Powerful data mining techniques are available in a variety of educational fields. Educational research is
advancing rapidly due to the vast amount of student data that can be used to create insightful patterns
related to student learning. Educational data mining is a tool that helps universities assess and identify student
performance. Well-known classification techniques have been widely used to determine student success in
data mining. A decisive and growing exploration area in educational data mining (EDM) is predicting student
academic performance. This area uses data mining and automaton learning approaches to extract data from
education repositories. According to relevant research, there are several academic performance prediction
methods aimed at improving administrative and teaching staff in academic institutions. In the put-forwarded
approach, the collected data set is preprocessed to ensure data quality and labeled student education data
is used to apply ANN classifiers, support vector classifiers, random forests, and DT Compute and train a
classifier. The achievement of the four classifications is measured by accuracy value, receiver operating curve
(ROC), F1 score, and confusion matrix scored by each model. Finally, we found that the top three algorithmic
models had an accuracy of 86–95%, an F1 score of 85–95%, and an average area under ROC curve of
OVA of 98–99.6%