Robots are currently made in numerous types and are used in diverse roles such as production lines, daily living activities and some security fields. These types of robots are well designed and successfully applied in many areas requiring high sensitivity and stability. The aim of this study was to determine the optimum values of several operational parameters for a planar robot with respect to robot design and construction. With this aim, a small planar robot with a three-jointed arm activated by hydraulic cylinders in each segment was evaluated using a technical design drawing. The arm motions of the planar robot are rotary and parallel within a vertical plane. The resulting optimal operational parameters of the planar robot were determined as starting and target positions of 31.5 cm and 55 cm, respectively, on the x-axis and 17.18 cm and 118.44 cm on the y–axis. Time-position and time-velocity graphs were constructed corresponding to the orbit-planning parameters, resulting in Cartesian velocities for the terminal processor of 13.98 m/sec on the x-axis and 20.16 m/sec on the y-axis at 1.5 seconds after initiation. The maximum power consumption of the robot was determined as 1 kW according to the outer load and arm weights.