormal Packet for savi...
Editor IJMTER
 
Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent T...
Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent T...Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent T...
Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent T...
IJCNCJournal
 
Optimal Coverage Path Planningin a Wireless Sensor Network for Intelligent Tr...
Optimal Coverage Path Planningin a Wireless Sensor Network for Intelligent Tr...Optimal Coverage Path Planningin a Wireless Sensor Network for Intelligent Tr...
Optimal Coverage Path Planningin a Wireless Sensor Network for Intelligent Tr...
IJCNCJournal
 
A Survey of Fuzzy Logic Based Congestion Estimation Techniques in Wireless S...
A Survey of Fuzzy Logic Based Congestion Estimation  Techniques in Wireless S...A Survey of Fuzzy Logic Based Congestion Estimation  Techniques in Wireless S...
A Survey of Fuzzy Logic Based Congestion Estimation Techniques in Wireless S...
IOSR Journals
 
026 icsca2012-s065
026 icsca2012-s065026 icsca2012-s065
026 icsca2012-s065
auwalaumar
 
An Enhanced Approach of Clustering Protocol to Minimize Energy Holes in Wirel...
An Enhanced Approach of Clustering Protocol to Minimize Energy Holes in Wirel...An Enhanced Approach of Clustering Protocol to Minimize Energy Holes in Wirel...
An Enhanced Approach of Clustering Protocol to Minimize Energy Holes in Wirel...
IJCSIS Research Publications
 
ENERGY EFFICIENT HIERARCHICAL CLUSTER HEAD ELECTION USING EXPONENTIAL DECAY F...
ENERGY EFFICIENT HIERARCHICAL CLUSTER HEAD ELECTION USING EXPONENTIAL DECAY F...ENERGY EFFICIENT HIERARCHICAL CLUSTER HEAD ELECTION USING EXPONENTIAL DECAY F...
ENERGY EFFICIENT HIERARCHICAL CLUSTER HEAD ELECTION USING EXPONENTIAL DECAY F...
ijwmn
 
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
TELKOMNIKA JOURNAL
 
C1804011117
C1804011117C1804011117
C1804011117
IOSR Journals
 
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
IJCNCJournal
 
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
IJCNCJournal
 
ENERGY EFFICIENT, LIFETIME IMPROVING AND SECURE PERIODIC DATA COLLECTION PROT...
ENERGY EFFICIENT, LIFETIME IMPROVING AND SECURE PERIODIC DATA COLLECTION PROT...ENERGY EFFICIENT, LIFETIME IMPROVING AND SECURE PERIODIC DATA COLLECTION PROT...
ENERGY EFFICIENT, LIFETIME IMPROVING AND SECURE PERIODIC DATA COLLECTION PROT...
ijcsa
 
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...Energy Efficient Data Mining in Multi-Feature Sensor Networks  Using Improved...
Energy Efficient Data Mining in Multi-Feature Sensor Networks Using Improved...
IOSR Journals
 
Ijarcet vol-2-issue-2-576-581
Ijarcet vol-2-issue-2-576-581Ijarcet vol-2-issue-2-576-581
Ijarcet vol-2-issue-2-576-581
Editor IJARCET
 
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
theijes
 
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...
COVERAGE OPTIMIZED AND TIME EFFICIENT LOCAL SEARCH BETWEENNESS ROUTING FOR HE...
ijcsa
 
Fuzzy-Clustering Based Data Gathering in Wireless Sensor Network
Fuzzy-Clustering Based Data Gathering in Wireless Sensor Network Fuzzy-Clustering Based Data Gathering in Wireless Sensor Network
Fuzzy-Clustering Based Data Gathering in Wireless Sensor Network
ijsc
 
International Journal of Advanced Smart Sensor Network Systems ( IJASSN )
International Journal of Advanced Smart Sensor Network Systems ( IJASSN )International Journal of Advanced Smart Sensor Network Systems ( IJASSN )
International Journal of Advanced Smart Sensor Network Systems ( IJASSN )
ijassn
 
A Review Study on Shortest Path in WSN to detect the Abnormal Packet for savi...
A Review Study on Shortest Path in WSN to detect the Abnormal Packet for savi...A Review Study on Shortest Path in WSN to detect the Abnormal Packet for savi...
A Review Study on Shortest Path in WSN to detect the Abnormal Packet for savi...
Editor IJMTER
 
Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent T...
Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent T...Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent T...
Optimal Coverage Path Planning in a Wireless Sensor Network for Intelligent T...
IJCNCJournal
 
Optimal Coverage Path Planningin a Wireless Sensor Network for Intelligent Tr...
Optimal Coverage Path Planningin a Wireless Sensor Network for Intelligent Tr...Optimal Coverage Path Planningin a Wireless Sensor Network for Intelligent Tr...
Optimal Coverage Path Planningin a Wireless Sensor Network for Intelligent Tr...
IJCNCJournal
 
A Survey of Fuzzy Logic Based Congestion Estimation Techniques in Wireless S...
A Survey of Fuzzy Logic Based Congestion Estimation  Techniques in Wireless S...A Survey of Fuzzy Logic Based Congestion Estimation  Techniques in Wireless S...
A Survey of Fuzzy Logic Based Congestion Estimation Techniques in Wireless S...
IOSR Journals
 
026 icsca2012-s065
026 icsca2012-s065026 icsca2012-s065
026 icsca2012-s065
auwalaumar
 
An Enhanced Approach of Clustering Protocol to Minimize Energy Holes in Wirel...
An Enhanced Approach of Clustering Protocol to Minimize Energy Holes in Wirel...An Enhanced Approach of Clustering Protocol to Minimize Energy Holes in Wirel...
An Enhanced Approach of Clustering Protocol to Minimize Energy Holes in Wirel...
IJCSIS Research Publications
 
ENERGY EFFICIENT HIERARCHICAL CLUSTER HEAD ELECTION USING EXPONENTIAL DECAY F...
ENERGY EFFICIENT HIERARCHICAL CLUSTER HEAD ELECTION USING EXPONENTIAL DECAY F...ENERGY EFFICIENT HIERARCHICAL CLUSTER HEAD ELECTION USING EXPONENTIAL DECAY F...
ENERGY EFFICIENT HIERARCHICAL CLUSTER HEAD ELECTION USING EXPONENTIAL DECAY F...
ijwmn
 
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
TELKOMNIKA JOURNAL
 
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
IJCNCJournal
 
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
Energy-Efficient Improved Optimal K-Means: Dynamic Cluster Head Selection bas...
IJCNCJournal
 
ENERGY EFFICIENT, LIFETIME IMPROVING AND SECURE PERIODIC DATA COLLECTION PROT...
ENERGY EFFICIENT, LIFETIME IMPROVING AND SECURE PERIODIC DATA COLLECTION PROT...ENERGY EFFICIENT, LIFETIME IMPROVING AND SECURE PERIODIC DATA COLLECTION PROT...
ENERGY EFFICIENT, LIFETIME IMPROVING AND SECURE PERIODIC DATA COLLECTION PROT...
ijcsa
 
Ad

Recently uploaded (20)

Artificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptxArtificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptx
rakshanatarajan005
 
twin tower attack 2001 new york city
twin  tower  attack  2001 new  york citytwin  tower  attack  2001 new  york city
twin tower attack 2001 new york city
harishreemavs
 
SICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introductionSICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introduction
fabienklr
 
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdfSmart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
PawachMetharattanara
 
Slide share PPT of NOx control technologies.pptx
Slide share PPT of  NOx control technologies.pptxSlide share PPT of  NOx control technologies.pptx
Slide share PPT of NOx control technologies.pptx
vvsasane
 
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdfDavid Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry
 
DED KOMINFO detail engginering design gedung
DED KOMINFO detail engginering design gedungDED KOMINFO detail engginering design gedung
DED KOMINFO detail engginering design gedung
nabilarizqifadhilah1
 
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning ModelsMode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Journal of Soft Computing in Civil Engineering
 
JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...
JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...
JRR Tolkien’s Lord of the Rings: Was It Influenced by Nordic Mythology, Homer...
Reflections on Morality, Philosophy, and History
 
Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025
Antonin Danalet
 
Modeling the Influence of Environmental Factors on Concrete Evaporation Rate
Modeling the Influence of Environmental Factors on Concrete Evaporation RateModeling the Influence of Environmental Factors on Concrete Evaporation Rate
Modeling the Influence of Environmental Factors on Concrete Evaporation Rate
Journal of Soft Computing in Civil Engineering
 
Agents chapter of Artificial intelligence
Agents chapter of Artificial intelligenceAgents chapter of Artificial intelligence
Agents chapter of Artificial intelligence
DebdeepMukherjee9
 
Evonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdfEvonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdf
szhang13
 
hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .
NABLAS株式会社
 
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
PawachMetharattanara
 
acid base ppt and their specific application in food
acid base ppt and their specific application in foodacid base ppt and their specific application in food
acid base ppt and their specific application in food
Fatehatun Noor
 
Uses of drones in civil construction.pdf
Uses of drones in civil construction.pdfUses of drones in civil construction.pdf
Uses of drones in civil construction.pdf
surajsen1729
 
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software ApplicationsJacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia
 
How to Build a Desktop Weather Station Using ESP32 and E-ink Display
How to Build a Desktop Weather Station Using ESP32 and E-ink DisplayHow to Build a Desktop Weather Station Using ESP32 and E-ink Display
How to Build a Desktop Weather Station Using ESP32 and E-ink Display
CircuitDigest
 
Construction Materials (Paints) in Civil Engineering
Construction Materials (Paints) in Civil EngineeringConstruction Materials (Paints) in Civil Engineering
Construction Materials (Paints) in Civil Engineering
Lavish Kashyap
 
Artificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptxArtificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptx
rakshanatarajan005
 
twin tower attack 2001 new york city
twin  tower  attack  2001 new  york citytwin  tower  attack  2001 new  york city
twin tower attack 2001 new york city
harishreemavs
 
SICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introductionSICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introduction
fabienklr
 
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdfSmart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
PawachMetharattanara
 
Slide share PPT of NOx control technologies.pptx
Slide share PPT of  NOx control technologies.pptxSlide share PPT of  NOx control technologies.pptx
Slide share PPT of NOx control technologies.pptx
vvsasane
 
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdfDavid Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry
 
DED KOMINFO detail engginering design gedung
DED KOMINFO detail engginering design gedungDED KOMINFO detail engginering design gedung
DED KOMINFO detail engginering design gedung
nabilarizqifadhilah1
 
Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025
Antonin Danalet
 
Agents chapter of Artificial intelligence
Agents chapter of Artificial intelligenceAgents chapter of Artificial intelligence
Agents chapter of Artificial intelligence
DebdeepMukherjee9
 
Evonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdfEvonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdf
szhang13
 
hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .
NABLAS株式会社
 
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
PawachMetharattanara
 
acid base ppt and their specific application in food
acid base ppt and their specific application in foodacid base ppt and their specific application in food
acid base ppt and their specific application in food
Fatehatun Noor
 
Uses of drones in civil construction.pdf
Uses of drones in civil construction.pdfUses of drones in civil construction.pdf
Uses of drones in civil construction.pdf
surajsen1729
 
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software ApplicationsJacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia
 
How to Build a Desktop Weather Station Using ESP32 and E-ink Display
How to Build a Desktop Weather Station Using ESP32 and E-ink DisplayHow to Build a Desktop Weather Station Using ESP32 and E-ink Display
How to Build a Desktop Weather Station Using ESP32 and E-ink Display
CircuitDigest
 
Construction Materials (Paints) in Civil Engineering
Construction Materials (Paints) in Civil EngineeringConstruction Materials (Paints) in Civil Engineering
Construction Materials (Paints) in Civil Engineering
Lavish Kashyap
 

Efficient Cluster Based Data Collection Using Mobile Data Collector for Wireless Sensor Network

  • 1. ISSN (e): 2250 – 3005 || Volume, 06 || Issue, 06|| June – 2016 || International Journal of Computational Engineering Research (IJCER) www.ijceronline.com Open Access Journal Page 1 Efficient Cluster Based Data Collection Using Mobile Data Collector for Wireless Sensor Network Dhanya L Salian1 , Ravi B2 , Udaya Kumar K Shenoy3 1 P G Scholar, Department of CSE, NMAM Institute of Technology, Nitte, Udupi District, Karnataka, India, 2 Assistant Professor, Department of CSE, NMAM Institute of Technology, Nitte, Udupi District, Karnataka, India 3 Professor, Department of CSE, NMAM Institute of Technology, Nitte, Udupi District, Karnataka, India I. INTRODUCTION Wireless Sensor Network (WSN) has been emerged as a new paradigm for information gathering in recent years. WSN is a collection of sensor nodes which are deployed in an application area to monitor certain events [1]. WSN plays a significant role in diverse applications such as health monitoring, emergency response, agriculture, smart transportation, military applications etc. [2]. In spite of the application of WSNs being diverse, most of them have a common feature i.e. collection of data at the sink. While collecting the data at the sink, the nodes near the sink consume more energy as they receive heavy traffic. These nodes have the responsibility of forwarding the data to the sink which results in their early depletion compared to the nodes which are farther away from the sink. When these sensor nodes fail, the faraway sensors cannot reach the sink. This results in disconnected network and network failure. Therefore, to collect the data efficiently without these negative impacts is known as data gathering problem [3]. Finding an effective solution to the data gathering problem is a challenging task as it determines the network lifetime. By establishing a well-organized data gathering scheme, the network lifetime of the WSN can be increased. Mobility can be introduced in the WSNs to reduce the uneven energy consumption among the sensor nodes and to solve the data gathering problem. In this paper we introduce mobility into the WSN via mobile data collector. In this paper, we propose a data gathering scheme which employs clustering and mobility in WSNs for data collection. Clusters are formed and the sensor nodes send data to the cluster heads. The shortest traversal order is calculated for the mobile data collector to visit the cluster heads in the WSN. The mobile data collector visits the cluster heads in the calculated traversal order and collects data from the cluster heads and finally delivers the data to the sink. The shortest traversal order saves time and energy in data gathering and hence is an effective data gathering approach which increases the network lifetime. The rest of the paper is designed as follows: Related work is discussed in section II. Section III discusses the proposed scheme. Simulation results are discussed in section IV. Section V summarizes the paper. II. RELATED WORK Establishing energy efficient data gathering scheme has been a challenging research work and lot of researches have been carried out to achieve this. Researches already carried out in this field are discussed in this section. Data gathering problem is considered in the paper proposed by Ming Ma et al. [4]. Here, the mobile collector (M-collector) visits the communication range of each sensor and collects data within a single hop communication. The data is collected without relay. Here, the focus is on prolonging the network lifetime. ABSTRACT Establishing an efficient data gathering scheme in wireless sensor networks is a challenging task. Lot of researches has been carried out to establish energy efficient data gathering scheme to avoid heavy traffic received by the nodes near the sink. Data gathering scheme is a significant factor in determining the network lifetime. In this paper we propose an efficient data gathering scheme by introducing clustering and mobility into the wireless sensor network. We consider data collection in wireless sensor networks by utilizing mobile data collector and cluster heads. Cluster heads are chosen and clusters are formed to collect data from the sensor nodes. The proposed scheme finds the shortest tour for the mobile data collector to collect data from the cluster heads. The shortest tour saves time and energy in data gathering. Keywords: Wireless Sensor Networks, Mobile Data Collector, Sink, Cluster Heads, Minimum Spanning Tree, LEACH, Network Lifetime
  • 2. Efficient Cluster Based Data Collection Using Mobile Data Collector For Wireless Sensor Network www.ijceronline.com Open Access Journal Page 2 Usage of multiple mobile data collectors and spatial division multiple access (SDMA) technique for data- aggregation in WSNs has been introduced by Miao Zhao et al. [5]. Here, mobile collector known as SenCar is employed in the divided non-overlapping regions of the sensing field. The data gathering problem is solved using multiple mobile collectors and the network lifetime is increased. Upasana Sharma et al. [3] have proposed mobile data gathering scheme which uses Mobile Data Collector (MDC) to collect data from the cluster heads. MDC dynamically changes its gathering tour by making use of information in a Neighbour Information Table (NIT). Cluster heads create NIT by learning about its neighbours. MDC utilizes the information in NIT and decides its traversal tour. This paper discusses the dynamic path reduction and data filtration in WSNs. Controllable mobility approach is considered in the paper proposed by S. Chowdhury et al. [6]. Here, the minimum set of sensors is chosen as Data Collection Points (DCPs). The mobile data collector visits these DCPs in a specific sequence. Minimization of hop count and tour length of mobile data collector to conserve energy is discussed in this paper. Minimizing the data gathering cost has been discussed in the paper proposed by S. Guo et al. [7]. Here, the mobile data collector collects the data at the anchor points. The mobile data collector moves in the sensing field to collect data from the anchor points. The mobile data collector stays at the anchor point for a short duration to gather the data forwarded by the sensor nodes. Nonuniform energy consumption among the sensor nodes is eliminated and the data gathering latency is shortened in this approach. III. PROPOSED SCHEME Proposed scheme creates well organized wireless sensor network for data collection by creating clusters. Mobile node i.e. Mobile Data Collector (MDC) is used to move and collect data from the Cluster Heads (CHs). Data is collected from CHs at low cost via. MDC. MDC visits the CHs in the shortest path and hence it results in efficient data collection. Fig-1 gives the basic idea of the proposed scheme. Fig-1 shows an example of shortest tour path of MDC visiting each CHs. Sensor nodes are randomly distributed in the WSN and they result in homogeneous network as the nodes are of similar type. It is assumed that the sensor nodes are aware of their coordinates. Fig 1 Proposed scheme The goal of the proposed scheme is to increase the network lifetime and also to reduce traffic load and energy consumption of the sensor nodes near the sink. In this scheme, initially we select the CHs among the randomly distributed nodes using CH selection algorithm of LEACH. Next we form cluster of nodes and find the shortest traversal path for the MDC to collect data from the CHs. The MDC then has to approach each CH in this path and collect data from the CHs and finally transfer the data to the sink. We use a TSP solver to find the shortest path for MDC. 1.1. LEACH Protocol One of the clustering based hierarchical-routing protocols is Low-Energy Adaptive Clustering Hierarchy (LEACH). Based on the threshold values the CHs are randomly selected in LEACH protocol. 1.2. CH Selection Algorithm of LEACH Protocol Here, the nodes are randomly distributed in a network. Each node takes a decision whether to become a CH for current round or not. Here, each node will generate a random number in the range of 0-1. If the number is less than threshold value, then node is CH for the current round. Threshold is given by equation (1).
  • 3. Efficient Cluster Based Data Collection Using Mobile Data Collector For Wireless Sensor Network www.ijceronline.com Open Access Journal Page 3 where Tn is the threshold value calculated for the node, Pn is the percentage of CHs in each round, R is the current round. Pn is calculated using equation (2). To determine the number of clusters i.e. K, heuristics used in LEACH is used. Given N number of nodes, partition the sensor field into K uniform-sized clusters using equation (3), where K is a squared number. Thus the CHs are selected using the CH selection algorithm of the LEACH protocol. Once the CHs are selected, the sensor nodes form clusters by using the clustering approach which is discussed below. 1.3 Clustering approach The clustering algorithm given below forms the cluster of nodes under the selected CHs. Each sensor nodes with co-ordinates (x, y) calculates minimum distance using equation (4). Sensor nodes form clusters by assigning themselves to the CHs which is at minimum distance to them. The clusters are formed using clustering algorithm and the traffic is set between CHs and the sensor nodes. Once the clusters are formed, the shortest traversal path for MDC is calculated. 1.4 Finding Shortest Traversal Path The shortest traversal tour planning is required for MDC. The shortest traversal tour of MDC consists of CH nodes to be visited. For example, let denote CH nodes selected for traversal and M be the MDC then the traversal tour for MDC can be denoted as . The problem of finding shortest traversal path is to determine the shortest visiting order for CH nodes. First calculate the distance between each CH nodes and create a complete weighted graph G(Vi,Ei), where Vi is the set of homogeneous sensor nodes selected as CHs and Ei is the set of edges between the CH nodes present in G. Find the Minimum Spanning Tree possible for this complete graph using Prims algorithm. This MST gives a tree with minimum weight of edges connecting any two vertices in a graph.
  • 4. Efficient Cluster Based Data Collection Using Mobile Data Collector For Wireless Sensor Network www.ijceronline.com Open Access Journal Page 4 Applying Depth First Search to the MST we find the traversal order of CH nodes to be visited by MDC. The MDC traverses the CHs in the calculated order and collects data from CHs and finally hands over data to the sink. IV. SIMULATION RESULTS The proposed scheme is simulated using ns2. It is simulated for different topologies with 20, 40, 60, 80 and 100 nodes. The shortest traversal path is calculated in C++. Mobile node moves with a speed of 5m/s and gathers data from the CHs. The simulation parameters used in this project are shown in Table-1. Table 1. Simulation parameters Parameter Values Number of Nodes 20,40,60,80,100 Simulation area 500*500 Initial Energy of Sensor Node 100J Traffic Source CBR Transmission Protocol UDP Packet size 512 bytes Communication range 50 meters The simulation of proposed scheme is shown in Figure 1. The CHs selected are highlighted and even the MDC and the sink. The network lifetime is determined for various topologies and the graphs are plotted with number of nodes in X-axis and network lifetime along Y-axis. Fig 2. Simulation of proposed scheme for 40 nodes The sensor nodes are randomly distributed as shown in Fig-2.The nodes selected as cluster heads are labeled as CH as shown in the Fig-2. Fig 3. Number of nodes vs. network lifetime
  • 5. Efficient Cluster Based Data Collection Using Mobile Data Collector For Wireless Sensor Network www.ijceronline.com Open Access Journal Page 5 Fig-3 shows the graph plotted for network lifetime. The threshold value is fixed and the network lifetime is calculated for 20, 40, 60, 80 and 100 nodes. Fig-4 shows the graph plotted for the average energy consumption of the network for 20, 40, 60, 80 and 100 nodes. Fig 4. Number of nodes vs. average energy consumption V. CONCLUSION The proposed scheme achieves efficient data collection using MDC and it is more effective compared to the static data collector. This scheme can be improvised to reduce the energy consumption between the MDC and the sink by reducing the data transmission between MDC and the sink. Cluster based approach is used in the proposed scheme where sensor nodes form clusters and send data to the CHs. The data aggregated at the CHs are forwarded to the sink via MDC. The best traversal order is used by the MDC to visit the CHs to collect data. The shortest traversal order used by the MDC saves time and energy in data collection and hence is an effective solution for data gathering problem. The proposed scheme increases the network lifetime and reduces the load on the sensor nodes near the sink. REFERENCES [1]. Mohammad A. Matin, “Wireless Sensor Networks Technology and Protocols”, InTec publications, Inc. Croatia,p. cm.ISBN 978- 953-51-0735-4,2012. [2]. Amiya Nayak and Ivan Stojmenovic, “Algorithms and Protocols for Scalable Coordination and Data Communication”, John Wiley & Sons, Inc. Hoboken, New Jersey, pp-153-181, 2010. [3]. Upasana Sharma, Dr. C. Rama Krishna and Dr. T.P. Sharma, “An Efficient Mobile Data Collector Based Data Aggregation Scheme for Wireless Sensor Networks” IEEE International Conference on Computational Intelligence & Communication Technology, 2015. [4]. M. Ma and Y. Yang, “Data Gathering in Wireless Sensor Networks with Mobile Collectors,” Proceedings of IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pages 1-9, 2008. [5]. M. Zhao and Y. Yang, “Data Gathering in Wireless Sensor Networks with Multiple Mobile Collectors and SDMA Technique Sensor Networks,” Proceedings of IEEE Wireless Communication and Networking Conference (WCNC ), pages 1-6, 2010. [6]. S. Chowdhury and C. Giri, “Data Collection Point Based Mobile Data Gathering Scheme Relay Hop Constraint,” Proceedings of IEEE International Conference on Advances in Computing, Communications and Informatics (ICACCI ), pages 282-287, 2013. [7]. S. Guo and Y. Yang, “A Distributed Optimal Framework for Mobile Data Gathering with Concurrent Data Uploading in Wireless Sensor Networks,” Proceedings of IEEE Conference on Computer Communications (INFOCOM), pages 1305- 1313, 2012.
  翻译: