SlideShare a Scribd company logo
Data preprocessing in Data Mining
 Data in the real world is dirty
 incomplete: lacking attribute values, lacking certain
attributes of interest, or containing only aggregate
data
 noisy: containing errors or outliers
 inconsistent: containing discrepancies in codes or
names
 No quality data, no quality mining results!
 Quality decisions must be based on quality data
 Data warehouse needs consistent integration of
quality data
 Data cleaning
 Fill in missing values, smooth noisy data, identify or remove
outliers, and resolve inconsistencies
 Data integration
 Integration of multiple databases, data cubes, or files
 Data transformation
 Normalization and aggregation
 Data reduction
 Obtains reduced representation in volume but produces the same
or similar analytical results
 Data discretization
 Part of data reduction but with particular importance, especially
for numerical data
Data preprocessing in Data Mining
 Data cleaning tasks
• Fill in missing values
• Identify outliers and smooth out noisy data
• Correct inconsistent data
• Data is not always available
 E.g., many tuples have no recorded value for several
attributes, such as customer income in sales data
• Missing data may be due to
 equipment malfunction
 inconsistent with other recorded data and thus deleted
 data not entered due to misunderstanding
 certain data may not be considered important at the time of
entry
 not register history or changes of the data
• Missing data may need to be inferred.
 Ignore the tuple: usually done when class label is missing
(assuming the tasks in classification—not effective when the
percentage of missing values per attribute varies considerably)
 Fill in the missing value manually: tedious + infeasible?
 Use a global constant to fill in the missing value: e.g., “unknown”,
a new class?!
 Use the attribute mean to fill in the missing value
 Use the most probable value to fill in the missing value: inference-
based such as Bayesian formula or decision tree
• Noise: random error or variance in a measured variable
• Incorrect attribute values may due to
 faulty data collection instruments
 data entry problems
 data transmission problems
 technology limitation
 inconsistency in naming convention
• Other data problems which requires data cleaning
 duplicate records
 incomplete data
 inconsistent data
 Binning method:
 first sort data and partition into (equi-depth) bins
 then smooth by bin means, smooth by bin median,
smooth by bin boundaries, etc.
 Clustering
 detect and remove outliers
 Combined computer and human inspection
 detect suspicious values and check by human
 Regression
 smooth by fitting the data into regression functions
 Equal-width (distance) partitioning:
 It divides the range into N intervals of equal size: uniform grid
 if A and B are the lowest and highest values of the attribute, the
width of intervals will be: W = (B-A)/N.
 The most straightforward
 But outliers may dominate presentation
 Skewed data is not handled well.
 Equal-depth (frequency) partitioning:
 It divides the range into N intervals, each containing
approximately same number of samples
 Good data scaling
 Managing categorical attributes can be tricky.
* Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
* Partition into (equi-depth) bins:
- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34
* Smoothing by bin means:
- Bin 1: 9, 9, 9, 9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29
* Smoothing by bin boundaries:
- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34
 Data integration:
 combines data from multiple sources into a coherent
store
 Schema integration
 integrate metadata from different sources
 Entity identification problem: identify real world
entities from multiple data sources, e.g., A.cust-id 
B.cust-#
 Detecting and resolving data value conflicts
 for the same real world entity, attribute values from
different sources are different
 possible reasons: different representations, different
scales, e.g., metric vs. British units
 Redundant data occur often when integration of
multiple databases
 The same attribute may have different names in
different databasesCareful integration of the data
from multiple sources may help reduce/avoid
redundancies and inconsistencies and improve
mining speed and quality
 Smoothing: remove noise from data
 Aggregation: summarization, data cube construction
 Generalization: concept hierarchy climbing
 Normalization: scaled to fall within a small, specified
range
 min-max normalization
 z-score normalization
 normalization by decimal scaling
 min-max normalization
 z-score normalization
 normalization by decimal scaling
AAA
AA
A
minnewminnewmaxnew
minmax
minv
v _)__(' 



A
A
devstand
meanv
v
_
'


j
v
v
10
' Where j is the smallest integer such that Max(| |)<1'v
 Warehouse may store terabytes of data: Complex
data analysis/mining may take a very long time
to run on the complete data set
 Data reduction
 Obtains a reduced representation of the data set that is
much smaller in volume but yet produces the same (or
almost the same) analytical results
 Data reduction strategies
 Data cube aggregation
 Dimensionality reduction
 Numerosity reduction
 Discretization and concept hierarchy generation
 The lowest level of a data cube
 the aggregated data for an individual entity of interest
 e.g., a customer in a phone calling data warehouse.
 Multiple levels of aggregation in data cubes
 Further reduce the size of data to deal with
 Reference appropriate levels
 Use the smallest representation which is enough to
solve the task
 Feature selection (i.e., attribute subset selection):
 Select a minimum set of features such that the
probability distribution of different classes given the
values for those features is as close as possible to the
original distribution given the values of all features
 reduce # of patterns in the patterns, easier to
understand
Initial attribute set:
{A1, A2, A3, A4, A5, A6}
A4 ?
A1? A6?
Class 1 Class 2 Class 1 Class 2
> Reduced attribute set: {A1, A4, A6}
 Linear regression: Data are modeled to fit a straight
line
 Often uses the least-square method to fit the line
 Multiple regression: allows a response variable Y to be
modeled as a linear function of multidimensional
feature vector
 Log-linear model: approximates discrete
multidimensional probability distributions
 Linear regression: Y =  +  X
 Two parameters ,  and  specify the line and are to
be estimated by using the data at hand.
 using the least squares criterion to the known values
of Y1, Y2, …, X1, X2, ….
 Multiple regression: Y = b0 + b1 X1 + b2 X2.
 Many nonlinear functions can be transformed into the
above.
 Log-linear models:
 The multi-way table of joint probabilities is
approximated by a product of lower-order tables.
 Probability: p(a, b, c, d) = ab acad bcd
 A popular data
reduction technique
 Divide data into
buckets and store
average (sum) for each
bucket
 Can be constructed
optimally in one
dimension using
dynamic programming
 Related to quantization
problems. 0
5
10
15
20
25
30
35
40
10000 30000 50000 70000 90000
 Partition data set into clusters, and one can store
cluster representation only
 Can be very effective if data is clustered but not if data
is “smeared”
 Can have hierarchical clustering and be stored in
multi-dimensional index tree structures
 There are many choices of clustering definitions and
clustering algorithms, further detailed in Chapter 8
 Allow a mining algorithm to run in complexity that is
potentially sub-linear to the size of the data
 Choose a representative subset of the data
 Simple random sampling may have very poor
performance in the presence of skew
 Develop adaptive sampling methods
 Stratified sampling:
 Approximate the percentage of each class (or
subpopulation of interest) in the overall database
 Used in conjunction with skewed data
Sampling
Raw Data
 Three types of attributes:
 Nominal — values from an unordered set
 Ordinal — values from an ordered set
 Continuous — real numbers
 Discretization:
divide the range of a continuous attribute into
intervals
 Some classification algorithms only accept
categorical attributes.
 Reduce data size by discretization
 Prepare for further analysis
 Discretization
 reduce the number of values for a given continuous
attribute by dividing the range of the attribute into
intervals. Interval labels can then be used to replace
actual data values.
 Concept hierarchies
 reduce the data by collecting and replacing low
level concepts (such as numeric values for the
attribute age) by higher level concepts (such as
young, middle-aged, or senior).
Ad

More Related Content

What's hot (20)

Data Preprocessing
Data PreprocessingData Preprocessing
Data Preprocessing
Object-Frontier Software Pvt. Ltd
 
Data preprocessing using Machine Learning
Data  preprocessing using Machine Learning Data  preprocessing using Machine Learning
Data preprocessing using Machine Learning
Gopal Sakarkar
 
Data Integration and Transformation in Data mining
Data Integration and Transformation in Data miningData Integration and Transformation in Data mining
Data Integration and Transformation in Data mining
kavitha muneeshwaran
 
Data preprocessing ng
Data preprocessing   ngData preprocessing   ng
Data preprocessing ng
datapreprocessing
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Jason Rodrigues
 
Data Preprocessing || Data Mining
Data Preprocessing || Data MiningData Preprocessing || Data Mining
Data Preprocessing || Data Mining
Iffat Firozy
 
Data Reduction
Data ReductionData Reduction
Data Reduction
Rajan Shah
 
DATA WAREHOUSE IMPLEMENTATION BY SAIKIRAN PANJALA
DATA WAREHOUSE IMPLEMENTATION BY SAIKIRAN PANJALADATA WAREHOUSE IMPLEMENTATION BY SAIKIRAN PANJALA
DATA WAREHOUSE IMPLEMENTATION BY SAIKIRAN PANJALA
Saikiran Panjala
 
01 Data Mining: Concepts and Techniques, 2nd ed.
01 Data Mining: Concepts and Techniques, 2nd ed.01 Data Mining: Concepts and Techniques, 2nd ed.
01 Data Mining: Concepts and Techniques, 2nd ed.
Institute of Technology Telkom
 
Data Mining: Concepts and Techniques (3rd ed.) — Chapter _04 olap
Data Mining:  Concepts and Techniques (3rd ed.)— Chapter _04 olapData Mining:  Concepts and Techniques (3rd ed.)— Chapter _04 olap
Data Mining: Concepts and Techniques (3rd ed.) — Chapter _04 olap
Salah Amean
 
1.2 steps and functionalities
1.2 steps and functionalities1.2 steps and functionalities
1.2 steps and functionalities
Krish_ver2
 
Data Mining
Data MiningData Mining
Data Mining
SHIKHA GAUTAM
 
Clustering in data Mining (Data Mining)
Clustering in data Mining (Data Mining)Clustering in data Mining (Data Mining)
Clustering in data Mining (Data Mining)
Mustafa Sherazi
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
ankur bhalla
 
Data mining
Data miningData mining
Data mining
Kinza Razzaq
 
Data warehouse architecture
Data warehouse architectureData warehouse architecture
Data warehouse architecture
pcherukumalla
 
Data Exploration.pptx
Data Exploration.pptxData Exploration.pptx
Data Exploration.pptx
PerumalPitchandi
 
Data Mining: Data Preprocessing
Data Mining: Data PreprocessingData Mining: Data Preprocessing
Data Mining: Data Preprocessing
Lakshmi Sarvani Videla
 
Data reduction
Data reductionData reduction
Data reduction
kalavathisugan
 
Exploratory data analysis with Python
Exploratory data analysis with PythonExploratory data analysis with Python
Exploratory data analysis with Python
Davis David
 
Data preprocessing using Machine Learning
Data  preprocessing using Machine Learning Data  preprocessing using Machine Learning
Data preprocessing using Machine Learning
Gopal Sakarkar
 
Data Integration and Transformation in Data mining
Data Integration and Transformation in Data miningData Integration and Transformation in Data mining
Data Integration and Transformation in Data mining
kavitha muneeshwaran
 
Data Preprocessing || Data Mining
Data Preprocessing || Data MiningData Preprocessing || Data Mining
Data Preprocessing || Data Mining
Iffat Firozy
 
Data Reduction
Data ReductionData Reduction
Data Reduction
Rajan Shah
 
DATA WAREHOUSE IMPLEMENTATION BY SAIKIRAN PANJALA
DATA WAREHOUSE IMPLEMENTATION BY SAIKIRAN PANJALADATA WAREHOUSE IMPLEMENTATION BY SAIKIRAN PANJALA
DATA WAREHOUSE IMPLEMENTATION BY SAIKIRAN PANJALA
Saikiran Panjala
 
Data Mining: Concepts and Techniques (3rd ed.) — Chapter _04 olap
Data Mining:  Concepts and Techniques (3rd ed.)— Chapter _04 olapData Mining:  Concepts and Techniques (3rd ed.)— Chapter _04 olap
Data Mining: Concepts and Techniques (3rd ed.) — Chapter _04 olap
Salah Amean
 
1.2 steps and functionalities
1.2 steps and functionalities1.2 steps and functionalities
1.2 steps and functionalities
Krish_ver2
 
Clustering in data Mining (Data Mining)
Clustering in data Mining (Data Mining)Clustering in data Mining (Data Mining)
Clustering in data Mining (Data Mining)
Mustafa Sherazi
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
ankur bhalla
 
Data warehouse architecture
Data warehouse architectureData warehouse architecture
Data warehouse architecture
pcherukumalla
 
Exploratory data analysis with Python
Exploratory data analysis with PythonExploratory data analysis with Python
Exploratory data analysis with Python
Davis David
 

Similar to Data preprocessing in Data Mining (20)

Data preparation
Data preparationData preparation
Data preparation
Harry Potter
 
Data preparation
Data preparationData preparation
Data preparation
James Wong
 
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...
ImXaib
 
Data preperation
Data preperationData preperation
Data preperation
Hoang Nguyen
 
Data preperation
Data preperationData preperation
Data preperation
Fraboni Ec
 
Data preperation
Data preperationData preperation
Data preperation
Luis Goldster
 
Data preparation
Data preparationData preparation
Data preparation
Tony Nguyen
 
Data preparation
Data preparationData preparation
Data preparation
Young Alista
 
Datapreprocessingppt
DatapreprocessingpptDatapreprocessingppt
Datapreprocessingppt
Shree Hari
 
Data Mining
Data MiningData Mining
Data Mining
Jay Nagar
 
Datapreprocess
DatapreprocessDatapreprocess
Datapreprocess
sharmila parveen
 
Data preprocessing ng
Data preprocessing   ngData preprocessing   ng
Data preprocessing ng
saranya12345
 
Preprocess
PreprocessPreprocess
Preprocess
sharmilajohn
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Manikandan Tamilselvan
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Manikandan Tamilselvan
 
Datapreprocessing
DatapreprocessingDatapreprocessing
Datapreprocessing
Chandrika Sweety
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Tony Nguyen
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Harry Potter
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Fraboni Ec
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Young Alista
 
Data preparation
Data preparationData preparation
Data preparation
James Wong
 
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...
prvg4sczsginx3ynyqlc-signature-b84f0cf1da1e7d0fde4ecfab2a28f243cfa561f9aa2c9b...
ImXaib
 
Data preperation
Data preperationData preperation
Data preperation
Fraboni Ec
 
Data preparation
Data preparationData preparation
Data preparation
Tony Nguyen
 
Datapreprocessingppt
DatapreprocessingpptDatapreprocessingppt
Datapreprocessingppt
Shree Hari
 
Data preprocessing ng
Data preprocessing   ngData preprocessing   ng
Data preprocessing ng
saranya12345
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Tony Nguyen
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Harry Potter
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Fraboni Ec
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Young Alista
 
Ad

More from DHIVYADEVAKI (9)

Computer Networks - DNS
Computer Networks - DNSComputer Networks - DNS
Computer Networks - DNS
DHIVYADEVAKI
 
Error detection methods-computer networks
Error detection methods-computer networksError detection methods-computer networks
Error detection methods-computer networks
DHIVYADEVAKI
 
Introduction basic schema and SQL QUERIES
Introduction basic schema and SQL QUERIESIntroduction basic schema and SQL QUERIES
Introduction basic schema and SQL QUERIES
DHIVYADEVAKI
 
Image compression in digital image processing
Image compression in digital image processingImage compression in digital image processing
Image compression in digital image processing
DHIVYADEVAKI
 
Image segmentation in Digital Image Processing
Image segmentation in Digital Image ProcessingImage segmentation in Digital Image Processing
Image segmentation in Digital Image Processing
DHIVYADEVAKI
 
R graphics
R graphicsR graphics
R graphics
DHIVYADEVAKI
 
Apriori algorithm
Apriori algorithm Apriori algorithm
Apriori algorithm
DHIVYADEVAKI
 
Types of Load distributing algorithm in Distributed System
Types of Load distributing algorithm in Distributed SystemTypes of Load distributing algorithm in Distributed System
Types of Load distributing algorithm in Distributed System
DHIVYADEVAKI
 
Deadlock Detection in Distributed Systems
Deadlock Detection in Distributed SystemsDeadlock Detection in Distributed Systems
Deadlock Detection in Distributed Systems
DHIVYADEVAKI
 
Computer Networks - DNS
Computer Networks - DNSComputer Networks - DNS
Computer Networks - DNS
DHIVYADEVAKI
 
Error detection methods-computer networks
Error detection methods-computer networksError detection methods-computer networks
Error detection methods-computer networks
DHIVYADEVAKI
 
Introduction basic schema and SQL QUERIES
Introduction basic schema and SQL QUERIESIntroduction basic schema and SQL QUERIES
Introduction basic schema and SQL QUERIES
DHIVYADEVAKI
 
Image compression in digital image processing
Image compression in digital image processingImage compression in digital image processing
Image compression in digital image processing
DHIVYADEVAKI
 
Image segmentation in Digital Image Processing
Image segmentation in Digital Image ProcessingImage segmentation in Digital Image Processing
Image segmentation in Digital Image Processing
DHIVYADEVAKI
 
Apriori algorithm
Apriori algorithm Apriori algorithm
Apriori algorithm
DHIVYADEVAKI
 
Types of Load distributing algorithm in Distributed System
Types of Load distributing algorithm in Distributed SystemTypes of Load distributing algorithm in Distributed System
Types of Load distributing algorithm in Distributed System
DHIVYADEVAKI
 
Deadlock Detection in Distributed Systems
Deadlock Detection in Distributed SystemsDeadlock Detection in Distributed Systems
Deadlock Detection in Distributed Systems
DHIVYADEVAKI
 
Ad

Recently uploaded (20)

How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18
Celine George
 
CNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscessCNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscess
Mohamed Rizk Khodair
 
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
Dr. Nasir Mustafa
 
Ajanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of HistoryAjanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of History
Virag Sontakke
 
Drugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdfDrugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdf
crewot855
 
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptxANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
Mayuri Chavan
 
Rock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian HistoryRock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian History
Virag Sontakke
 
How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18
Celine George
 
Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)
Mohamed Rizk Khodair
 
Overview Well-Being and Creative Careers
Overview Well-Being and Creative CareersOverview Well-Being and Creative Careers
Overview Well-Being and Creative Careers
University of Amsterdam
 
How to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 SalesHow to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 Sales
Celine George
 
LDMMIA Reiki Yoga S5 Daily Living Workshop
LDMMIA Reiki Yoga S5 Daily Living WorkshopLDMMIA Reiki Yoga S5 Daily Living Workshop
LDMMIA Reiki Yoga S5 Daily Living Workshop
LDM Mia eStudios
 
*"Sensing the World: Insect Sensory Systems"*
*"Sensing the World: Insect Sensory Systems"**"Sensing the World: Insect Sensory Systems"*
*"Sensing the World: Insect Sensory Systems"*
Arshad Shaikh
 
All About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdfAll About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdf
TechSoup
 
UPMVLE migration to ARAL. A step- by- step guide
UPMVLE migration to ARAL. A step- by- step guideUPMVLE migration to ARAL. A step- by- step guide
UPMVLE migration to ARAL. A step- by- step guide
abmerca
 
How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18
Celine George
 
Ancient Stone Sculptures of India: As a Source of Indian History
Ancient Stone Sculptures of India: As a Source of Indian HistoryAncient Stone Sculptures of India: As a Source of Indian History
Ancient Stone Sculptures of India: As a Source of Indian History
Virag Sontakke
 
Botany Assignment Help Guide - Academic Excellence
Botany Assignment Help Guide - Academic ExcellenceBotany Assignment Help Guide - Academic Excellence
Botany Assignment Help Guide - Academic Excellence
online college homework help
 
Form View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo SlidesForm View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo Slides
Celine George
 
The History of Kashmir Karkota Dynasty NEP.pptx
The History of Kashmir Karkota Dynasty NEP.pptxThe History of Kashmir Karkota Dynasty NEP.pptx
The History of Kashmir Karkota Dynasty NEP.pptx
Arya Mahila P. G. College, Banaras Hindu University, Varanasi, India.
 
How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18
Celine George
 
CNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscessCNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscess
Mohamed Rizk Khodair
 
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
PHYSIOLOGY MCQS By DR. NASIR MUSTAFA (PHYSIOLOGY)
Dr. Nasir Mustafa
 
Ajanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of HistoryAjanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of History
Virag Sontakke
 
Drugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdfDrugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdf
crewot855
 
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptxANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
ANTI-VIRAL DRUGS unit 3 Pharmacology 3.pptx
Mayuri Chavan
 
Rock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian HistoryRock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian History
Virag Sontakke
 
How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18
Celine George
 
Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)Myasthenia gravis (Neuromuscular disorder)
Myasthenia gravis (Neuromuscular disorder)
Mohamed Rizk Khodair
 
Overview Well-Being and Creative Careers
Overview Well-Being and Creative CareersOverview Well-Being and Creative Careers
Overview Well-Being and Creative Careers
University of Amsterdam
 
How to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 SalesHow to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 Sales
Celine George
 
LDMMIA Reiki Yoga S5 Daily Living Workshop
LDMMIA Reiki Yoga S5 Daily Living WorkshopLDMMIA Reiki Yoga S5 Daily Living Workshop
LDMMIA Reiki Yoga S5 Daily Living Workshop
LDM Mia eStudios
 
*"Sensing the World: Insect Sensory Systems"*
*"Sensing the World: Insect Sensory Systems"**"Sensing the World: Insect Sensory Systems"*
*"Sensing the World: Insect Sensory Systems"*
Arshad Shaikh
 
All About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdfAll About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdf
TechSoup
 
UPMVLE migration to ARAL. A step- by- step guide
UPMVLE migration to ARAL. A step- by- step guideUPMVLE migration to ARAL. A step- by- step guide
UPMVLE migration to ARAL. A step- by- step guide
abmerca
 
How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18How to Share Accounts Between Companies in Odoo 18
How to Share Accounts Between Companies in Odoo 18
Celine George
 
Ancient Stone Sculptures of India: As a Source of Indian History
Ancient Stone Sculptures of India: As a Source of Indian HistoryAncient Stone Sculptures of India: As a Source of Indian History
Ancient Stone Sculptures of India: As a Source of Indian History
Virag Sontakke
 
Botany Assignment Help Guide - Academic Excellence
Botany Assignment Help Guide - Academic ExcellenceBotany Assignment Help Guide - Academic Excellence
Botany Assignment Help Guide - Academic Excellence
online college homework help
 
Form View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo SlidesForm View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo Slides
Celine George
 

Data preprocessing in Data Mining

  • 2.  Data in the real world is dirty  incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data  noisy: containing errors or outliers  inconsistent: containing discrepancies in codes or names  No quality data, no quality mining results!  Quality decisions must be based on quality data  Data warehouse needs consistent integration of quality data
  • 3.  Data cleaning  Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies  Data integration  Integration of multiple databases, data cubes, or files  Data transformation  Normalization and aggregation  Data reduction  Obtains reduced representation in volume but produces the same or similar analytical results  Data discretization  Part of data reduction but with particular importance, especially for numerical data
  • 5.  Data cleaning tasks • Fill in missing values • Identify outliers and smooth out noisy data • Correct inconsistent data
  • 6. • Data is not always available  E.g., many tuples have no recorded value for several attributes, such as customer income in sales data • Missing data may be due to  equipment malfunction  inconsistent with other recorded data and thus deleted  data not entered due to misunderstanding  certain data may not be considered important at the time of entry  not register history or changes of the data • Missing data may need to be inferred.
  • 7.  Ignore the tuple: usually done when class label is missing (assuming the tasks in classification—not effective when the percentage of missing values per attribute varies considerably)  Fill in the missing value manually: tedious + infeasible?  Use a global constant to fill in the missing value: e.g., “unknown”, a new class?!  Use the attribute mean to fill in the missing value  Use the most probable value to fill in the missing value: inference- based such as Bayesian formula or decision tree
  • 8. • Noise: random error or variance in a measured variable • Incorrect attribute values may due to  faulty data collection instruments  data entry problems  data transmission problems  technology limitation  inconsistency in naming convention • Other data problems which requires data cleaning  duplicate records  incomplete data  inconsistent data
  • 9.  Binning method:  first sort data and partition into (equi-depth) bins  then smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.  Clustering  detect and remove outliers  Combined computer and human inspection  detect suspicious values and check by human  Regression  smooth by fitting the data into regression functions
  • 10.  Equal-width (distance) partitioning:  It divides the range into N intervals of equal size: uniform grid  if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B-A)/N.  The most straightforward  But outliers may dominate presentation  Skewed data is not handled well.  Equal-depth (frequency) partitioning:  It divides the range into N intervals, each containing approximately same number of samples  Good data scaling  Managing categorical attributes can be tricky.
  • 11. * Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34 * Partition into (equi-depth) bins: - Bin 1: 4, 8, 9, 15 - Bin 2: 21, 21, 24, 25 - Bin 3: 26, 28, 29, 34 * Smoothing by bin means: - Bin 1: 9, 9, 9, 9 - Bin 2: 23, 23, 23, 23 - Bin 3: 29, 29, 29, 29 * Smoothing by bin boundaries: - Bin 1: 4, 4, 4, 15 - Bin 2: 21, 21, 25, 25 - Bin 3: 26, 26, 26, 34
  • 12.  Data integration:  combines data from multiple sources into a coherent store  Schema integration  integrate metadata from different sources  Entity identification problem: identify real world entities from multiple data sources, e.g., A.cust-id  B.cust-#  Detecting and resolving data value conflicts  for the same real world entity, attribute values from different sources are different  possible reasons: different representations, different scales, e.g., metric vs. British units
  • 13.  Redundant data occur often when integration of multiple databases  The same attribute may have different names in different databasesCareful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality
  • 14.  Smoothing: remove noise from data  Aggregation: summarization, data cube construction  Generalization: concept hierarchy climbing  Normalization: scaled to fall within a small, specified range  min-max normalization  z-score normalization  normalization by decimal scaling
  • 15.  min-max normalization  z-score normalization  normalization by decimal scaling AAA AA A minnewminnewmaxnew minmax minv v _)__('     A A devstand meanv v _ '   j v v 10 ' Where j is the smallest integer such that Max(| |)<1'v
  • 16.  Warehouse may store terabytes of data: Complex data analysis/mining may take a very long time to run on the complete data set  Data reduction  Obtains a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results  Data reduction strategies  Data cube aggregation  Dimensionality reduction  Numerosity reduction  Discretization and concept hierarchy generation
  • 17.  The lowest level of a data cube  the aggregated data for an individual entity of interest  e.g., a customer in a phone calling data warehouse.  Multiple levels of aggregation in data cubes  Further reduce the size of data to deal with  Reference appropriate levels  Use the smallest representation which is enough to solve the task
  • 18.  Feature selection (i.e., attribute subset selection):  Select a minimum set of features such that the probability distribution of different classes given the values for those features is as close as possible to the original distribution given the values of all features  reduce # of patterns in the patterns, easier to understand
  • 19. Initial attribute set: {A1, A2, A3, A4, A5, A6} A4 ? A1? A6? Class 1 Class 2 Class 1 Class 2 > Reduced attribute set: {A1, A4, A6}
  • 20.  Linear regression: Data are modeled to fit a straight line  Often uses the least-square method to fit the line  Multiple regression: allows a response variable Y to be modeled as a linear function of multidimensional feature vector  Log-linear model: approximates discrete multidimensional probability distributions
  • 21.  Linear regression: Y =  +  X  Two parameters ,  and  specify the line and are to be estimated by using the data at hand.  using the least squares criterion to the known values of Y1, Y2, …, X1, X2, ….  Multiple regression: Y = b0 + b1 X1 + b2 X2.  Many nonlinear functions can be transformed into the above.  Log-linear models:  The multi-way table of joint probabilities is approximated by a product of lower-order tables.  Probability: p(a, b, c, d) = ab acad bcd
  • 22.  A popular data reduction technique  Divide data into buckets and store average (sum) for each bucket  Can be constructed optimally in one dimension using dynamic programming  Related to quantization problems. 0 5 10 15 20 25 30 35 40 10000 30000 50000 70000 90000
  • 23.  Partition data set into clusters, and one can store cluster representation only  Can be very effective if data is clustered but not if data is “smeared”  Can have hierarchical clustering and be stored in multi-dimensional index tree structures  There are many choices of clustering definitions and clustering algorithms, further detailed in Chapter 8
  • 24.  Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data  Choose a representative subset of the data  Simple random sampling may have very poor performance in the presence of skew  Develop adaptive sampling methods  Stratified sampling:  Approximate the percentage of each class (or subpopulation of interest) in the overall database  Used in conjunction with skewed data
  • 26.  Three types of attributes:  Nominal — values from an unordered set  Ordinal — values from an ordered set  Continuous — real numbers  Discretization: divide the range of a continuous attribute into intervals  Some classification algorithms only accept categorical attributes.  Reduce data size by discretization  Prepare for further analysis
  • 27.  Discretization  reduce the number of values for a given continuous attribute by dividing the range of the attribute into intervals. Interval labels can then be used to replace actual data values.  Concept hierarchies  reduce the data by collecting and replacing low level concepts (such as numeric values for the attribute age) by higher level concepts (such as young, middle-aged, or senior).
  翻译: