SlideShare a Scribd company logo
Distributed Processing of Probabilistic Top-k Queries in Wireless
Sensor Networks
ABSTRACT:
In this paper, we introduce the notion of sufficient set and necessary set for distributed
processing of probabilistic top-k queries in cluster-based wireless sensor networks. These two
concepts have very nice properties that can facilitate localized data pruning in clusters.
Accordingly, we develop a suite of algorithms, namely, sufficient set-based (SSB), necessary
set-based (NSB), and boundary-based (BB), for intercluster query processing with bounded
rounds of communications. Moreover, in responding to dynamic changes of data distribution in
the network, we develop an adaptive algorithm that dynamically switches among the three
proposed algorithms to minimize the transmission cost. We show the applicability of sufficient
set and necessary set to wireless sensor networks with both two-tier hierarchical and tree-
structured network topologies. Experimental results show that the proposed algorithms reduce
data transmissions significantly and incur only small constant rounds of data communications.
The experimental results also demonstrate the superiority of the adaptive algorithm, which
achieves a near-optimal performance under various conditions.
GLOBALSOFT TECHNOLOGIES
IEEE PROJECTS & SOFTWARE DEVELOPMENTS
IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE
BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS
CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401
Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
EXISTING SYSTEM
This new technology has resulted in significant impacts on a wide array of applications in
various fields, including military, science, industry, commerce, transportation, and health-care.
However, the quality of sensors varies significantly in terms of their sensing precision,
accuracy, tolerance to hardware/external noise, and so on. For example, studies show that the
distribution of noise varies widely in different photovoltic sensors, precision and accuracy of
readings usually vary significantly in humidity sensors, and the errors in GPS devices can be up
to several meters. Nevertheless, they have mostly been studied under a centralized system
setting. In this paper, we explore the problem of processing probabilistic top-k queries in
distributed wireless sensor networks. Here, we first use an environmental monitoring
application of wireless sensor network to introduce some basics of probabilistic databases. Due
to sensing imprecision and environmental interferences, the sensor readings are usually noisy.
Thus, multiple sensors are deployed at certain zones in order to improve monitoring quality. In
this network, sensor nodes are grouped into clusters, within each of which one of sensors is
selected as the cluster head for performing localized data processing. boundary based algorithm
using hts to the data processing.
DISADVANTAGE OF EXISTING SYSTEM:
We explore the problem of processing probabilistic top-k queries in distributed wireless
sensor networks.
The wind station very slowly
Data is not accuracy purify
The one station to another station delay the communication rate
PROPOSED SYSTEM
There are three proposed algorithms to minimize the transmission cost. We show the
applicability of sufficient set and necessary set to wireless sensor networks with both two-tier
hierarchical and tree-structured network topologies. There are several top-k query semantics
and solutions proposed recently, including U-Topk and UkRanks in PT-Topk in PK-Topk in
expected rank in and so on. A common way to process probabilistic top-k queries is to first sort
all tuples based on the scoring attribute, and then process tuples in the sorted order to compute
the final answer set. Nevertheless, while focusing on optimizing the transmission bandwidth,
the proposed techniques require numerous iterations of computation and communication,
introducing tremendous communication overhead and resulting in long latency. As argued in
this is not desirable for many distributed applications, e.g., network monitoring, that require the
queries to be answered in a good response time, with a minimized energy consumption. In this
paper, we aim at developing energy efficient algorithms optimized for fixed rounds of
communications.
ADVANTAGE OF PROPOSED SYSTEM:
Additionally, NSB and BB take advantage of the skewed necessary sets and necessary
boundaries among local clusters to obtain their global boundaries, respectively, which are
very effective for intercluster pruning.
The transmission cost increases for all algorithms because the number of tuples needed
for query processing is increased.
MODULES:
1. PT-Topk Query Processing
2. Sensor Networks
3. Data pruning
4. Structured network topology
5. Data transmission
6. Performance evaluation
MODULE DESCRIPTION:
PT-Topk Query Processing
The PT-Topk queries in a centralized uncertain database, which provides a good background for
the targeted distributed processing problem. The query answer can be obtained by examining
the tuples in descending ranking order from the sorted table (which is still denoted as T for
simplicity). We can easily determine that the highest ranked k tuples are definitely in the answer
set as long as their confidences are greater than p since their qualifications as PT-Topk answers
are not dependent on the existence of any other tuples.
Sensor Networks
The extensive number of research work in this area has appeared in the literature. Due to the
limited energy budget available at sensor nodes, the primary issue is how to develop energy-
efficient techniques to reduce communication and energy costs in the networks. Approximate-
based data aggregation techniques have also been proposed. The idea is to tradeoff some data
quality for improved energy efficiency. Silberstein et al. develop a sampling-based approach to
evaluate approximate top-k queries in wireless sensor networks. Based on statistical modeling
techniques, a model-driven approach was proposed in to balance the confidence of the query
answer against the communication cost in the network. Moreover, continuous top-k queries for
sensor networks have been studied in and . In addition, a distributed threshold join algorithm
has been developed for top-k queries. These studies, considering no uncertain data, have a
different focus from our study.
Data pruning
The cluster heads are responsible for generating uncertain data tuples from the collected raw
sensor readings within their clusters. To answer a query, it’s natural for the cluster heads to
prune redundant uncertain data tuples before delivery to the base station in order to reduce
communication and energy cost. The key issue here is how to derive a compact set of tuples
essential for the base station to answer the probabilistic top-k queries.
Structured network topology
To perform in-network query processing, a routing tree is often formed among sensor nodes
and the base station. A query is issued at the root of the routing tree and propagated along the
tree to all sensor nodes. Although the concepts of sufficient set and necessary set introduced
earlier are based on two-tier hierarchical sensor networks, they are applicable to tree-structured
sensor network.
Data transmission
The total amount of data transmission as the performance metrics. Notice that, response time is
another important metrics to evaluate query processing algorithms in wireless sensor networks.
All of those three algorithms, i.e., SSB, NSB, and BB, perform at most two rounds of message
exchange there is not much difference among SSB, NSB, and BB in terms of query response
time, thus we focus on the data transmission costin the evaluation. Finally, we also conduct
experiments to evaluate algorithms, SSB-T, NSB-T, and NSB-T-Opt under the tree-structured
network topology.
Performance evaluation
The performance evaluation on the distributed algorithms for processing PT-top k queries in
two-tier hierarchical cluster based wireless sensor monitoring system. As discussed, limited
energy budget is a critical issue for wireless sensor network and radio transmission is the most
dominate source of energy consumption. Thus, we measure the total amount of data
transmission as the performance metrics. Notice that, response time is another important
metrics to evaluate query processing algorithms in wireless sensor networks.
SYSTEM FLOW:
Base Station
Station-2
Station-6
Station-5
Station-4
Station-3
Station-1
Intracluster data pruning
Top-k Queries
SYSTEM CONFIGURATION:-
HARDWARE CONFIGURATION:-
 Processor - Pentium –IV
 Speed - 1.1 Ghz
 RAM - 256 MB(min)
 Hard Disk - 20 GB
 Key Board - Standard Windows Keyboard
 Mouse - Two or Three Button Mouse
 Monitor - SVGA
SOFTWARE CONFIGURATION:-
 Operating System : Windows XP
 Programming Language : JAVA
 Java Version : JDK 1.6 & above.
REFERENCE:
Mao Ye, Wang-Chien Lee, Dik Lun Lee, and Xingjie Liu, “Distributed Processing of
Probabilistic Top-k Queries in Wireless Sensor Networks”, IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 1, JANUARY 2013.

More Related Content

What's hot (17)

Delay Constraint Network Structure with in-Network Data Fusion for Wireless S...
Delay Constraint Network Structure with in-Network Data Fusion for Wireless S...Delay Constraint Network Structure with in-Network Data Fusion for Wireless S...
Delay Constraint Network Structure with in-Network Data Fusion for Wireless S...
IRJET Journal
 
A DYNAMIC ROUTE DISCOVERY SCHEME FOR HETEROGENEOUS WIRELESS SENSOR NETWORKS B...
A DYNAMIC ROUTE DISCOVERY SCHEME FOR HETEROGENEOUS WIRELESS SENSOR NETWORKS B...A DYNAMIC ROUTE DISCOVERY SCHEME FOR HETEROGENEOUS WIRELESS SENSOR NETWORKS B...
A DYNAMIC ROUTE DISCOVERY SCHEME FOR HETEROGENEOUS WIRELESS SENSOR NETWORKS B...
csandit
 
H017514655
H017514655H017514655
H017514655
IOSR Journals
 
F04623943
F04623943F04623943
F04623943
IOSR-JEN
 
Review on Clustering and Data Aggregation in Wireless Sensor Network
Review on Clustering and Data Aggregation in Wireless Sensor NetworkReview on Clustering and Data Aggregation in Wireless Sensor Network
Review on Clustering and Data Aggregation in Wireless Sensor Network
Editor IJCATR
 
Clustering and data aggregation scheme in underwater wireless acoustic sensor...
Clustering and data aggregation scheme in underwater wireless acoustic sensor...Clustering and data aggregation scheme in underwater wireless acoustic sensor...
Clustering and data aggregation scheme in underwater wireless acoustic sensor...
TELKOMNIKA JOURNAL
 
Energy efficient wireless sensor networks using linear programming optimizati...
Energy efficient wireless sensor networks using linear programming optimizati...Energy efficient wireless sensor networks using linear programming optimizati...
Energy efficient wireless sensor networks using linear programming optimizati...
LogicMindtech Nologies
 
Energy Conservation in Wireless Sensor Networks Using Cluster-Based Approach
Energy Conservation in Wireless Sensor Networks Using Cluster-Based ApproachEnergy Conservation in Wireless Sensor Networks Using Cluster-Based Approach
Energy Conservation in Wireless Sensor Networks Using Cluster-Based Approach
IJRES Journal
 
Aps 10june2020
Aps 10june2020Aps 10june2020
Aps 10june2020
Gopal Mulgund
 
Performance Analysis and Comparison of Routing Protocols in Wireless Sensor N...
Performance Analysis and Comparison of Routing Protocols in Wireless Sensor N...Performance Analysis and Comparison of Routing Protocols in Wireless Sensor N...
Performance Analysis and Comparison of Routing Protocols in Wireless Sensor N...
IRJET Journal
 
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
TELKOMNIKA JOURNAL
 
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSNOptimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSN
IJCNCJournal
 
IRJET- Sink Mobility based Energy Efficient Routing Protocol for Wireless Sen...
IRJET- Sink Mobility based Energy Efficient Routing Protocol for Wireless Sen...IRJET- Sink Mobility based Energy Efficient Routing Protocol for Wireless Sen...
IRJET- Sink Mobility based Energy Efficient Routing Protocol for Wireless Sen...
IRJET Journal
 
Energy Efficient Clustering Algorithm based on Expectation Maximization for H...
Energy Efficient Clustering Algorithm based on Expectation Maximization for H...Energy Efficient Clustering Algorithm based on Expectation Maximization for H...
Energy Efficient Clustering Algorithm based on Expectation Maximization for H...
IRJET Journal
 
DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN...
DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN...DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN...
DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN...
cscpconf
 
SLGC: A New Cluster Routing Algorithm in Wireless Sensor Network for Decrease...
SLGC: A New Cluster Routing Algorithm in Wireless Sensor Network for Decrease...SLGC: A New Cluster Routing Algorithm in Wireless Sensor Network for Decrease...
SLGC: A New Cluster Routing Algorithm in Wireless Sensor Network for Decrease...
IJCSEA Journal
 
Matlab 2013 14 papers astract
Matlab 2013 14 papers astractMatlab 2013 14 papers astract
Matlab 2013 14 papers astract
IGEEKS TECHNOLOGIES
 
Delay Constraint Network Structure with in-Network Data Fusion for Wireless S...
Delay Constraint Network Structure with in-Network Data Fusion for Wireless S...Delay Constraint Network Structure with in-Network Data Fusion for Wireless S...
Delay Constraint Network Structure with in-Network Data Fusion for Wireless S...
IRJET Journal
 
A DYNAMIC ROUTE DISCOVERY SCHEME FOR HETEROGENEOUS WIRELESS SENSOR NETWORKS B...
A DYNAMIC ROUTE DISCOVERY SCHEME FOR HETEROGENEOUS WIRELESS SENSOR NETWORKS B...A DYNAMIC ROUTE DISCOVERY SCHEME FOR HETEROGENEOUS WIRELESS SENSOR NETWORKS B...
A DYNAMIC ROUTE DISCOVERY SCHEME FOR HETEROGENEOUS WIRELESS SENSOR NETWORKS B...
csandit
 
Review on Clustering and Data Aggregation in Wireless Sensor Network
Review on Clustering and Data Aggregation in Wireless Sensor NetworkReview on Clustering and Data Aggregation in Wireless Sensor Network
Review on Clustering and Data Aggregation in Wireless Sensor Network
Editor IJCATR
 
Clustering and data aggregation scheme in underwater wireless acoustic sensor...
Clustering and data aggregation scheme in underwater wireless acoustic sensor...Clustering and data aggregation scheme in underwater wireless acoustic sensor...
Clustering and data aggregation scheme in underwater wireless acoustic sensor...
TELKOMNIKA JOURNAL
 
Energy efficient wireless sensor networks using linear programming optimizati...
Energy efficient wireless sensor networks using linear programming optimizati...Energy efficient wireless sensor networks using linear programming optimizati...
Energy efficient wireless sensor networks using linear programming optimizati...
LogicMindtech Nologies
 
Energy Conservation in Wireless Sensor Networks Using Cluster-Based Approach
Energy Conservation in Wireless Sensor Networks Using Cluster-Based ApproachEnergy Conservation in Wireless Sensor Networks Using Cluster-Based Approach
Energy Conservation in Wireless Sensor Networks Using Cluster-Based Approach
IJRES Journal
 
Performance Analysis and Comparison of Routing Protocols in Wireless Sensor N...
Performance Analysis and Comparison of Routing Protocols in Wireless Sensor N...Performance Analysis and Comparison of Routing Protocols in Wireless Sensor N...
Performance Analysis and Comparison of Routing Protocols in Wireless Sensor N...
IRJET Journal
 
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
Energy-Efficient Compressive Data Gathering Utilizing Virtual Multi-Input Mul...
TELKOMNIKA JOURNAL
 
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSNOptimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSN
IJCNCJournal
 
IRJET- Sink Mobility based Energy Efficient Routing Protocol for Wireless Sen...
IRJET- Sink Mobility based Energy Efficient Routing Protocol for Wireless Sen...IRJET- Sink Mobility based Energy Efficient Routing Protocol for Wireless Sen...
IRJET- Sink Mobility based Energy Efficient Routing Protocol for Wireless Sen...
IRJET Journal
 
Energy Efficient Clustering Algorithm based on Expectation Maximization for H...
Energy Efficient Clustering Algorithm based on Expectation Maximization for H...Energy Efficient Clustering Algorithm based on Expectation Maximization for H...
Energy Efficient Clustering Algorithm based on Expectation Maximization for H...
IRJET Journal
 
DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN...
DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN...DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN...
DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN...
cscpconf
 
SLGC: A New Cluster Routing Algorithm in Wireless Sensor Network for Decrease...
SLGC: A New Cluster Routing Algorithm in Wireless Sensor Network for Decrease...SLGC: A New Cluster Routing Algorithm in Wireless Sensor Network for Decrease...
SLGC: A New Cluster Routing Algorithm in Wireless Sensor Network for Decrease...
IJCSEA Journal
 

Viewers also liked (12)

Watch broadcast fox sports 1 mendes vs lamas
Watch broadcast fox sports 1  mendes vs lamasWatch broadcast fox sports 1  mendes vs lamas
Watch broadcast fox sports 1 mendes vs lamas
wisdom_famous
 
Promedios diploma 1°e
Promedios diploma 1°ePromedios diploma 1°e
Promedios diploma 1°e
ferjkl
 
Transportes 1°e
Transportes 1°eTransportes 1°e
Transportes 1°e
ferjkl
 
Spaze
Spaze Spaze
Spaze
Suvendu Regrob
 
Watch live fighting mendes vs lamas 4 april 2015
Watch live fighting mendes vs lamas 4 april 2015Watch live fighting mendes vs lamas 4 april 2015
Watch live fighting mendes vs lamas 4 april 2015
wisdom_famous
 
Promedio 1 e
Promedio 1 ePromedio 1 e
Promedio 1 e
daniel cabello
 
10 Steps To Successfully Coordinating Volunteers - Notes And Examples
10 Steps To Successfully Coordinating Volunteers - Notes And Examples10 Steps To Successfully Coordinating Volunteers - Notes And Examples
10 Steps To Successfully Coordinating Volunteers - Notes And Examples
Society of Women Engineers
 
Watch hot ufc fight mendes vs lamas
Watch hot ufc fight mendes vs lamasWatch hot ufc fight mendes vs lamas
Watch hot ufc fight mendes vs lamas
wisdom_famous
 
השבוע בטבעון - סרטים, קורס די. ג'י ופעילויות קהילתיות
השבוע בטבעון - סרטים, קורס די. ג'י ופעילויות קהילתיות השבוע בטבעון - סרטים, קורס די. ג'י ופעילויות קהילתיות
השבוע בטבעון - סרטים, קורס די. ג'י ופעילויות קהילתיות
רשת מתנסים קרית טבעון
 
Watch hot fight ~~ mendes vs lamas live
Watch hot fight ~~ mendes vs lamas liveWatch hot fight ~~ mendes vs lamas live
Watch hot fight ~~ mendes vs lamas live
wisdom_famous
 
Promedios 1°e
Promedios 1°ePromedios 1°e
Promedios 1°e
ferjkl
 
Cultivate - Day 1 - 16:00 - "Busting Performance Myths Through Customer Insight"
Cultivate - Day 1 - 16:00 - "Busting Performance Myths Through Customer Insight"Cultivate - Day 1 - 16:00 - "Busting Performance Myths Through Customer Insight"
Cultivate - Day 1 - 16:00 - "Busting Performance Myths Through Customer Insight"
PerformanceIN
 
Watch broadcast fox sports 1 mendes vs lamas
Watch broadcast fox sports 1  mendes vs lamasWatch broadcast fox sports 1  mendes vs lamas
Watch broadcast fox sports 1 mendes vs lamas
wisdom_famous
 
Promedios diploma 1°e
Promedios diploma 1°ePromedios diploma 1°e
Promedios diploma 1°e
ferjkl
 
Transportes 1°e
Transportes 1°eTransportes 1°e
Transportes 1°e
ferjkl
 
Watch live fighting mendes vs lamas 4 april 2015
Watch live fighting mendes vs lamas 4 april 2015Watch live fighting mendes vs lamas 4 april 2015
Watch live fighting mendes vs lamas 4 april 2015
wisdom_famous
 
10 Steps To Successfully Coordinating Volunteers - Notes And Examples
10 Steps To Successfully Coordinating Volunteers - Notes And Examples10 Steps To Successfully Coordinating Volunteers - Notes And Examples
10 Steps To Successfully Coordinating Volunteers - Notes And Examples
Society of Women Engineers
 
Watch hot ufc fight mendes vs lamas
Watch hot ufc fight mendes vs lamasWatch hot ufc fight mendes vs lamas
Watch hot ufc fight mendes vs lamas
wisdom_famous
 
השבוע בטבעון - סרטים, קורס די. ג'י ופעילויות קהילתיות
השבוע בטבעון - סרטים, קורס די. ג'י ופעילויות קהילתיות השבוע בטבעון - סרטים, קורס די. ג'י ופעילויות קהילתיות
השבוע בטבעון - סרטים, קורס די. ג'י ופעילויות קהילתיות
רשת מתנסים קרית טבעון
 
Watch hot fight ~~ mendes vs lamas live
Watch hot fight ~~ mendes vs lamas liveWatch hot fight ~~ mendes vs lamas live
Watch hot fight ~~ mendes vs lamas live
wisdom_famous
 
Promedios 1°e
Promedios 1°ePromedios 1°e
Promedios 1°e
ferjkl
 
Cultivate - Day 1 - 16:00 - "Busting Performance Myths Through Customer Insight"
Cultivate - Day 1 - 16:00 - "Busting Performance Myths Through Customer Insight"Cultivate - Day 1 - 16:00 - "Busting Performance Myths Through Customer Insight"
Cultivate - Day 1 - 16:00 - "Busting Performance Myths Through Customer Insight"
PerformanceIN
 

Similar to JAVA 2013 IEEE DATAMINING PROJECT Distributed processing of probabilistic top k queries in wireless sensor networks (20)

Distributed processing of probabilistic top k queries in wireless sensor netw...
Distributed processing of probabilistic top k queries in wireless sensor netw...Distributed processing of probabilistic top k queries in wireless sensor netw...
Distributed processing of probabilistic top k queries in wireless sensor netw...
Ecway Technologies
 
Java distributed processing of probabilistic top-k queries in wireless senso...
Java  distributed processing of probabilistic top-k queries in wireless senso...Java  distributed processing of probabilistic top-k queries in wireless senso...
Java distributed processing of probabilistic top-k queries in wireless senso...
ecwayerode
 
Java distributed processing of probabilistic top-k queries in wireless senso...
Java  distributed processing of probabilistic top-k queries in wireless senso...Java  distributed processing of probabilistic top-k queries in wireless senso...
Java distributed processing of probabilistic top-k queries in wireless senso...
Ecway Technologies
 
Dotnet distributed processing of probabilistic top-k queries in wireless sen...
Dotnet  distributed processing of probabilistic top-k queries in wireless sen...Dotnet  distributed processing of probabilistic top-k queries in wireless sen...
Dotnet distributed processing of probabilistic top-k queries in wireless sen...
Ecway Technologies
 
Distributed processing of probabilistic top k queries in wireless sensor netw...
Distributed processing of probabilistic top k queries in wireless sensor netw...Distributed processing of probabilistic top k queries in wireless sensor netw...
Distributed processing of probabilistic top k queries in wireless sensor netw...
ecway
 
An Efficient top- k Query Processing in Distributed Wireless Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless  Sensor NetworksAn Efficient top- k Query Processing in Distributed Wireless  Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless Sensor Networks
IJMER
 
Efficient Query Evaluation of Probabilistic Top-k Queries in Wireless Sensor ...
Efficient Query Evaluation of Probabilistic Top-k Queries in Wireless Sensor ...Efficient Query Evaluation of Probabilistic Top-k Queries in Wireless Sensor ...
Efficient Query Evaluation of Probabilistic Top-k Queries in Wireless Sensor ...
ijceronline
 
G010633439
G010633439G010633439
G010633439
IOSR Journals
 
A Review of Atypical Hierarchical Routing Protocols for Wireless Sensor Networks
A Review of Atypical Hierarchical Routing Protocols for Wireless Sensor NetworksA Review of Atypical Hierarchical Routing Protocols for Wireless Sensor Networks
A Review of Atypical Hierarchical Routing Protocols for Wireless Sensor Networks
iosrjce
 
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
Editor IJCATR
 
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
Editor IJCATR
 
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
Editor IJCATR
 
AN OPTIMIZED WEIGHT BASED CLUSTERING ALGORITHM IN HETEROGENEOUS WIRELESS SENS...
AN OPTIMIZED WEIGHT BASED CLUSTERING ALGORITHM IN HETEROGENEOUS WIRELESS SENS...AN OPTIMIZED WEIGHT BASED CLUSTERING ALGORITHM IN HETEROGENEOUS WIRELESS SENS...
AN OPTIMIZED WEIGHT BASED CLUSTERING ALGORITHM IN HETEROGENEOUS WIRELESS SENS...
cscpconf
 
An Adaptive Energy Aware Clustering Based Reliable Routing for in-Network Agg...
An Adaptive Energy Aware Clustering Based Reliable Routing for in-Network Agg...An Adaptive Energy Aware Clustering Based Reliable Routing for in-Network Agg...
An Adaptive Energy Aware Clustering Based Reliable Routing for in-Network Agg...
Editor IJCATR
 
M.E Computer Science Wireless Communication Projects
M.E Computer Science Wireless Communication ProjectsM.E Computer Science Wireless Communication Projects
M.E Computer Science Wireless Communication Projects
Vijay Karan
 
M.Phil Computer Science Wireless Communication Projects
M.Phil Computer Science Wireless Communication ProjectsM.Phil Computer Science Wireless Communication Projects
M.Phil Computer Science Wireless Communication Projects
Vijay Karan
 
M phil-computer-science-wireless-communication-projects
M phil-computer-science-wireless-communication-projectsM phil-computer-science-wireless-communication-projects
M phil-computer-science-wireless-communication-projects
Vijay Karan
 
Computing localized power efficient data
Computing localized power efficient dataComputing localized power efficient data
Computing localized power efficient data
ambitlick
 
Optimized Projected Strategy for Enhancement of WSN Using Genetic Algorithms
Optimized Projected Strategy for Enhancement of WSN Using  Genetic AlgorithmsOptimized Projected Strategy for Enhancement of WSN Using  Genetic Algorithms
Optimized Projected Strategy for Enhancement of WSN Using Genetic Algorithms
IJMER
 
DESIGN AND IMPLEMENTATION OF ADVANCED MULTILEVEL PRIORITY PACKET SCHEDULING S...
DESIGN AND IMPLEMENTATION OF ADVANCED MULTILEVEL PRIORITY PACKET SCHEDULING S...DESIGN AND IMPLEMENTATION OF ADVANCED MULTILEVEL PRIORITY PACKET SCHEDULING S...
DESIGN AND IMPLEMENTATION OF ADVANCED MULTILEVEL PRIORITY PACKET SCHEDULING S...
International Journal of Technical Research & Application
 
Distributed processing of probabilistic top k queries in wireless sensor netw...
Distributed processing of probabilistic top k queries in wireless sensor netw...Distributed processing of probabilistic top k queries in wireless sensor netw...
Distributed processing of probabilistic top k queries in wireless sensor netw...
Ecway Technologies
 
Java distributed processing of probabilistic top-k queries in wireless senso...
Java  distributed processing of probabilistic top-k queries in wireless senso...Java  distributed processing of probabilistic top-k queries in wireless senso...
Java distributed processing of probabilistic top-k queries in wireless senso...
ecwayerode
 
Java distributed processing of probabilistic top-k queries in wireless senso...
Java  distributed processing of probabilistic top-k queries in wireless senso...Java  distributed processing of probabilistic top-k queries in wireless senso...
Java distributed processing of probabilistic top-k queries in wireless senso...
Ecway Technologies
 
Dotnet distributed processing of probabilistic top-k queries in wireless sen...
Dotnet  distributed processing of probabilistic top-k queries in wireless sen...Dotnet  distributed processing of probabilistic top-k queries in wireless sen...
Dotnet distributed processing of probabilistic top-k queries in wireless sen...
Ecway Technologies
 
Distributed processing of probabilistic top k queries in wireless sensor netw...
Distributed processing of probabilistic top k queries in wireless sensor netw...Distributed processing of probabilistic top k queries in wireless sensor netw...
Distributed processing of probabilistic top k queries in wireless sensor netw...
ecway
 
An Efficient top- k Query Processing in Distributed Wireless Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless  Sensor NetworksAn Efficient top- k Query Processing in Distributed Wireless  Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless Sensor Networks
IJMER
 
Efficient Query Evaluation of Probabilistic Top-k Queries in Wireless Sensor ...
Efficient Query Evaluation of Probabilistic Top-k Queries in Wireless Sensor ...Efficient Query Evaluation of Probabilistic Top-k Queries in Wireless Sensor ...
Efficient Query Evaluation of Probabilistic Top-k Queries in Wireless Sensor ...
ijceronline
 
A Review of Atypical Hierarchical Routing Protocols for Wireless Sensor Networks
A Review of Atypical Hierarchical Routing Protocols for Wireless Sensor NetworksA Review of Atypical Hierarchical Routing Protocols for Wireless Sensor Networks
A Review of Atypical Hierarchical Routing Protocols for Wireless Sensor Networks
iosrjce
 
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
Editor IJCATR
 
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
Editor IJCATR
 
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
An Improved Energy Efficient Wireless Sensor Networks Through Clustering In C...
Editor IJCATR
 
AN OPTIMIZED WEIGHT BASED CLUSTERING ALGORITHM IN HETEROGENEOUS WIRELESS SENS...
AN OPTIMIZED WEIGHT BASED CLUSTERING ALGORITHM IN HETEROGENEOUS WIRELESS SENS...AN OPTIMIZED WEIGHT BASED CLUSTERING ALGORITHM IN HETEROGENEOUS WIRELESS SENS...
AN OPTIMIZED WEIGHT BASED CLUSTERING ALGORITHM IN HETEROGENEOUS WIRELESS SENS...
cscpconf
 
An Adaptive Energy Aware Clustering Based Reliable Routing for in-Network Agg...
An Adaptive Energy Aware Clustering Based Reliable Routing for in-Network Agg...An Adaptive Energy Aware Clustering Based Reliable Routing for in-Network Agg...
An Adaptive Energy Aware Clustering Based Reliable Routing for in-Network Agg...
Editor IJCATR
 
M.E Computer Science Wireless Communication Projects
M.E Computer Science Wireless Communication ProjectsM.E Computer Science Wireless Communication Projects
M.E Computer Science Wireless Communication Projects
Vijay Karan
 
M.Phil Computer Science Wireless Communication Projects
M.Phil Computer Science Wireless Communication ProjectsM.Phil Computer Science Wireless Communication Projects
M.Phil Computer Science Wireless Communication Projects
Vijay Karan
 
M phil-computer-science-wireless-communication-projects
M phil-computer-science-wireless-communication-projectsM phil-computer-science-wireless-communication-projects
M phil-computer-science-wireless-communication-projects
Vijay Karan
 
Computing localized power efficient data
Computing localized power efficient dataComputing localized power efficient data
Computing localized power efficient data
ambitlick
 
Optimized Projected Strategy for Enhancement of WSN Using Genetic Algorithms
Optimized Projected Strategy for Enhancement of WSN Using  Genetic AlgorithmsOptimized Projected Strategy for Enhancement of WSN Using  Genetic Algorithms
Optimized Projected Strategy for Enhancement of WSN Using Genetic Algorithms
IJMER
 

More from IEEEGLOBALSOFTTECHNOLOGIES (20)

DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
IEEEGLOBALSOFTTECHNOLOGIES
 

Recently uploaded (20)

Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
ICDCC 2025: Securing Agentic AI - Eryk Budi Pratama.pdf
ICDCC 2025: Securing Agentic AI - Eryk Budi Pratama.pdfICDCC 2025: Securing Agentic AI - Eryk Budi Pratama.pdf
ICDCC 2025: Securing Agentic AI - Eryk Budi Pratama.pdf
Eryk Budi Pratama
 
AI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamsonAI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamson
UXPA Boston
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Vasileios Komianos
 
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
Toru Tamaki
 
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Gary Arora
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
How to Build an AI-Powered App: Tools, Techniques, and Trends
How to Build an AI-Powered App: Tools, Techniques, and TrendsHow to Build an AI-Powered App: Tools, Techniques, and Trends
How to Build an AI-Powered App: Tools, Techniques, and Trends
Nascenture
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Cyntexa
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
DNF 2.0 Implementations Challenges in Nepal
DNF 2.0 Implementations Challenges in NepalDNF 2.0 Implementations Challenges in Nepal
DNF 2.0 Implementations Challenges in Nepal
ICT Frame Magazine Pvt. Ltd.
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Alan Dix
 
Cybersecurity Tools and Technologies - Microsoft Certificate
Cybersecurity Tools and Technologies - Microsoft CertificateCybersecurity Tools and Technologies - Microsoft Certificate
Cybersecurity Tools and Technologies - Microsoft Certificate
VICTOR MAESTRE RAMIREZ
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptxUiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
anabulhac
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
ICDCC 2025: Securing Agentic AI - Eryk Budi Pratama.pdf
ICDCC 2025: Securing Agentic AI - Eryk Budi Pratama.pdfICDCC 2025: Securing Agentic AI - Eryk Budi Pratama.pdf
ICDCC 2025: Securing Agentic AI - Eryk Budi Pratama.pdf
Eryk Budi Pratama
 
AI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamsonAI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamson
UXPA Boston
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Digital Technologies for Culture, Arts and Heritage: Insights from Interdisci...
Vasileios Komianos
 
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
Toru Tamaki
 
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Gary Arora
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
How to Build an AI-Powered App: Tools, Techniques, and Trends
How to Build an AI-Powered App: Tools, Techniques, and TrendsHow to Build an AI-Powered App: Tools, Techniques, and Trends
How to Build an AI-Powered App: Tools, Techniques, and Trends
Nascenture
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Cyntexa
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Alan Dix
 
Cybersecurity Tools and Technologies - Microsoft Certificate
Cybersecurity Tools and Technologies - Microsoft CertificateCybersecurity Tools and Technologies - Microsoft Certificate
Cybersecurity Tools and Technologies - Microsoft Certificate
VICTOR MAESTRE RAMIREZ
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptxUiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
anabulhac
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 

JAVA 2013 IEEE DATAMINING PROJECT Distributed processing of probabilistic top k queries in wireless sensor networks

  • 1. Distributed Processing of Probabilistic Top-k Queries in Wireless Sensor Networks ABSTRACT: In this paper, we introduce the notion of sufficient set and necessary set for distributed processing of probabilistic top-k queries in cluster-based wireless sensor networks. These two concepts have very nice properties that can facilitate localized data pruning in clusters. Accordingly, we develop a suite of algorithms, namely, sufficient set-based (SSB), necessary set-based (NSB), and boundary-based (BB), for intercluster query processing with bounded rounds of communications. Moreover, in responding to dynamic changes of data distribution in the network, we develop an adaptive algorithm that dynamically switches among the three proposed algorithms to minimize the transmission cost. We show the applicability of sufficient set and necessary set to wireless sensor networks with both two-tier hierarchical and tree- structured network topologies. Experimental results show that the proposed algorithms reduce data transmissions significantly and incur only small constant rounds of data communications. The experimental results also demonstrate the superiority of the adaptive algorithm, which achieves a near-optimal performance under various conditions. GLOBALSOFT TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
  • 2. EXISTING SYSTEM This new technology has resulted in significant impacts on a wide array of applications in various fields, including military, science, industry, commerce, transportation, and health-care. However, the quality of sensors varies significantly in terms of their sensing precision, accuracy, tolerance to hardware/external noise, and so on. For example, studies show that the distribution of noise varies widely in different photovoltic sensors, precision and accuracy of readings usually vary significantly in humidity sensors, and the errors in GPS devices can be up to several meters. Nevertheless, they have mostly been studied under a centralized system setting. In this paper, we explore the problem of processing probabilistic top-k queries in distributed wireless sensor networks. Here, we first use an environmental monitoring application of wireless sensor network to introduce some basics of probabilistic databases. Due to sensing imprecision and environmental interferences, the sensor readings are usually noisy. Thus, multiple sensors are deployed at certain zones in order to improve monitoring quality. In this network, sensor nodes are grouped into clusters, within each of which one of sensors is selected as the cluster head for performing localized data processing. boundary based algorithm using hts to the data processing. DISADVANTAGE OF EXISTING SYSTEM: We explore the problem of processing probabilistic top-k queries in distributed wireless sensor networks. The wind station very slowly Data is not accuracy purify The one station to another station delay the communication rate
  • 3. PROPOSED SYSTEM There are three proposed algorithms to minimize the transmission cost. We show the applicability of sufficient set and necessary set to wireless sensor networks with both two-tier hierarchical and tree-structured network topologies. There are several top-k query semantics and solutions proposed recently, including U-Topk and UkRanks in PT-Topk in PK-Topk in expected rank in and so on. A common way to process probabilistic top-k queries is to first sort all tuples based on the scoring attribute, and then process tuples in the sorted order to compute the final answer set. Nevertheless, while focusing on optimizing the transmission bandwidth, the proposed techniques require numerous iterations of computation and communication, introducing tremendous communication overhead and resulting in long latency. As argued in this is not desirable for many distributed applications, e.g., network monitoring, that require the queries to be answered in a good response time, with a minimized energy consumption. In this paper, we aim at developing energy efficient algorithms optimized for fixed rounds of communications. ADVANTAGE OF PROPOSED SYSTEM: Additionally, NSB and BB take advantage of the skewed necessary sets and necessary boundaries among local clusters to obtain their global boundaries, respectively, which are very effective for intercluster pruning. The transmission cost increases for all algorithms because the number of tuples needed for query processing is increased. MODULES: 1. PT-Topk Query Processing 2. Sensor Networks 3. Data pruning 4. Structured network topology 5. Data transmission
  • 4. 6. Performance evaluation MODULE DESCRIPTION: PT-Topk Query Processing The PT-Topk queries in a centralized uncertain database, which provides a good background for the targeted distributed processing problem. The query answer can be obtained by examining the tuples in descending ranking order from the sorted table (which is still denoted as T for simplicity). We can easily determine that the highest ranked k tuples are definitely in the answer set as long as their confidences are greater than p since their qualifications as PT-Topk answers are not dependent on the existence of any other tuples. Sensor Networks The extensive number of research work in this area has appeared in the literature. Due to the limited energy budget available at sensor nodes, the primary issue is how to develop energy- efficient techniques to reduce communication and energy costs in the networks. Approximate- based data aggregation techniques have also been proposed. The idea is to tradeoff some data quality for improved energy efficiency. Silberstein et al. develop a sampling-based approach to evaluate approximate top-k queries in wireless sensor networks. Based on statistical modeling techniques, a model-driven approach was proposed in to balance the confidence of the query answer against the communication cost in the network. Moreover, continuous top-k queries for sensor networks have been studied in and . In addition, a distributed threshold join algorithm has been developed for top-k queries. These studies, considering no uncertain data, have a different focus from our study.
  • 5. Data pruning The cluster heads are responsible for generating uncertain data tuples from the collected raw sensor readings within their clusters. To answer a query, it’s natural for the cluster heads to prune redundant uncertain data tuples before delivery to the base station in order to reduce communication and energy cost. The key issue here is how to derive a compact set of tuples essential for the base station to answer the probabilistic top-k queries. Structured network topology To perform in-network query processing, a routing tree is often formed among sensor nodes and the base station. A query is issued at the root of the routing tree and propagated along the tree to all sensor nodes. Although the concepts of sufficient set and necessary set introduced earlier are based on two-tier hierarchical sensor networks, they are applicable to tree-structured sensor network. Data transmission The total amount of data transmission as the performance metrics. Notice that, response time is another important metrics to evaluate query processing algorithms in wireless sensor networks. All of those three algorithms, i.e., SSB, NSB, and BB, perform at most two rounds of message exchange there is not much difference among SSB, NSB, and BB in terms of query response time, thus we focus on the data transmission costin the evaluation. Finally, we also conduct experiments to evaluate algorithms, SSB-T, NSB-T, and NSB-T-Opt under the tree-structured network topology. Performance evaluation The performance evaluation on the distributed algorithms for processing PT-top k queries in two-tier hierarchical cluster based wireless sensor monitoring system. As discussed, limited energy budget is a critical issue for wireless sensor network and radio transmission is the most dominate source of energy consumption. Thus, we measure the total amount of data
  • 6. transmission as the performance metrics. Notice that, response time is another important metrics to evaluate query processing algorithms in wireless sensor networks. SYSTEM FLOW: Base Station Station-2 Station-6 Station-5 Station-4 Station-3 Station-1 Intracluster data pruning Top-k Queries
  • 7. SYSTEM CONFIGURATION:- HARDWARE CONFIGURATION:-  Processor - Pentium –IV  Speed - 1.1 Ghz  RAM - 256 MB(min)  Hard Disk - 20 GB  Key Board - Standard Windows Keyboard  Mouse - Two or Three Button Mouse  Monitor - SVGA SOFTWARE CONFIGURATION:-  Operating System : Windows XP  Programming Language : JAVA  Java Version : JDK 1.6 & above. REFERENCE: Mao Ye, Wang-Chien Lee, Dik Lun Lee, and Xingjie Liu, “Distributed Processing of Probabilistic Top-k Queries in Wireless Sensor Networks”, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 1, JANUARY 2013.
  翻译: