SlideShare a Scribd company logo
p. 1
Titre de la présentation
Date / information / nom de l’auteur
Detecting differences between 3D
genomic data: a benchmark study
Elise Jorge1
, Sylvain Foissac1
, Pierre Neuvial2
, Matthias Zytnicki3
, Nathalie Vialaneix3
1
GenphySE, INRAE - 2
IMT, CNRS - 3
MIAT, INRAE
Réunion Genotoul-Bioinfo - 10/12/2024
nathalie.vialaneix@inrae.fr
p. 2
sylvain.foissac@inrae.fr
chromosome
source: unknown
From Servant, N. (2017), PhD thesis.
cell
genome
nucleus
DNA
chromatin
chromosome
From Foissac, S. (2024), HDR defense.
chromatin compartments
DNA
loops
Topologically Associating
Domains (TADs)
nucleus
The genome 3D conformation is complex
p. 3
sylvain.foissac@inrae.fr
Rao et al, Cell, 2014
How to characterize a genomic 3D conformation?
Hi-C: a technology for High-throughput Chromosome Conformation Capture
biological
sample
(cells)
Hi-C
raw data
(PE reads)
p. 4
sylvain.foissac@inrae.fr
Hi-C data: the interaction matrix
4
2
2
1
1
p. 5
sylvain.foissac@inrae.fr
Hi-C data: the interaction matrix
p. 6
sylvain.foissac@inrae.fr
Lupianez et al, Cell, 2015
The genome 3D conformation is important
TAD
TAD
TAD
boundary
p. 7
sylvain.foissac@inrae.fr
How to find significant differences between Hi-C matrices?
Marti-Marimon et al, 2021 (www.fragencode.org)
p. 8
sylvain.foissac@inrae.fr
Steps of the typical workflow
p. 9
sylvain.foissac@inrae.fr
Differential 3D proximity analysis: many tools
Which one to use?
A fair and comprehensive benchmark is needed
p. 10
sylvain.foissac@inrae.fr
Benchmarking dataset: H0 & H1 settings
How to evaluate without ground truth?
p. 11
sylvain.foissac@inrae.fr
What is a test?
● Null hypothesis H0
p. 12
sylvain.foissac@inrae.fr
What is a test?
● Null hypothesis H0
● Make an experiment an compute a
statistics
● 100 coin flips
● 99 heads
● Statistics: 0.99
p. 13
sylvain.foissac@inrae.fr
What is a test?
● Null hypothesis H0
● Make an experiment an compute a
statistics
● 100 coin flips
● 99 heads
● Statistics: 0.99
● Use mathematics: if H0 is true, what
is the probability to observe 99% of
heads over 100 coin flips?
● = 7.888609e-29
● (this is the famous p-value!!)
C|1
100
(
1
2
)
99
×(
1
2
)
p. 14
sylvain.foissac@inrae.fr
What is a test?
● Null hypothesis H0
● Make an experiment an compute a
statistics
● 100 coin flips
● 99 heads
● Statistics: 0.99
● Use mathematics: if H0 is true, what
is the probability to observe 99% of
heads over 100 coin flips?
● = 7.888609e-29
● (this is the famous p-value!!)
C|1
100
(
1
2
)
99
×(
1
2
)
In short: If you observe an unlickely statistic, you have good reason to think H0 is false.
And bonus: The p-value gives you the probability to be wrong thinking that !
p. 15
sylvain.foissac@inrae.fr
How to check that a test is good?
● Make experiments (a lot!) under H0
p. 16
sylvain.foissac@inrae.fr
How to check that a test is good?
● Make experiments (a lot!) under H0
● Count how many times you reject H0
based on p-value < 5%
● If this is more than 5% of your
experiments => use another test!
p. 17
sylvain.foissac@inrae.fr
How to check that a test is good?
● Make experiments (a lot!) under H0
● Count how many times you reject H0
based on p-value < 5%
● If this is more than 5% of your
experiments => use another test!
● In this situation, adjusted p-value
should return 0 rejected result
p. 18
sylvain.foissac@inrae.fr
One single dataset, with technical replicates
Benchmarking dataset: H0 & H1 settings
p. 19
sylvain.foissac@inrae.fr
Benchmarking dataset: H0 & H1 settings
p. 20
sylvain.foissac@inrae.fr
Impact of the preliminary filtering on the number of tests
p. 21
sylvain.foissac@inrae.fr
Results on H0 setting, with no expected difference
p. 22
sylvain.foissac@inrae.fr
Results on H0 setting, with no expected difference
Empirical cumulative density function (ECDF) of p-value
p. 23
sylvain.foissac@inrae.fr
Results on H1 setting, with known difference
p. 24
sylvain.foissac@inrae.fr
Results on H1 setting, with known difference
p. 25
sylvain.foissac@inrae.fr
Conclusion
● Genome 3D conformation
● complex & important
● can be profiled by Hi-C
● Differential analysis of Hi-C data
● complex & important
● many tools & methods
● Benchmarking outcome
● large results discrepancy across tools
● huge impact of the data filtering process
● FDR correction is an unsolved issue
● best performance: diffHiC and multiHiCcompare (based on edgeR)
p. 26
sylvain.foissac@inrae.fr
Thank you!
Ad

More Related Content

Similar to Detecting differences between 3D genomic data: a benchmark study (20)

Binomial Probability Distributions
Binomial Probability DistributionsBinomial Probability Distributions
Binomial Probability Distributions
Long Beach City College
 
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...
Codiax
 
2016 davis-plantbio
2016 davis-plantbio2016 davis-plantbio
2016 davis-plantbio
c.titus.brown
 
QNT 561 Week 4 Weekly Learning Assessments
QNT 561 Week 4 Weekly Learning Assessments  QNT 561 Week 4 Weekly Learning Assessments
QNT 561 Week 4 Weekly Learning Assessments
student ehelp
 
Two Proportions
Two Proportions  Two Proportions
Two Proportions
Long Beach City College
 
statistics assignment help
statistics assignment helpstatistics assignment help
statistics assignment help
Statistics Homework Helper
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
butest
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
butest
 
Module-2_Notes-with-Example for data science
Module-2_Notes-with-Example for data scienceModule-2_Notes-with-Example for data science
Module-2_Notes-with-Example for data science
pujashri1975
 
1. You are conducting a study to see if the probability of a true ne.docx
1. You are conducting a study to see if the probability of a true ne.docx1. You are conducting a study to see if the probability of a true ne.docx
1. You are conducting a study to see if the probability of a true ne.docx
carlstromcurtis
 
Probabilistic Reasoning
Probabilistic ReasoningProbabilistic Reasoning
Probabilistic Reasoning
Tameem Ahmad
 
1) The null and alternative hypotheses are giving. Determine whet.docx
1)  The null and alternative hypotheses are giving. Determine whet.docx1)  The null and alternative hypotheses are giving. Determine whet.docx
1) The null and alternative hypotheses are giving. Determine whet.docx
dorishigh
 
Statsmath1. You are conducting a study to see if the probabi.docx
Statsmath1. You are conducting a study to see if the probabi.docxStatsmath1. You are conducting a study to see if the probabi.docx
Statsmath1. You are conducting a study to see if the probabi.docx
rafaelaj1
 
Hypothesis Testing With Python
Hypothesis Testing With PythonHypothesis Testing With Python
Hypothesis Testing With Python
Mosky Liu
 
Analyzing experimental research data
Analyzing experimental research dataAnalyzing experimental research data
Analyzing experimental research data
Atula Ahuja
 
InstructionDue Date 6 pm on October 28 (Wed)Part IProbability a.docx
InstructionDue Date 6 pm on October 28 (Wed)Part IProbability a.docxInstructionDue Date 6 pm on October 28 (Wed)Part IProbability a.docx
InstructionDue Date 6 pm on October 28 (Wed)Part IProbability a.docx
dirkrplav
 
Lecture7 cross validation
Lecture7 cross validationLecture7 cross validation
Lecture7 cross validation
Stéphane Canu
 
UNIT 3 .docx
UNIT 3 .docxUNIT 3 .docx
UNIT 3 .docx
marilucorr
 
Multiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximationsMultiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximations
Christian Robert
 
Bayes Classification
Bayes ClassificationBayes Classification
Bayes Classification
sathish sak
 
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...
Codiax
 
QNT 561 Week 4 Weekly Learning Assessments
QNT 561 Week 4 Weekly Learning Assessments  QNT 561 Week 4 Weekly Learning Assessments
QNT 561 Week 4 Weekly Learning Assessments
student ehelp
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
butest
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
butest
 
Module-2_Notes-with-Example for data science
Module-2_Notes-with-Example for data scienceModule-2_Notes-with-Example for data science
Module-2_Notes-with-Example for data science
pujashri1975
 
1. You are conducting a study to see if the probability of a true ne.docx
1. You are conducting a study to see if the probability of a true ne.docx1. You are conducting a study to see if the probability of a true ne.docx
1. You are conducting a study to see if the probability of a true ne.docx
carlstromcurtis
 
Probabilistic Reasoning
Probabilistic ReasoningProbabilistic Reasoning
Probabilistic Reasoning
Tameem Ahmad
 
1) The null and alternative hypotheses are giving. Determine whet.docx
1)  The null and alternative hypotheses are giving. Determine whet.docx1)  The null and alternative hypotheses are giving. Determine whet.docx
1) The null and alternative hypotheses are giving. Determine whet.docx
dorishigh
 
Statsmath1. You are conducting a study to see if the probabi.docx
Statsmath1. You are conducting a study to see if the probabi.docxStatsmath1. You are conducting a study to see if the probabi.docx
Statsmath1. You are conducting a study to see if the probabi.docx
rafaelaj1
 
Hypothesis Testing With Python
Hypothesis Testing With PythonHypothesis Testing With Python
Hypothesis Testing With Python
Mosky Liu
 
Analyzing experimental research data
Analyzing experimental research dataAnalyzing experimental research data
Analyzing experimental research data
Atula Ahuja
 
InstructionDue Date 6 pm on October 28 (Wed)Part IProbability a.docx
InstructionDue Date 6 pm on October 28 (Wed)Part IProbability a.docxInstructionDue Date 6 pm on October 28 (Wed)Part IProbability a.docx
InstructionDue Date 6 pm on October 28 (Wed)Part IProbability a.docx
dirkrplav
 
Lecture7 cross validation
Lecture7 cross validationLecture7 cross validation
Lecture7 cross validation
Stéphane Canu
 
Multiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximationsMultiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximations
Christian Robert
 
Bayes Classification
Bayes ClassificationBayes Classification
Bayes Classification
sathish sak
 

More from tuxette (20)

Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en maths
tuxette
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènes
tuxette
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiques
tuxette
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-C
tuxette
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?
tuxette
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...
tuxette
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiques
tuxette
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWean
tuxette
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
tuxette
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
tuxette
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
tuxette
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
tuxette
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation data
tuxette
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?
tuxette
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysis
tuxette
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatrices
tuxette
 
Graph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype PredictionGraph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype Prediction
tuxette
 
A short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelsA short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction models
tuxette
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random forest
tuxette
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
tuxette
 
Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en maths
tuxette
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènes
tuxette
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiques
tuxette
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-C
tuxette
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?
tuxette
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...
tuxette
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiques
tuxette
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWean
tuxette
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
tuxette
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
tuxette
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
tuxette
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
tuxette
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation data
tuxette
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?
tuxette
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysis
tuxette
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatrices
tuxette
 
Graph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype PredictionGraph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype Prediction
tuxette
 
A short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelsA short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction models
tuxette
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random forest
tuxette
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
tuxette
 
Ad

Recently uploaded (20)

AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Sleep_physiology_types_duration_underlying mech.
Sleep_physiology_types_duration_underlying mech.Sleep_physiology_types_duration_underlying mech.
Sleep_physiology_types_duration_underlying mech.
klynct
 
Batteries and fuel cells for btech first year
Batteries and fuel cells for btech first yearBatteries and fuel cells for btech first year
Batteries and fuel cells for btech first year
MithilPillai1
 
Subject name: Introduction to psychology
Subject name: Introduction to psychologySubject name: Introduction to psychology
Subject name: Introduction to psychology
beebussy155
 
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Sérgio Sacani
 
Fatigue and its management in aviation medicine
Fatigue and its management in aviation medicineFatigue and its management in aviation medicine
Fatigue and its management in aviation medicine
ImranJewel2
 
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptxSiver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
PriyaAntil3
 
Eric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptxEric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptx
ttalbert1
 
dsDNA-ASF, asfaviridae, virus in virology presentation
dsDNA-ASF, asfaviridae, virus in virology presentationdsDNA-ASF, asfaviridae, virus in virology presentation
dsDNA-ASF, asfaviridae, virus in virology presentation
JessaMaeDacayo
 
Study in Pink (forensic case study of Death)
Study in Pink (forensic case study of Death)Study in Pink (forensic case study of Death)
Study in Pink (forensic case study of Death)
memesologiesxd
 
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
Sérgio Sacani
 
Controls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene ExpressionControls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene Expression
NABIHANAEEM2
 
Carboxylic-Acid-Derivatives.lecture.presentation
Carboxylic-Acid-Derivatives.lecture.presentationCarboxylic-Acid-Derivatives.lecture.presentation
Carboxylic-Acid-Derivatives.lecture.presentation
GLAEXISAJULGA
 
Anti fungal agents Medicinal Chemistry III
Anti fungal agents Medicinal Chemistry  IIIAnti fungal agents Medicinal Chemistry  III
Anti fungal agents Medicinal Chemistry III
HRUTUJA WAGH
 
Somato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptxSomato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptx
klynct
 
Preparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptxPreparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptx
klynct
 
Cleaned_Expanded_Metal_Nanoparticles_Presentation.pptx
Cleaned_Expanded_Metal_Nanoparticles_Presentation.pptxCleaned_Expanded_Metal_Nanoparticles_Presentation.pptx
Cleaned_Expanded_Metal_Nanoparticles_Presentation.pptx
zainab98aug
 
Introduction to Black Hole and how its formed
Introduction to Black Hole and how its formedIntroduction to Black Hole and how its formed
Introduction to Black Hole and how its formed
MSafiullahALawi
 
Issues in using AI in academic publishing.pdf
Issues in using AI in academic publishing.pdfIssues in using AI in academic publishing.pdf
Issues in using AI in academic publishing.pdf
Angelo Salatino
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Sleep_physiology_types_duration_underlying mech.
Sleep_physiology_types_duration_underlying mech.Sleep_physiology_types_duration_underlying mech.
Sleep_physiology_types_duration_underlying mech.
klynct
 
Batteries and fuel cells for btech first year
Batteries and fuel cells for btech first yearBatteries and fuel cells for btech first year
Batteries and fuel cells for btech first year
MithilPillai1
 
Subject name: Introduction to psychology
Subject name: Introduction to psychologySubject name: Introduction to psychology
Subject name: Introduction to psychology
beebussy155
 
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Sérgio Sacani
 
Fatigue and its management in aviation medicine
Fatigue and its management in aviation medicineFatigue and its management in aviation medicine
Fatigue and its management in aviation medicine
ImranJewel2
 
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptxSiver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
PriyaAntil3
 
Eric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptxEric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptx
ttalbert1
 
dsDNA-ASF, asfaviridae, virus in virology presentation
dsDNA-ASF, asfaviridae, virus in virology presentationdsDNA-ASF, asfaviridae, virus in virology presentation
dsDNA-ASF, asfaviridae, virus in virology presentation
JessaMaeDacayo
 
Study in Pink (forensic case study of Death)
Study in Pink (forensic case study of Death)Study in Pink (forensic case study of Death)
Study in Pink (forensic case study of Death)
memesologiesxd
 
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
Sérgio Sacani
 
Controls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene ExpressionControls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene Expression
NABIHANAEEM2
 
Carboxylic-Acid-Derivatives.lecture.presentation
Carboxylic-Acid-Derivatives.lecture.presentationCarboxylic-Acid-Derivatives.lecture.presentation
Carboxylic-Acid-Derivatives.lecture.presentation
GLAEXISAJULGA
 
Anti fungal agents Medicinal Chemistry III
Anti fungal agents Medicinal Chemistry  IIIAnti fungal agents Medicinal Chemistry  III
Anti fungal agents Medicinal Chemistry III
HRUTUJA WAGH
 
Somato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptxSomato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptx
klynct
 
Preparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptxPreparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptx
klynct
 
Cleaned_Expanded_Metal_Nanoparticles_Presentation.pptx
Cleaned_Expanded_Metal_Nanoparticles_Presentation.pptxCleaned_Expanded_Metal_Nanoparticles_Presentation.pptx
Cleaned_Expanded_Metal_Nanoparticles_Presentation.pptx
zainab98aug
 
Introduction to Black Hole and how its formed
Introduction to Black Hole and how its formedIntroduction to Black Hole and how its formed
Introduction to Black Hole and how its formed
MSafiullahALawi
 
Issues in using AI in academic publishing.pdf
Issues in using AI in academic publishing.pdfIssues in using AI in academic publishing.pdf
Issues in using AI in academic publishing.pdf
Angelo Salatino
 
Ad

Detecting differences between 3D genomic data: a benchmark study

  翻译: