This document summarizes a research paper that proposes an optimized ant colony optimization (ACO) algorithm for task scheduling in cloud computing. The goal is to minimize makespan and cost while improving fairness and load balancing. The ACO algorithm is adapted to prioritize and fairly allocate tasks to machines based on their performance. Simulations show the proposed ACO algorithm reduces makespan by 80% compared to Berger and greedy algorithms. It also increases processor utilization and balances loads across machines better than the other algorithms. The researchers conclude the optimized ACO approach improves resource usage and user satisfaction for task scheduling in cloud computing.