SlideShare a Scribd company logo
Deep Recurrent Generative
Decoder for Abstractive
Text Summarization
Piji Li, Wai Lam, Lidong Bing and Zihao Wang
Presentator: 小平 知範
Abstract
• Propose abstractive text summarization based on a seq2seq
oriented enc-dec model equipped with a deep reccurent
genarative decoder (DRGN).
• DRGN achieves improvements over the sota.
• Data: LCSTS, GIGA word, DUC-2004
Introduction
• People may naturally follow some inherent structure when they
write the abstractive summaries.
• some common structures:

- “What-Happened”

- “Who Action What” etc.
Proposed
• Incorporate the latent structure information of summaries into
the abstractive summarization model.
• They employ VAEs (Kingma and Welling, 13, Rezende et al.,
14) as the base model for their generative framework.
• Inspired by (Chung et al., 15), they add historical dependencies
on the latent valiables of VAEs and propose a DRGD.
Contributions
• 1. They porpose a seq2seq oriented encdec model equipped with
a DRGD to model and learn structure information.
• 2. Both the generative latent structural information and
discriminative deterministic variables are jointly considered in
the generation process the abs summaries.
• 3. sota
input

X
Output

Y
GRU
VAE
inference
generation
• source text representation he ∈ Rkh.
• a series of hidden states {hd1,hd2,…hdn,}
Framework Description

Overview
• Their proposed latent structure modeling framework can be
divided into two parts:

inference (variational-encoder) and generation (valiational-decoder)
• For the task of Summarization, the previous latent structure
information needs to be considered for constructing effective
representations for the generation of next state.
Framework Description

Recurrent Generative Decoder
• latent structure variable: zt
• a lower bound (the objective

to be maximized on the 

marginal likelihood.
Abstractive Summary
Generation
• Bidirectional GRU Encoder.
• The decoder: 

discriminative deterministic decoding

generative latent structure modeling.
Abstractive Summary Generation

Discriminative deterministic decoding
• The first hidden state = hd1 = 1/Te ∑ ht
• Two layers of GRUs:

1st: hd1t = GRU1(yt-1, hd1t-1)

2nd: hd1t = GRU2(yt-1, hd2t-1, ct) {ct: using hd1t and hei)
Abstractive Summary Generation

Generative latent structure modeling.
• henc:

• µ:

• logσ2

• ε
• z: 

g is sigmoid function
Abstractive Summary Generation

Generative latent structure modeling.
• hdec:

• output:



ς is softmax
Learning
• Likelihood term
Experimental Setup
Datasets
• Gigawords: Input: first sentence. Output: headline
• DUC-2004: Input: Document. Output: 75 bytes
• LCSTS: Input: Short text (such as tweet). Output: summary
Experimental Setup
Evaluation Metrics
• F-measures 

ROUGE-1 (R-1)

ROUGE-2 (R-2)

ROUGE-L (R-L)

ROUGE-SU4 (R-SU4)
Evaluation
• TOPIARY (Zajic et al., 04) : compressive text summarization
• MOSES+ (Rush et al., 15), ABS and ABS+ (Rush et al., 15)
• RNN and RNN-context (Hu et al., 15)
• CopyNet (Gu et al., 16), RNN-distract (Chen et al., 16)
• RAS-LSTM, RAS-Elman (Chopra et al., 16),
• LenEmb (Kikuchi et al, 16), ASC+FSC (Miao and Blunsom, 16)
• lvt2k-1sent and lvt5k-1sent (Nallapati et al., 16)
Experimental Settings
• Gigawords: 

word embeddings: 300

hidden states and latent vaiables: 500

Maximum length. Input 100, Output 50

Batch size : 256
• DUC-2004:

Maximum length. Output 75 bytes
• LCSTS:

word embeddings: 350

hidden states and latent vaiables: 500

Maximum length. Input: 120, Output 25

Batch size 256
• Beam: 10, Adadelta(ρ = 0.95, ε = 1e-6)
Rouge Evaluation
Gigawords
Rouge Evaluation
DUC-2004
Rouge Evaluation
LCSTS
Summary Case Analysis
Conclusions
• They propose a DRGD to improve performance.
• The model is a seq2seq oriented encdec framework equipped
with latent structure modeling component.
• summaries are generated based on the latent variables and the
deterministic states.
• sota
Ad

More Related Content

What's hot (20)

Introduction to Tree-LSTMs
Introduction to Tree-LSTMsIntroduction to Tree-LSTMs
Introduction to Tree-LSTMs
Daniel Perez
 
Deep Learning Opening Workshop - ProxSARAH Algorithms for Stochastic Composit...
Deep Learning Opening Workshop - ProxSARAH Algorithms for Stochastic Composit...Deep Learning Opening Workshop - ProxSARAH Algorithms for Stochastic Composit...
Deep Learning Opening Workshop - ProxSARAH Algorithms for Stochastic Composit...
The Statistical and Applied Mathematical Sciences Institute
 
The LODIE team at TAC-KBP2015
The LODIE team at TAC-KBP2015The LODIE team at TAC-KBP2015
The LODIE team at TAC-KBP2015
JIE GAO
 
Use CNN for Sequence Modeling
Use CNN for Sequence ModelingUse CNN for Sequence Modeling
Use CNN for Sequence Modeling
Dongang (Sean) Wang
 
[Paper Reading] Attention is All You Need
[Paper Reading] Attention is All You Need[Paper Reading] Attention is All You Need
[Paper Reading] Attention is All You Need
Daiki Tanaka
 
The Maze of Deletion in Ontology Stream Reasoning
The Maze of Deletion in Ontology Stream Reasoning The Maze of Deletion in Ontology Stream Reasoning
The Maze of Deletion in Ontology Stream Reasoning
Jeff Z. Pan
 
Encoding Linguistic Structures with Graph Convolutional Networks
Encoding Linguistic Structures with Graph Convolutional NetworksEncoding Linguistic Structures with Graph Convolutional Networks
Encoding Linguistic Structures with Graph Convolutional Networks
Aleksandar Savkov
 
[Paper reading] L-SHAPLEY AND C-SHAPLEY: EFFICIENT MODEL INTERPRETATION FOR S...
[Paper reading] L-SHAPLEY AND C-SHAPLEY: EFFICIENT MODEL INTERPRETATION FOR S...[Paper reading] L-SHAPLEY AND C-SHAPLEY: EFFICIENT MODEL INTERPRETATION FOR S...
[Paper reading] L-SHAPLEY AND C-SHAPLEY: EFFICIENT MODEL INTERPRETATION FOR S...
Daiki Tanaka
 
Introduction of "TrailBlazer" algorithm
Introduction of "TrailBlazer" algorithmIntroduction of "TrailBlazer" algorithm
Introduction of "TrailBlazer" algorithm
Katsuki Ohto
 
Deep Learning Opening Workshop - Deep ReLU Networks Viewed as a Statistical M...
Deep Learning Opening Workshop - Deep ReLU Networks Viewed as a Statistical M...Deep Learning Opening Workshop - Deep ReLU Networks Viewed as a Statistical M...
Deep Learning Opening Workshop - Deep ReLU Networks Viewed as a Statistical M...
The Statistical and Applied Mathematical Sciences Institute
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
남주 김
 
Wrokflow programming and provenance query model
Wrokflow programming and provenance query model  Wrokflow programming and provenance query model
Wrokflow programming and provenance query model
Rayhan Ferdous
 
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
K-Means Algorithm
K-Means AlgorithmK-Means Algorithm
K-Means Algorithm
Carlos Castillo (ChaTo)
 
Seq2Seq (encoder decoder) model
Seq2Seq (encoder decoder) modelSeq2Seq (encoder decoder) model
Seq2Seq (encoder decoder) model
佳蓉 倪
 
Generative adversarial text to image synthesis
Generative adversarial text to image synthesisGenerative adversarial text to image synthesis
Generative adversarial text to image synthesis
Universitat Politècnica de Catalunya
 
Probabilistic Retrieval
Probabilistic RetrievalProbabilistic Retrieval
Probabilistic Retrieval
otisg
 
強化学習の分散アーキテクチャ変遷
強化学習の分散アーキテクチャ変遷強化学習の分散アーキテクチャ変遷
強化学習の分散アーキテクチャ変遷
Eiji Sekiya
 
Evaluating the Effectiveness of Axiomatic Approaches in Web Track
Evaluating the Effectiveness of Axiomatic Approaches in Web TrackEvaluating the Effectiveness of Axiomatic Approaches in Web Track
Evaluating the Effectiveness of Axiomatic Approaches in Web Track
Twitter Inc.
 
Differential privacy without sensitivity [NIPS2016読み会資料]
Differential privacy without sensitivity [NIPS2016読み会資料]Differential privacy without sensitivity [NIPS2016読み会資料]
Differential privacy without sensitivity [NIPS2016読み会資料]
Kentaro Minami
 
Introduction to Tree-LSTMs
Introduction to Tree-LSTMsIntroduction to Tree-LSTMs
Introduction to Tree-LSTMs
Daniel Perez
 
The LODIE team at TAC-KBP2015
The LODIE team at TAC-KBP2015The LODIE team at TAC-KBP2015
The LODIE team at TAC-KBP2015
JIE GAO
 
[Paper Reading] Attention is All You Need
[Paper Reading] Attention is All You Need[Paper Reading] Attention is All You Need
[Paper Reading] Attention is All You Need
Daiki Tanaka
 
The Maze of Deletion in Ontology Stream Reasoning
The Maze of Deletion in Ontology Stream Reasoning The Maze of Deletion in Ontology Stream Reasoning
The Maze of Deletion in Ontology Stream Reasoning
Jeff Z. Pan
 
Encoding Linguistic Structures with Graph Convolutional Networks
Encoding Linguistic Structures with Graph Convolutional NetworksEncoding Linguistic Structures with Graph Convolutional Networks
Encoding Linguistic Structures with Graph Convolutional Networks
Aleksandar Savkov
 
[Paper reading] L-SHAPLEY AND C-SHAPLEY: EFFICIENT MODEL INTERPRETATION FOR S...
[Paper reading] L-SHAPLEY AND C-SHAPLEY: EFFICIENT MODEL INTERPRETATION FOR S...[Paper reading] L-SHAPLEY AND C-SHAPLEY: EFFICIENT MODEL INTERPRETATION FOR S...
[Paper reading] L-SHAPLEY AND C-SHAPLEY: EFFICIENT MODEL INTERPRETATION FOR S...
Daiki Tanaka
 
Introduction of "TrailBlazer" algorithm
Introduction of "TrailBlazer" algorithmIntroduction of "TrailBlazer" algorithm
Introduction of "TrailBlazer" algorithm
Katsuki Ohto
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
남주 김
 
Wrokflow programming and provenance query model
Wrokflow programming and provenance query model  Wrokflow programming and provenance query model
Wrokflow programming and provenance query model
Rayhan Ferdous
 
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
Seq2Seq (encoder decoder) model
Seq2Seq (encoder decoder) modelSeq2Seq (encoder decoder) model
Seq2Seq (encoder decoder) model
佳蓉 倪
 
Probabilistic Retrieval
Probabilistic RetrievalProbabilistic Retrieval
Probabilistic Retrieval
otisg
 
強化学習の分散アーキテクチャ変遷
強化学習の分散アーキテクチャ変遷強化学習の分散アーキテクチャ変遷
強化学習の分散アーキテクチャ変遷
Eiji Sekiya
 
Evaluating the Effectiveness of Axiomatic Approaches in Web Track
Evaluating the Effectiveness of Axiomatic Approaches in Web TrackEvaluating the Effectiveness of Axiomatic Approaches in Web Track
Evaluating the Effectiveness of Axiomatic Approaches in Web Track
Twitter Inc.
 
Differential privacy without sensitivity [NIPS2016読み会資料]
Differential privacy without sensitivity [NIPS2016読み会資料]Differential privacy without sensitivity [NIPS2016読み会資料]
Differential privacy without sensitivity [NIPS2016読み会資料]
Kentaro Minami
 

Similar to Deep recurrent generative decoder for abstractive text summarization (20)

Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Claudio Greco
 
Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Alessandro Suglia
 
Provenance for Data Munging Environments
Provenance for Data Munging EnvironmentsProvenance for Data Munging Environments
Provenance for Data Munging Environments
Paul Groth
 
Natural Language Processing in R (rNLP)
Natural Language Processing in R (rNLP)Natural Language Processing in R (rNLP)
Natural Language Processing in R (rNLP)
fridolin.wild
 
Natural Language Processing with CNTK and Apache Spark with Ali Zaidi
Natural Language Processing with CNTK and Apache Spark with Ali ZaidiNatural Language Processing with CNTK and Apache Spark with Ali Zaidi
Natural Language Processing with CNTK and Apache Spark with Ali Zaidi
Databricks
 
And Then There Are Algorithms
And Then There Are AlgorithmsAnd Then There Are Algorithms
And Then There Are Algorithms
InfluxData
 
Knowledge Discovery Query Language (KDQL)
Knowledge Discovery Query Language (KDQL)Knowledge Discovery Query Language (KDQL)
Knowledge Discovery Query Language (KDQL)
Zakaria Zubi
 
Exploring New Frontiers in Inverse Materials Design with Graph Neural Network...
Exploring New Frontiers in Inverse Materials Design with Graph Neural Network...Exploring New Frontiers in Inverse Materials Design with Graph Neural Network...
Exploring New Frontiers in Inverse Materials Design with Graph Neural Network...
KAMAL CHOUDHARY
 
Introduction to OpenSees by Frank McKenna
Introduction to OpenSees by Frank McKennaIntroduction to OpenSees by Frank McKenna
Introduction to OpenSees by Frank McKenna
openseesdays
 
retrieval augmentation generation presentation slide part2
retrieval augmentation generation presentation slide part2retrieval augmentation generation presentation slide part2
retrieval augmentation generation presentation slide part2
ViswakarmaChakravart
 
Technologies For Appraising and Managing Electronic Records
Technologies For Appraising and Managing Electronic RecordsTechnologies For Appraising and Managing Electronic Records
Technologies For Appraising and Managing Electronic Records
pbajcsy
 
Digital_system_design_A (1).ppt
Digital_system_design_A (1).pptDigital_system_design_A (1).ppt
Digital_system_design_A (1).ppt
BUCHUPALLIVIMALAREDD2
 
Recurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRURecurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRU
ananth
 
Masters Thesis Defense Presentation
Masters Thesis Defense PresentationMasters Thesis Defense Presentation
Masters Thesis Defense Presentation
Vitor Hirota Makiyama
 
Licentiate Defense Slide
Licentiate Defense SlideLicentiate Defense Slide
Licentiate Defense Slide
Rerngvit Yanggratoke
 
Complexity metrics and models
Complexity metrics and modelsComplexity metrics and models
Complexity metrics and models
Roy Antony Arnold G
 
Complexity metrics and models
Complexity metrics and modelsComplexity metrics and models
Complexity metrics and models
Roy Antony Arnold G
 
[20240415_LabSeminar_Huy]Deciphering Spatio-Temporal Graph Forecasting: A Cau...
[20240415_LabSeminar_Huy]Deciphering Spatio-Temporal Graph Forecasting: A Cau...[20240415_LabSeminar_Huy]Deciphering Spatio-Temporal Graph Forecasting: A Cau...
[20240415_LabSeminar_Huy]Deciphering Spatio-Temporal Graph Forecasting: A Cau...
thanhdowork
 
Mining and Managing Large-scale Linked Open Data
Mining and Managing Large-scale Linked Open DataMining and Managing Large-scale Linked Open Data
Mining and Managing Large-scale Linked Open Data
MOVING Project
 
Mining and Managing Large-scale Linked Open Data
Mining and Managing Large-scale Linked Open DataMining and Managing Large-scale Linked Open Data
Mining and Managing Large-scale Linked Open Data
Ansgar Scherp
 
Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Claudio Greco
 
Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Ask Me Any Rating: A Content-based Recommender System based on Recurrent Neur...
Alessandro Suglia
 
Provenance for Data Munging Environments
Provenance for Data Munging EnvironmentsProvenance for Data Munging Environments
Provenance for Data Munging Environments
Paul Groth
 
Natural Language Processing in R (rNLP)
Natural Language Processing in R (rNLP)Natural Language Processing in R (rNLP)
Natural Language Processing in R (rNLP)
fridolin.wild
 
Natural Language Processing with CNTK and Apache Spark with Ali Zaidi
Natural Language Processing with CNTK and Apache Spark with Ali ZaidiNatural Language Processing with CNTK and Apache Spark with Ali Zaidi
Natural Language Processing with CNTK and Apache Spark with Ali Zaidi
Databricks
 
And Then There Are Algorithms
And Then There Are AlgorithmsAnd Then There Are Algorithms
And Then There Are Algorithms
InfluxData
 
Knowledge Discovery Query Language (KDQL)
Knowledge Discovery Query Language (KDQL)Knowledge Discovery Query Language (KDQL)
Knowledge Discovery Query Language (KDQL)
Zakaria Zubi
 
Exploring New Frontiers in Inverse Materials Design with Graph Neural Network...
Exploring New Frontiers in Inverse Materials Design with Graph Neural Network...Exploring New Frontiers in Inverse Materials Design with Graph Neural Network...
Exploring New Frontiers in Inverse Materials Design with Graph Neural Network...
KAMAL CHOUDHARY
 
Introduction to OpenSees by Frank McKenna
Introduction to OpenSees by Frank McKennaIntroduction to OpenSees by Frank McKenna
Introduction to OpenSees by Frank McKenna
openseesdays
 
retrieval augmentation generation presentation slide part2
retrieval augmentation generation presentation slide part2retrieval augmentation generation presentation slide part2
retrieval augmentation generation presentation slide part2
ViswakarmaChakravart
 
Technologies For Appraising and Managing Electronic Records
Technologies For Appraising and Managing Electronic RecordsTechnologies For Appraising and Managing Electronic Records
Technologies For Appraising and Managing Electronic Records
pbajcsy
 
Recurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRURecurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRU
ananth
 
[20240415_LabSeminar_Huy]Deciphering Spatio-Temporal Graph Forecasting: A Cau...
[20240415_LabSeminar_Huy]Deciphering Spatio-Temporal Graph Forecasting: A Cau...[20240415_LabSeminar_Huy]Deciphering Spatio-Temporal Graph Forecasting: A Cau...
[20240415_LabSeminar_Huy]Deciphering Spatio-Temporal Graph Forecasting: A Cau...
thanhdowork
 
Mining and Managing Large-scale Linked Open Data
Mining and Managing Large-scale Linked Open DataMining and Managing Large-scale Linked Open Data
Mining and Managing Large-scale Linked Open Data
MOVING Project
 
Mining and Managing Large-scale Linked Open Data
Mining and Managing Large-scale Linked Open DataMining and Managing Large-scale Linked Open Data
Mining and Managing Large-scale Linked Open Data
Ansgar Scherp
 
Ad

More from Kodaira Tomonori (20)

Abstractive Text Summarization @Retrieva seminar
Abstractive Text Summarization @Retrieva seminarAbstractive Text Summarization @Retrieva seminar
Abstractive Text Summarization @Retrieva seminar
Kodaira Tomonori
 
AttSum: Joint Learning of Focusing and Summarization with Neural Attention
AttSum: Joint Learning of Focusing and Summarization with Neural AttentionAttSum: Joint Learning of Focusing and Summarization with Neural Attention
AttSum: Joint Learning of Focusing and Summarization with Neural Attention
Kodaira Tomonori
 
障害情報レポートに対する同時関連文章圧縮
障害情報レポートに対する同時関連文章圧縮障害情報レポートに対する同時関連文章圧縮
障害情報レポートに対する同時関連文章圧縮
Kodaira Tomonori
 
Neural Summarization by Extracting Sentences and Words
Neural Summarization by Extracting Sentences and WordsNeural Summarization by Extracting Sentences and Words
Neural Summarization by Extracting Sentences and Words
Kodaira Tomonori
 
Poster: Controlled and Balanced Dataset for Japanese Lexical Simplification
Poster: Controlled and Balanced Dataset for Japanese Lexical SimplificationPoster: Controlled and Balanced Dataset for Japanese Lexical Simplification
Poster: Controlled and Balanced Dataset for Japanese Lexical Simplification
Kodaira Tomonori
 
[Introduction] Neural Network-Based Abstract Generation for Opinions and Argu...
[Introduction] Neural Network-Based Abstract Generation for Opinions and Argu...[Introduction] Neural Network-Based Abstract Generation for Opinions and Argu...
[Introduction] Neural Network-Based Abstract Generation for Opinions and Argu...
Kodaira Tomonori
 
[ポスター]均衡コーパスを用いた語彙平易化データセットの構築
[ポスター]均衡コーパスを用いた語彙平易化データセットの構築[ポスター]均衡コーパスを用いた語彙平易化データセットの構築
[ポスター]均衡コーパスを用いた語彙平易化データセットの構築
Kodaira Tomonori
 
Noise or additional information? Leveraging crowdsource annotation item agree...
Noise or additional information? Leveraging crowdsource annotation item agree...Noise or additional information? Leveraging crowdsource annotation item agree...
Noise or additional information? Leveraging crowdsource annotation item agree...
Kodaira Tomonori
 
語彙平易化システム評価のためのデータセット改良[ブースター]
語彙平易化システム評価のためのデータセット改良[ブースター]語彙平易化システム評価のためのデータセット改良[ブースター]
語彙平易化システム評価のためのデータセット改良[ブースター]
Kodaira Tomonori
 
語彙平易化システム評価のためのデータセットの改良[ポスター]
語彙平易化システム評価のためのデータセットの改良[ポスター]語彙平易化システム評価のためのデータセットの改良[ポスター]
語彙平易化システム評価のためのデータセットの改良[ポスター]
Kodaira Tomonori
 
PPDB 2.0: Better paraphrase ranking, 
fine-grained entailment relations,
word...
PPDB 2.0: Better paraphrase ranking, 
fine-grained entailment relations,
word...PPDB 2.0: Better paraphrase ranking, 
fine-grained entailment relations,
word...
PPDB 2.0: Better paraphrase ranking, 
fine-grained entailment relations,
word...
Kodaira Tomonori
 
WordNet-Based Lexical Simplification of Document
WordNet-Based Lexical Simplification of DocumentWordNet-Based Lexical Simplification of Document
WordNet-Based Lexical Simplification of Document
Kodaira Tomonori
 
文レベルの機械翻訳評価尺度に関する調査
文レベルの機械翻訳評価尺度に関する調査文レベルの機械翻訳評価尺度に関する調査
文レベルの機械翻訳評価尺度に関する調査
Kodaira Tomonori
 
Simp lex rankng based on contextual and psycholinguistic features
Simp lex rankng based on contextual and psycholinguistic featuresSimp lex rankng based on contextual and psycholinguistic features
Simp lex rankng based on contextual and psycholinguistic features
Kodaira Tomonori
 
Aligning sentences from standard wikipedia to simple wikipedia
Aligning sentences from standard wikipedia to simple wikipediaAligning sentences from standard wikipedia to simple wikipedia
Aligning sentences from standard wikipedia to simple wikipedia
Kodaira Tomonori
 
日本語の語彙平易化評価セットの構築
日本語の語彙平易化評価セットの構築日本語の語彙平易化評価セットの構築
日本語の語彙平易化評価セットの構築
Kodaira Tomonori
 
Improving text simplification language modeling using unsimplified text data
Improving text simplification language modeling using unsimplified text dataImproving text simplification language modeling using unsimplified text data
Improving text simplification language modeling using unsimplified text data
Kodaira Tomonori
 
言い換えを用いたテキスト要約の自動評価
言い換えを用いたテキスト要約の自動評価言い換えを用いたテキスト要約の自動評価
言い換えを用いたテキスト要約の自動評価
Kodaira Tomonori
 
聾者向け文章読解支援における構文的言い換えの効果について
聾者向け文章読解支援における構文的言い換えの効果について聾者向け文章読解支援における構文的言い換えの効果について
聾者向け文章読解支援における構文的言い換えの効果について
Kodaira Tomonori
 
国語辞典を使った放送ニュースの名詞の平易化
国語辞典を使った放送ニュースの名詞の平易化国語辞典を使った放送ニュースの名詞の平易化
国語辞典を使った放送ニュースの名詞の平易化
Kodaira Tomonori
 
Abstractive Text Summarization @Retrieva seminar
Abstractive Text Summarization @Retrieva seminarAbstractive Text Summarization @Retrieva seminar
Abstractive Text Summarization @Retrieva seminar
Kodaira Tomonori
 
AttSum: Joint Learning of Focusing and Summarization with Neural Attention
AttSum: Joint Learning of Focusing and Summarization with Neural AttentionAttSum: Joint Learning of Focusing and Summarization with Neural Attention
AttSum: Joint Learning of Focusing and Summarization with Neural Attention
Kodaira Tomonori
 
障害情報レポートに対する同時関連文章圧縮
障害情報レポートに対する同時関連文章圧縮障害情報レポートに対する同時関連文章圧縮
障害情報レポートに対する同時関連文章圧縮
Kodaira Tomonori
 
Neural Summarization by Extracting Sentences and Words
Neural Summarization by Extracting Sentences and WordsNeural Summarization by Extracting Sentences and Words
Neural Summarization by Extracting Sentences and Words
Kodaira Tomonori
 
Poster: Controlled and Balanced Dataset for Japanese Lexical Simplification
Poster: Controlled and Balanced Dataset for Japanese Lexical SimplificationPoster: Controlled and Balanced Dataset for Japanese Lexical Simplification
Poster: Controlled and Balanced Dataset for Japanese Lexical Simplification
Kodaira Tomonori
 
[Introduction] Neural Network-Based Abstract Generation for Opinions and Argu...
[Introduction] Neural Network-Based Abstract Generation for Opinions and Argu...[Introduction] Neural Network-Based Abstract Generation for Opinions and Argu...
[Introduction] Neural Network-Based Abstract Generation for Opinions and Argu...
Kodaira Tomonori
 
[ポスター]均衡コーパスを用いた語彙平易化データセットの構築
[ポスター]均衡コーパスを用いた語彙平易化データセットの構築[ポスター]均衡コーパスを用いた語彙平易化データセットの構築
[ポスター]均衡コーパスを用いた語彙平易化データセットの構築
Kodaira Tomonori
 
Noise or additional information? Leveraging crowdsource annotation item agree...
Noise or additional information? Leveraging crowdsource annotation item agree...Noise or additional information? Leveraging crowdsource annotation item agree...
Noise or additional information? Leveraging crowdsource annotation item agree...
Kodaira Tomonori
 
語彙平易化システム評価のためのデータセット改良[ブースター]
語彙平易化システム評価のためのデータセット改良[ブースター]語彙平易化システム評価のためのデータセット改良[ブースター]
語彙平易化システム評価のためのデータセット改良[ブースター]
Kodaira Tomonori
 
語彙平易化システム評価のためのデータセットの改良[ポスター]
語彙平易化システム評価のためのデータセットの改良[ポスター]語彙平易化システム評価のためのデータセットの改良[ポスター]
語彙平易化システム評価のためのデータセットの改良[ポスター]
Kodaira Tomonori
 
PPDB 2.0: Better paraphrase ranking, 
fine-grained entailment relations,
word...
PPDB 2.0: Better paraphrase ranking, 
fine-grained entailment relations,
word...PPDB 2.0: Better paraphrase ranking, 
fine-grained entailment relations,
word...
PPDB 2.0: Better paraphrase ranking, 
fine-grained entailment relations,
word...
Kodaira Tomonori
 
WordNet-Based Lexical Simplification of Document
WordNet-Based Lexical Simplification of DocumentWordNet-Based Lexical Simplification of Document
WordNet-Based Lexical Simplification of Document
Kodaira Tomonori
 
文レベルの機械翻訳評価尺度に関する調査
文レベルの機械翻訳評価尺度に関する調査文レベルの機械翻訳評価尺度に関する調査
文レベルの機械翻訳評価尺度に関する調査
Kodaira Tomonori
 
Simp lex rankng based on contextual and psycholinguistic features
Simp lex rankng based on contextual and psycholinguistic featuresSimp lex rankng based on contextual and psycholinguistic features
Simp lex rankng based on contextual and psycholinguistic features
Kodaira Tomonori
 
Aligning sentences from standard wikipedia to simple wikipedia
Aligning sentences from standard wikipedia to simple wikipediaAligning sentences from standard wikipedia to simple wikipedia
Aligning sentences from standard wikipedia to simple wikipedia
Kodaira Tomonori
 
日本語の語彙平易化評価セットの構築
日本語の語彙平易化評価セットの構築日本語の語彙平易化評価セットの構築
日本語の語彙平易化評価セットの構築
Kodaira Tomonori
 
Improving text simplification language modeling using unsimplified text data
Improving text simplification language modeling using unsimplified text dataImproving text simplification language modeling using unsimplified text data
Improving text simplification language modeling using unsimplified text data
Kodaira Tomonori
 
言い換えを用いたテキスト要約の自動評価
言い換えを用いたテキスト要約の自動評価言い換えを用いたテキスト要約の自動評価
言い換えを用いたテキスト要約の自動評価
Kodaira Tomonori
 
聾者向け文章読解支援における構文的言い換えの効果について
聾者向け文章読解支援における構文的言い換えの効果について聾者向け文章読解支援における構文的言い換えの効果について
聾者向け文章読解支援における構文的言い換えの効果について
Kodaira Tomonori
 
国語辞典を使った放送ニュースの名詞の平易化
国語辞典を使った放送ニュースの名詞の平易化国語辞典を使った放送ニュースの名詞の平易化
国語辞典を使った放送ニュースの名詞の平易化
Kodaira Tomonori
 
Ad

Recently uploaded (20)

A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
Sérgio Sacani
 
Transgenic Mice in Cancer Research - Creative Biolabs
Transgenic Mice in Cancer Research - Creative BiolabsTransgenic Mice in Cancer Research - Creative Biolabs
Transgenic Mice in Cancer Research - Creative Biolabs
Creative-Biolabs
 
physics of renewable energy sources .pptx
physics of renewable energy sources  .pptxphysics of renewable energy sources  .pptx
physics of renewable energy sources .pptx
zaramunir6
 
Preparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptxPreparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptx
klynct
 
Somato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptxSomato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptx
klynct
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
ANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC IIIANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC III
HRUTUJA WAGH
 
Pharmacologically active constituents.pdf
Pharmacologically active constituents.pdfPharmacologically active constituents.pdf
Pharmacologically active constituents.pdf
Nistarini College, Purulia (W.B) India
 
university of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptxuniversity of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptx
favoranamelechi107
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Green Synthesis of Gold Nanoparticles.pptx
Green Synthesis of Gold Nanoparticles.pptxGreen Synthesis of Gold Nanoparticles.pptx
Green Synthesis of Gold Nanoparticles.pptx
Torskal Nanoscience
 
ART.pdf. Agin Tom, clinical Psychology, Prajyoti Niketan College
ART.pdf. Agin Tom, clinical Psychology, Prajyoti Niketan CollegeART.pdf. Agin Tom, clinical Psychology, Prajyoti Niketan College
ART.pdf. Agin Tom, clinical Psychology, Prajyoti Niketan College
Agin Tom
 
Brief Presentation on Garment Washing.pdf
Brief Presentation on Garment Washing.pdfBrief Presentation on Garment Washing.pdf
Brief Presentation on Garment Washing.pdf
BharathKumar556689
 
Anti fungal agents Medicinal Chemistry III
Anti fungal agents Medicinal Chemistry  IIIAnti fungal agents Medicinal Chemistry  III
Anti fungal agents Medicinal Chemistry III
HRUTUJA WAGH
 
Subject name: Introduction to psychology
Subject name: Introduction to psychologySubject name: Introduction to psychology
Subject name: Introduction to psychology
beebussy155
 
Freshwater Biome Types, Characteristics and Factors
Freshwater Biome Types, Characteristics and FactorsFreshwater Biome Types, Characteristics and Factors
Freshwater Biome Types, Characteristics and Factors
mytriplemonlineshop
 
MC III Prodrug Medicinal Chemistry III PPT
MC III Prodrug Medicinal Chemistry III PPTMC III Prodrug Medicinal Chemistry III PPT
MC III Prodrug Medicinal Chemistry III PPT
HRUTUJA WAGH
 
Components of the Human Circulatory System.pptx
Components of the Human  Circulatory System.pptxComponents of the Human  Circulatory System.pptx
Components of the Human Circulatory System.pptx
autumnstreaks
 
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.pptSULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
HRUTUJA WAGH
 
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptxSiver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
PriyaAntil3
 
A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
A Massive Black Hole 0.8kpc from the Host Nucleus Revealed by the Offset Tida...
Sérgio Sacani
 
Transgenic Mice in Cancer Research - Creative Biolabs
Transgenic Mice in Cancer Research - Creative BiolabsTransgenic Mice in Cancer Research - Creative Biolabs
Transgenic Mice in Cancer Research - Creative Biolabs
Creative-Biolabs
 
physics of renewable energy sources .pptx
physics of renewable energy sources  .pptxphysics of renewable energy sources  .pptx
physics of renewable energy sources .pptx
zaramunir6
 
Preparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptxPreparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptx
klynct
 
Somato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptxSomato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptx
klynct
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
ANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC IIIANTI URINARY TRACK INFECTION AGENT MC III
ANTI URINARY TRACK INFECTION AGENT MC III
HRUTUJA WAGH
 
university of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptxuniversity of arizona ~ favor's college candidate project.pptx
university of arizona ~ favor's college candidate project.pptx
favoranamelechi107
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Green Synthesis of Gold Nanoparticles.pptx
Green Synthesis of Gold Nanoparticles.pptxGreen Synthesis of Gold Nanoparticles.pptx
Green Synthesis of Gold Nanoparticles.pptx
Torskal Nanoscience
 
ART.pdf. Agin Tom, clinical Psychology, Prajyoti Niketan College
ART.pdf. Agin Tom, clinical Psychology, Prajyoti Niketan CollegeART.pdf. Agin Tom, clinical Psychology, Prajyoti Niketan College
ART.pdf. Agin Tom, clinical Psychology, Prajyoti Niketan College
Agin Tom
 
Brief Presentation on Garment Washing.pdf
Brief Presentation on Garment Washing.pdfBrief Presentation on Garment Washing.pdf
Brief Presentation on Garment Washing.pdf
BharathKumar556689
 
Anti fungal agents Medicinal Chemistry III
Anti fungal agents Medicinal Chemistry  IIIAnti fungal agents Medicinal Chemistry  III
Anti fungal agents Medicinal Chemistry III
HRUTUJA WAGH
 
Subject name: Introduction to psychology
Subject name: Introduction to psychologySubject name: Introduction to psychology
Subject name: Introduction to psychology
beebussy155
 
Freshwater Biome Types, Characteristics and Factors
Freshwater Biome Types, Characteristics and FactorsFreshwater Biome Types, Characteristics and Factors
Freshwater Biome Types, Characteristics and Factors
mytriplemonlineshop
 
MC III Prodrug Medicinal Chemistry III PPT
MC III Prodrug Medicinal Chemistry III PPTMC III Prodrug Medicinal Chemistry III PPT
MC III Prodrug Medicinal Chemistry III PPT
HRUTUJA WAGH
 
Components of the Human Circulatory System.pptx
Components of the Human  Circulatory System.pptxComponents of the Human  Circulatory System.pptx
Components of the Human Circulatory System.pptx
autumnstreaks
 
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.pptSULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
SULPHONAMIDES AND SULFONES Medicinal Chemistry III.ppt
HRUTUJA WAGH
 
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptxSiver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
Siver Nanoparticles syntheisis, mechanism, Antibacterial activity.pptx
PriyaAntil3
 

Deep recurrent generative decoder for abstractive text summarization

  • 1. Deep Recurrent Generative Decoder for Abstractive Text Summarization Piji Li, Wai Lam, Lidong Bing and Zihao Wang Presentator: 小平 知範
  • 2. Abstract • Propose abstractive text summarization based on a seq2seq oriented enc-dec model equipped with a deep reccurent genarative decoder (DRGN). • DRGN achieves improvements over the sota. • Data: LCSTS, GIGA word, DUC-2004
  • 3. Introduction • People may naturally follow some inherent structure when they write the abstractive summaries. • some common structures:
 - “What-Happened”
 - “Who Action What” etc.
  • 4. Proposed • Incorporate the latent structure information of summaries into the abstractive summarization model. • They employ VAEs (Kingma and Welling, 13, Rezende et al., 14) as the base model for their generative framework. • Inspired by (Chung et al., 15), they add historical dependencies on the latent valiables of VAEs and propose a DRGD.
  • 5. Contributions • 1. They porpose a seq2seq oriented encdec model equipped with a DRGD to model and learn structure information. • 2. Both the generative latent structural information and discriminative deterministic variables are jointly considered in the generation process the abs summaries. • 3. sota
  • 6. input
 X Output
 Y GRU VAE inference generation • source text representation he ∈ Rkh. • a series of hidden states {hd1,hd2,…hdn,} Framework Description
 Overview
  • 7. • Their proposed latent structure modeling framework can be divided into two parts:
 inference (variational-encoder) and generation (valiational-decoder) • For the task of Summarization, the previous latent structure information needs to be considered for constructing effective representations for the generation of next state. Framework Description
 Recurrent Generative Decoder
  • 8. • latent structure variable: zt • a lower bound (the objective
 to be maximized on the 
 marginal likelihood.
  • 9. Abstractive Summary Generation • Bidirectional GRU Encoder. • The decoder: 
 discriminative deterministic decoding
 generative latent structure modeling.
  • 10. Abstractive Summary Generation
 Discriminative deterministic decoding • The first hidden state = hd1 = 1/Te ∑ ht • Two layers of GRUs:
 1st: hd1t = GRU1(yt-1, hd1t-1)
 2nd: hd1t = GRU2(yt-1, hd2t-1, ct) {ct: using hd1t and hei)
  • 11. Abstractive Summary Generation
 Generative latent structure modeling. • henc:
 • µ:
 • logσ2
 • ε • z: 
 g is sigmoid function
  • 12. Abstractive Summary Generation
 Generative latent structure modeling. • hdec:
 • output:
 
 ς is softmax
  • 14. Experimental Setup Datasets • Gigawords: Input: first sentence. Output: headline • DUC-2004: Input: Document. Output: 75 bytes • LCSTS: Input: Short text (such as tweet). Output: summary
  • 15. Experimental Setup Evaluation Metrics • F-measures 
 ROUGE-1 (R-1)
 ROUGE-2 (R-2)
 ROUGE-L (R-L)
 ROUGE-SU4 (R-SU4)
  • 16. Evaluation • TOPIARY (Zajic et al., 04) : compressive text summarization • MOSES+ (Rush et al., 15), ABS and ABS+ (Rush et al., 15) • RNN and RNN-context (Hu et al., 15) • CopyNet (Gu et al., 16), RNN-distract (Chen et al., 16) • RAS-LSTM, RAS-Elman (Chopra et al., 16), • LenEmb (Kikuchi et al, 16), ASC+FSC (Miao and Blunsom, 16) • lvt2k-1sent and lvt5k-1sent (Nallapati et al., 16)
  • 17. Experimental Settings • Gigawords: 
 word embeddings: 300
 hidden states and latent vaiables: 500
 Maximum length. Input 100, Output 50
 Batch size : 256 • DUC-2004:
 Maximum length. Output 75 bytes • LCSTS:
 word embeddings: 350
 hidden states and latent vaiables: 500
 Maximum length. Input: 120, Output 25
 Batch size 256 • Beam: 10, Adadelta(ρ = 0.95, ε = 1e-6)
  • 22. Conclusions • They propose a DRGD to improve performance. • The model is a seq2seq oriented encdec framework equipped with latent structure modeling component. • summaries are generated based on the latent variables and the deterministic states. • sota
  翻译: