SlideShare a Scribd company logo
Context-Aware Recommender System Based on
Boolean Matrix Factorisation
Marat Akhmatnurov and Dmitry I. Ignatov
National Research University Higher School of Economics, Moscow, Russia
Faculty of Computer Science
October 13–16, CLA 2015
Clermont-Ferrand, France
Outline
Problem Statement
Contextual information
Singular Value Decomposition
Related work
Boolean Matrix Factorisation
Quality evaluation
Conclusion and future work
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 2 / 29
Recommender Systems
Collaborative Filtering
• Age
• Gender
• Occupation
• Location
• Genre
• Date
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 3 / 29
Contextual information
[Adomavicius & Tuzhilin, 2005]
I =
[
R Cuser
Citem O
]
,
Movies Sex Age
m1 m2 m3 m4 m5 m6 M F 0-20 21-45 46+
u1 5 5 5 2 + +
u2 5 5 3 5 + +
u3 4 4 5 4 + +
u4 3 5 5 5 + +
u5 2 5 4 + +
u6 5 3 4 5 + +
u7 5 4 5 4 + +
Drama + + + + +
Action + + + +
Comedy + +
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 4 / 29
Singular Value Decomposition
SVD is de facto standard in RS domain [Koren et al., 2009]
Singular Value Decomposition (SVD) is a decomposition of a
rectangular matrix A ∈ Rm×n(m > n) into a product of three
matrices
A = U
(
Σ
0
)
VT
,
where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and
Σ ∈ Rn×n is a diagonal matrix such that Σ = diag(σ1, . . . , σn) and
σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. The columns of the matrix U and V are
called singular vectors, and the numbers σi are singular values.
2mn2 + 2n3 floating-point operations [Trefthen et al., 1997]
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 5 / 29
Related work
What about Formal Concept Analysis?
• du Boucher-Ryan et al., Collaborative recommending using
Formal Concept Analysis. Knowledge-Based Systems (2006)
• J¨aschke et al. Folksonomy (Bibsonomy) recommendations and
mining, since 2006
• Ignatov et al., Concept-based recommendations for internet
advertisement. CLA 2008
• Symeonidis et al., Nearest-biclusters collaborative filtering
based on constant and coherent values. Information Retrieval
(2008)
• Ignatov et al., Concept-Based Biclustering for Internet
Advertisement. IEEE ICDMW 2012
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 6 / 29
Related work
What about Formal Concept Analysis?
• Jelassi et al., A personalized recommender system based on
users’ information in folksonomies. WWW 2013
• Alqadah et al., Biclustering neighborhood-based collaborative
filtering method for top-n recommender systems. Knowledge
and Information Systems (2014)
• Ignatov et al. Boolean Matrix Factorisation for Collaborative
Filtering: An FCA-Based Approach. AIMSA 2014 (FCA meets
IR @ ECIR 2013)
• Ignatov et al. RAPS: A recommender algorithm based on
pattern structures. FCA4AI@IJCAI 2015
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 7 / 29
Boolean Matrix Factorisation
Formal Concept Analysis [Wille, 1982; Ganter & Wille, 1999]
A formal context K is a triple (G, M, I), where G is a set of
objects, M is a set of attributes, I ⊆ G × M is an incidence
relation. We write gIm when the object g ∈ G has the attribute
m ∈ M
Derivation (Galois) operators:
For A ⊆ G and for B ⊆ M we have
A′
= {m ∈ M | gIm for all g ∈ A} ,
B′
= {g ∈ G | gIm for all m ∈ B} .
A formal concept of the formal context K = (G, M, I) is a pair
(A, B) such that A ∈ G, B ∈ M, A′
= B and B′
= A.
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 8 / 29
Boolean Matrix Factorisation
Formal Concept Analysis
B(G, M, I) is the set of all formal concepts of a context
K = (G, M, I).
F = {(A1, B1), . . . (Ak, Bk)} ⊆ B(G, M, I)
(PF )il =
{
1, i ∈ Al
0, otherwise
, l = 1, k,
(QF )lj =
{
1, j ∈ Bl
0, otherwise
, l = 1, k.
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 9 / 29
Boolean Matrix Factorisation
[Belohlavek & Vychodil, 2010]
Boolean matrix factorisation is a decomposition of the input binary
matrix I = {0, 1}m×n into a product of two binary matrices
P = {0, 1}m×k and Q = {0, 1}k×n by the following rule:
(P ◦ Q)ij =
k∨
l=1
Pil ∧ Qlj
Theorem 1 (Universality of formal concepts as factors)
For every binary matrix I there is F ⊆ B(G, M, I) such that
I = PF ◦ QF .
Theorem 2 (Optimality of formal concepts as factors)
Let I = P ◦ Q is a decomposition of I = {0, 1}m×n, where
P = {0, 1}m×k and Q = {0, 1}k×n. Then there exists
F ⊆ B(G, M, I) such that |F| ≤ k, I = PF ◦ QF .
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 10 / 29
Boolean Matrix Factorisation
Searching for formal concept as factors
• Greedy algorithm (Belohlavek & Vychodil, 2010);
O(k|G||M|3), where k is the number of found factors.
• Close-by-one (CbO) algorithm (Kuznetsov S.O., 1993);
O(|G||M|2|L|)
• CbO modification with balanced factors (concepts)
W =
2|A||B|
|A|2 + |B|2
, where (A, B) ∈ B(G, M, I)
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 11 / 29
Boolean Matrix Factorisation
• K = (U, M, I) is a user-to-movie rating formal context
m1 m2 m3 m4 m5 m6 f1 f2 f3 f4 f5
u1 1 0 1 1 0 0 0 1 1 0 0
u2 1 0 1 1 0 0 1 0 0 1 0
u3 1 0 1 1 0 1 0 1 0 1 0
u4 1 0 1 1 0 0 1 0 0 1 0
u5 0 0 0 0 1 1 1 0 0 0 1
u6 1 0 1 1 0 0 0 1 1 0 0
u7 1 0 0 1 1 1 1 0 0 0 1
g1 1 0 1 1 1 1 0 0 0 0 0
g2 0 1 1 0 1 1 0 0 0 0 0
g3 1 0 0 1 0 0 0 0 0 0 0
• ({u1, u3, u6, u7, g1, g2}, {m1, m4}),
• ({u2, u4}, {m2, m3, m6, f1, f4}),
• ({u5, u7}, {m5, m6, f1, f5}) ,
• ({u1, u6}, {m1, m3, m4, f2, f3}),
• ({u5, u7, g1, g3}, {m5, m6}),
• ({u2, u3, u4}, {m3, m6, f4}),
• ({u2, u4, g3}, {m2, m3, m6}),
• ({u1, u3, u6, g1}, {m1, m3, m4}),
• ({u1, u3, u6}, {m1, m3, m4, f2}).
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 12 / 29
Boolean Matrix Factorisation
• 10 × 9 ◦ 9 × 12
















1 0 0 1 0 0 0 1 1
0 1 0 0 0 1 1 0 0
1 0 0 0 0 1 0 1 1
0 1 0 0 0 1 1 0 0
0 0 1 0 1 0 0 0 0
1 0 0 1 0 0 0 1 1
1 0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 1 0
0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 0 0
















◦














1 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0 0 0 1
1 0 1 1 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 1 0
0 1 1 0 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0














Akhmatnurov & Ignatov Higher School of Economics CLA 2015 13 / 29
Projections to the factor space
Boolean projection vs weighted projection
• ˜Puf =
∧
m∈u′
Ium · Qfm
• ˜Puf = (Iu· , Qf·)
||Qf·||1
=
∑
m∈M
Ium·Qfm
∑
m∈M
Qfm
















1 0 0 1 0 0 0 1 1
0 1 0 0 0 1 1 0 0
1 0 0 0 0 1 0 1 1
0 1 0 0 0 1 1 0 0
0 0 1 0 1 0 0 0 0
1 0 0 1 0 0 0 1 1
1 0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 1 0
0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 0 0
































1 1
5 0 1 0 1
3
1
3 1 1
0 1 1
2
1
5
1
2 1 1 1
3
1
4
1 3
5
1
4
4
5
1
2 1 2
3 1 1
0 1 1
2
1
5
1
2 1 1 1
3
1
4
0 2
5 1 0 1 2
3
1
3 0 0
1 1
5 0 1 0 1
3
1
3 1 1
1 2
5 1 1
5 1 1
3
1
3
2
3
1
2
1 2
5
1
2
2
5 1 2
3
2
3 1 3
4
0 2
5
1
2
1
5 1 2
3 1 1
3
1
4
1 0 0 1
5 0 0 0 2
3
1
2
















Akhmatnurov & Ignatov Higher School of Economics CLA 2015 14 / 29
User-based nearest neighbour approach
How to recommend?
• Similarity search
• simcos(u, v) = (ru , rv)
|ru|·|rv| =
∑
m∈M
rum·rim
√ ∑
m∈M
r2
um
√ ∑
m∈M
r2
vm
• simHam(u, v) = 1 −
∑
m∈M
|rum−rvm|
|M|
• Rating prediction
ˆrum =
∑
v∈ˆU
sim(v, u) · rvm
∑
v∈ˆU
sim(v, u)
,
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 15 / 29
Quality evaluation of the proposed approach
Data
MovieLens-100k dataset
• 100 000 ratings (5-star scale)
• 943 users
• Gender
• Age
• Occupation (21 categories)
• ZIP
• 1682 movies
• 19 genres
Five star ratings are converted to binary scale:
Ium =
{
1, rum > 3,
0, else
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 16 / 29
Quality evaluation
Criteria
• Mean Absolute Error
MAE =
∑
(u,m)∈U×M∩Itest
|ˆrum − rum|
|Itest|
• Precision
P =
TP
TP + FP
• Recall
R =
TP
TP + FN
• F-measure (F1-measure)
F =
2PR
P + R
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 17 / 29
Quality evaluation
Bimodal cross-validation [Ignatov et al., 2012]
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 18 / 29
Quality evaluation
Similarity measures
0 20 40 60 80 100
0.2
0.25
0.3
0.35
0.4
Number of neighbours
MAE
0 20 40 60 80 100
0.1
0.2
0.3
0.4
0.5
Number of neighbours
F−measure
0 20 40 60 80 100
0.2
0.4
0.6
0.8
1
Number of neighbours
Precision
0 20 40 60 80 100
0
0.1
0.2
0.3
0.4
Number of neighbours
Recall
Hamming
Cosine
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 19 / 29
Quality evaluation
Projections
0 20 40 60 80 100
0.22
0.24
0.26
0.28
0.3
Number of neigbours
MAE
0 20 40 60 80 100
0
0.1
0.2
0.3
0.4
Number of neigbours
F−measure
0 20 40 60 80 100
0
0.2
0.4
0.6
0.8
Number of neigbours
Precision
0 20 40 60 80 100
0
0.1
0.2
0.3
0.4
Number of neigbours
Recall
Weighted projection
Boolean projection
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 20 / 29
Quality evaluation
Number of covering factors
• BMF
p% =
|used marks|
|all marks|
100%
• SVD
p% =
K∑
i=1
σ2
i
∑
σ2
100%
Coverage 50% 60% 70% 80% 90%
Close-by-one 168 228 305 421 622
Belohlavek’s alg. 222 297 397 533 737
BMFCbO (no contextual information) 163 220 294 401 596
SVD 162 218 287 373 496
SVD (no contextual information) 157 211 277 361 480
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 21 / 29
Quality evaluation
Coverage influence
Number
of
Precision Recall F-measure MAE
neighb. 60% 80% 60% 80% 60% 80% 60% 80%
1 0.3553 0.3609 0.2682 0.2647 0.3056 0.3054 0.2468 0.2434
5 0.6335 0.6442 0.1422 0.1412 0.2323 0.2317 0.2383 0.2359
10 0.7006 0.7045 0.1134 0.1114 0.1953 0.1924 0.2411 0.2388
15 0.7226 0.7258 0.0998 0.0979 0.1754 0.1726 0.2436 0.2411
20 0.7301 0.7373 0.0915 0.0903 0.1626 0.1610 0.2456 0.2429
25 0.7387 0.7427 0.0865 0.0853 0.1549 0.1531 0.2473 0.2445
30 0.7402 0.7426 0.0823 0.0818 0.1482 0.1474 0.2488 0.2459
40 0.7405 0.7508 0.0752 0.0759 0.1365 0.1379 0.2513 0.2484
50 0.7419 0.7487 0.0712 0.0712 0.1299 0.1301 0.2534 0.2504
60 0.7419 0.7478 0.0674 0.0678 0.1236 0.1243 0.2553 0.2522
70 0.7415 0.7477 0.0648 0.0654 0.1191 0.1202 0.2570 0.2538
80 0.7398 0.7449 0.0624 0.0624 0.1150 0.1151 0.2586 0.2553
100 0.7377 0.7461 0.0584 0.0583 0.1082 0.1081 0.2615 0.2580
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 22 / 29
Quality evaluation
Algorithms for factor search
Number
of
Precision Recall F-measure MAE
neighb. Blhlv CbO Blhlv CbO Blhlv CbO Blhlv CbO
1 0.3626 0.3609 0.2582 0.2647 0.3016 0.3054 0.2436 0.2434
5 0.6435 0.6442 0.1331 0.1412 0.2205 0.2317 0.2371 0.2359
10 0.7127 0.7045 0.1061 0.1114 0.1848 0.1924 0.2395 0.2388
15 0.7323 0.7258 0.0936 0.0979 0.1660 0.1726 0.2415 0.2411
20 0.7424 0.7373 0.0860 0.0903 0.1542 0.1610 0.2429 0.2429
25 0.7479 0.7427 0.0812 0.0853 0.1465 0.1531 0.2442 0.2445
30 0.7519 0.7426 0.0774 0.0818 0.1403 0.1474 0.2454 0.2459
40 0.7579 0.7508 0.0721 0.0759 0.1317 0.1379 0.2475 0.2484
50 0.7569 0.7487 0.0678 0.0712 0.1244 0.1301 0.2492 0.2504
60 0.7602 0.7478 0.0651 0.0678 0.1199 0.1243 0.2507 0.2522
70 0.7600 0.7477 0.0623 0.0654 0.1151 0.1202 0.2520 0.2538
80 0.7589 0.7449 0.0601 0.0624 0.1114 0.1151 0.2531 0.2553
100 0.7559 0.7461 0.0562 0.0583 0.1046 0.1081 0.2553 0.2580
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 23 / 29
Quality evaluation
Influence of contextual information (80% coverage)
Number Precision Recall F-measure MAE
of
neighb.
clean cntxt clean cntxt clean cntxt clean cntxt
1 0.3589 0.3609 0.2668 0.2647 0.3061 0.3054 0.2446 0.2434
5 0.6353 0.6442 0.1420 0.1412 0.2321 0.2317 0.2371 0.2359
10 0.6975 0.7045 0.1126 0.1114 0.1938 0.1924 0.2399 0.2388
15 0.7168 0.7258 0.0994 0.0979 0.1746 0.1726 0.2422 0.2411
20 0.7282 0.7373 0.0911 0.0903 0.1619 0.1610 0.2442 0.2429
25 0.7291 0.7427 0.0861 0.0853 0.1540 0.1531 0.2457 0.2445
30 0.7318 0.7426 0.0823 0.0818 0.1480 0.1474 0.2472 0.2459
40 0.7342 0.7508 0.0767 0.0759 0.1389 0.1379 0.2497 0.2484
50 0.7332 0.7487 0.0716 0.0712 0.1304 0.1301 0.2518 0.2504
60 0.7314 0.7478 0.0682 0.0678 0.1247 0.1243 0.2536 0.2522
70 0.7333 0.7477 0.0658 0.0654 0.1208 0.1202 0.2552 0.2538
80 0.7342 0.7449 0.0632 0.0624 0.1164 0.1151 0.2567 0.2553
100 0.7299 0.7461 0.0590 0.0583 0.1092 0.1081 0.2594 0.2580
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 24 / 29
Quality evaluation
Comparison with SVD
0 20 40 60 80 100
0.2
0.25
0.3
0.35
0.4
Number of neighbours
MAE
0 20 40 60 80 100
0
0.1
0.2
0.3
0.4
Number of neighbours
F−measure
0 20 40 60 80 100
0.2
0.4
0.6
0.8
1
Number of neighbours
Precision
0 20 40 60 80 100
0
0.1
0.2
0.3
0.4
Number of neighbours
Recall
BMF80
+context
SVD85
+context
SVD85
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 25 / 29
Conclusion
• We have proposed a rather straightforward BMF-based
approach for recommendations with contextual information
• MAE of our BMF-based approach is sufficiently lower than
MAE of SVD-based approach for almost the same number of
factors at fixed coverage level.
• The Precision of BMF-based approach is slightly lower when
the number of neighbours is about a couple of dozens and
comparable for the remaining observed range.
• The Recall is lower that results in lower F-measure.
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 26 / 29
Conclusion
• The greedy algorithm of Belohlavek & Vychodyl results in
more factors with larger extent, but it is faster and shows
almost the same quality as the balanced factors search by
CbO.
• Our weighted projection alleviates the information loss of
Boolean projection and results in a substantial quality gain.
• Contextual information demonstrates a small quality increase
(about 1-2%) in terms of MAE and Precision, but not in
Recall and Precision.
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 27 / 29
Future work
• Incorporation of time and location as contextual information
• Treatment of contextual information by means of Triadic FCA
and triclustering
• Comparison, usage, extension of the following works:
• [Jelassi et al., 2013] Recommendations in personalised
folksomies
• [Belohlávek et al, 2013] Factorization of three-way binary data
using triadic concepts
• [Trnecka et al., 2014] Multi-Relational Boolean Factor
Analysis
• [Belholavek et al., 2015; Metzler et al., 2015; Nourine et. al.,
2015] Efficient Boolean matrix factorisation algorithms
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 28 / 29
Thank you!
Questions?
Akhmatnurov & Ignatov Higher School of Economics CLA 2015 29 / 29
Ad

More Related Content

What's hot (20)

Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Arjen de Vries
 
Topological data analysis
Topological data analysisTopological data analysis
Topological data analysis
Sunghyon Kyeong
 
Alleviating cold-user start problem with users' social network data in recomm...
Alleviating cold-user start problem with users' social network data in recomm...Alleviating cold-user start problem with users' social network data in recomm...
Alleviating cold-user start problem with users' social network data in recomm...
Eduardo Castillejo Gil
 
Workload-aware materialization for efficient variable elimination on Bayesian...
Workload-aware materialization for efficient variable elimination on Bayesian...Workload-aware materialization for efficient variable elimination on Bayesian...
Workload-aware materialization for efficient variable elimination on Bayesian...
Cigdem Aslay
 
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...
YONG ZHENG
 
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems -  ACM RecSys 2013 tutorialLearning to Rank for Recommender Systems -  ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
Alexandros Karatzoglou
 
A Probabilistic U-Net for Segmentation of Ambiguous Images
A Probabilistic U-Net for Segmentation of Ambiguous ImagesA Probabilistic U-Net for Segmentation of Ambiguous Images
A Probabilistic U-Net for Segmentation of Ambiguous Images
Seunghyun Hwang
 
Collective Response Spike Prediction for Mutually Interacting Consumers
Collective Response Spike Prediction for Mutually Interacting ConsumersCollective Response Spike Prediction for Mutually Interacting Consumers
Collective Response Spike Prediction for Mutually Interacting Consumers
Rikiya Takahashi
 
Factorization Machines with libFM
Factorization Machines with libFMFactorization Machines with libFM
Factorization Machines with libFM
Liangjie Hong
 
Mangai
MangaiMangai
Mangai
elakkiya.dreamweb dream
 
Introduction To Applied Machine Learning
Introduction To Applied Machine LearningIntroduction To Applied Machine Learning
Introduction To Applied Machine Learning
ananth
 
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Dongmin Choi
 
Locally densest subgraph discovery
Locally densest subgraph discoveryLocally densest subgraph discovery
Locally densest subgraph discovery
aftab alam
 
[系列活動] Machine Learning 機器學習課程
[系列活動] Machine Learning 機器學習課程[系列活動] Machine Learning 機器學習課程
[系列活動] Machine Learning 機器學習課程
台灣資料科學年會
 
Generative Adversarial Networks : Basic architecture and variants
Generative Adversarial Networks : Basic architecture and variantsGenerative Adversarial Networks : Basic architecture and variants
Generative Adversarial Networks : Basic architecture and variants
ananth
 
Data Structures and Algorithm - Week 8 - Minimum Spanning Trees
Data Structures and Algorithm - Week 8 - Minimum Spanning TreesData Structures and Algorithm - Week 8 - Minimum Spanning Trees
Data Structures and Algorithm - Week 8 - Minimum Spanning Trees
Ferdin Joe John Joseph PhD
 
Crowdsourcing via Tensor Augmentation and Completion
Crowdsourcing via Tensor Augmentation and CompletionCrowdsourcing via Tensor Augmentation and Completion
Crowdsourcing via Tensor Augmentation and Completion
collwe
 
TRECVID 2016 Ad-hoc Video Seach task, CERTH-ITI
TRECVID 2016 Ad-hoc Video Seach task, CERTH-ITITRECVID 2016 Ad-hoc Video Seach task, CERTH-ITI
TRECVID 2016 Ad-hoc Video Seach task, CERTH-ITI
InVID Project
 
[系列活動] 機器學習速遊
[系列活動] 機器學習速遊[系列活動] 機器學習速遊
[系列活動] 機器學習速遊
台灣資料科學年會
 
Data Structures and Algorithm - Week 11 - Algorithm Analysis
Data Structures and Algorithm - Week 11 - Algorithm AnalysisData Structures and Algorithm - Week 11 - Algorithm Analysis
Data Structures and Algorithm - Week 11 - Algorithm Analysis
Ferdin Joe John Joseph PhD
 
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Arjen de Vries
 
Topological data analysis
Topological data analysisTopological data analysis
Topological data analysis
Sunghyon Kyeong
 
Alleviating cold-user start problem with users' social network data in recomm...
Alleviating cold-user start problem with users' social network data in recomm...Alleviating cold-user start problem with users' social network data in recomm...
Alleviating cold-user start problem with users' social network data in recomm...
Eduardo Castillejo Gil
 
Workload-aware materialization for efficient variable elimination on Bayesian...
Workload-aware materialization for efficient variable elimination on Bayesian...Workload-aware materialization for efficient variable elimination on Bayesian...
Workload-aware materialization for efficient variable elimination on Bayesian...
Cigdem Aslay
 
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...
YONG ZHENG
 
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems -  ACM RecSys 2013 tutorialLearning to Rank for Recommender Systems -  ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
Alexandros Karatzoglou
 
A Probabilistic U-Net for Segmentation of Ambiguous Images
A Probabilistic U-Net for Segmentation of Ambiguous ImagesA Probabilistic U-Net for Segmentation of Ambiguous Images
A Probabilistic U-Net for Segmentation of Ambiguous Images
Seunghyun Hwang
 
Collective Response Spike Prediction for Mutually Interacting Consumers
Collective Response Spike Prediction for Mutually Interacting ConsumersCollective Response Spike Prediction for Mutually Interacting Consumers
Collective Response Spike Prediction for Mutually Interacting Consumers
Rikiya Takahashi
 
Factorization Machines with libFM
Factorization Machines with libFMFactorization Machines with libFM
Factorization Machines with libFM
Liangjie Hong
 
Introduction To Applied Machine Learning
Introduction To Applied Machine LearningIntroduction To Applied Machine Learning
Introduction To Applied Machine Learning
ananth
 
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Review : Adaptive Consistency Regularization for Semi-Supervised Transfer Lea...
Dongmin Choi
 
Locally densest subgraph discovery
Locally densest subgraph discoveryLocally densest subgraph discovery
Locally densest subgraph discovery
aftab alam
 
[系列活動] Machine Learning 機器學習課程
[系列活動] Machine Learning 機器學習課程[系列活動] Machine Learning 機器學習課程
[系列活動] Machine Learning 機器學習課程
台灣資料科學年會
 
Generative Adversarial Networks : Basic architecture and variants
Generative Adversarial Networks : Basic architecture and variantsGenerative Adversarial Networks : Basic architecture and variants
Generative Adversarial Networks : Basic architecture and variants
ananth
 
Data Structures and Algorithm - Week 8 - Minimum Spanning Trees
Data Structures and Algorithm - Week 8 - Minimum Spanning TreesData Structures and Algorithm - Week 8 - Minimum Spanning Trees
Data Structures and Algorithm - Week 8 - Minimum Spanning Trees
Ferdin Joe John Joseph PhD
 
Crowdsourcing via Tensor Augmentation and Completion
Crowdsourcing via Tensor Augmentation and CompletionCrowdsourcing via Tensor Augmentation and Completion
Crowdsourcing via Tensor Augmentation and Completion
collwe
 
TRECVID 2016 Ad-hoc Video Seach task, CERTH-ITI
TRECVID 2016 Ad-hoc Video Seach task, CERTH-ITITRECVID 2016 Ad-hoc Video Seach task, CERTH-ITI
TRECVID 2016 Ad-hoc Video Seach task, CERTH-ITI
InVID Project
 
Data Structures and Algorithm - Week 11 - Algorithm Analysis
Data Structures and Algorithm - Week 11 - Algorithm AnalysisData Structures and Algorithm - Week 11 - Algorithm Analysis
Data Structures and Algorithm - Week 11 - Algorithm Analysis
Ferdin Joe John Joseph PhD
 

Viewers also liked (20)

A lattice-based consensus clustering
A lattice-based consensus clusteringA lattice-based consensus clustering
A lattice-based consensus clustering
Dmitrii Ignatov
 
Experimental Economics and Machine Learning workshop
Experimental Economics and Machine Learning workshopExperimental Economics and Machine Learning workshop
Experimental Economics and Machine Learning workshop
Dmitrii Ignatov
 
NIPS 2016, Tensor-Learn@NIPS, and IEEE ICDM 2016
NIPS 2016, Tensor-Learn@NIPS, and IEEE ICDM 2016NIPS 2016, Tensor-Learn@NIPS, and IEEE ICDM 2016
NIPS 2016, Tensor-Learn@NIPS, and IEEE ICDM 2016
Dmitrii Ignatov
 
Pattern-based classification of demographic sequences
Pattern-based classification of demographic sequencesPattern-based classification of demographic sequences
Pattern-based classification of demographic sequences
Dmitrii Ignatov
 
Sequence mining
Sequence miningSequence mining
Sequence mining
Dmitrii Ignatov
 
Поиск частых множеств признаков (товаров) и ассоциативные правила
Поиск частых множеств признаков (товаров) и ассоциативные правилаПоиск частых множеств признаков (товаров) и ассоциативные правила
Поиск частых множеств признаков (товаров) и ассоциативные правила
Dmitrii Ignatov
 
On the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCAOn the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCA
Dmitrii Ignatov
 
Pattern Mining and Machine Learning for Demographic Sequences
Pattern Mining and Machine Learning for Demographic SequencesPattern Mining and Machine Learning for Demographic Sequences
Pattern Mining and Machine Learning for Demographic Sequences
Dmitrii Ignatov
 
AIST 2016 Opening Slides
AIST 2016 Opening SlidesAIST 2016 Opening Slides
AIST 2016 Opening Slides
Dmitrii Ignatov
 
Putting OAC-triclustering on MapReduce
Putting OAC-triclustering on MapReducePutting OAC-triclustering on MapReduce
Putting OAC-triclustering on MapReduce
Dmitrii Ignatov
 
A lattice-based consensus clustering
A lattice-based consensus clusteringA lattice-based consensus clustering
A lattice-based consensus clustering
Dmitrii Ignatov
 
Searching for optimal patterns in Boolean tensors
Searching for optimal patterns in Boolean tensorsSearching for optimal patterns in Boolean tensors
Searching for optimal patterns in Boolean tensors
Dmitrii Ignatov
 
RAPS: A Recommender Algorithm Based on Pattern Structures
RAPS: A Recommender Algorithm Based on Pattern StructuresRAPS: A Recommender Algorithm Based on Pattern Structures
RAPS: A Recommender Algorithm Based on Pattern Structures
Dmitrii Ignatov
 
A One-Pass Triclustering Approach: Is There any Room for Big Data?
A One-Pass Triclustering Approach: Is There any Room for Big Data?A One-Pass Triclustering Approach: Is There any Room for Big Data?
A One-Pass Triclustering Approach: Is There any Room for Big Data?
Dmitrii Ignatov
 
Введение в рекомендательные системы. 3 case-study без NetFlix.
Введение в рекомендательные системы. 3 case-study без NetFlix.Введение в рекомендательные системы. 3 case-study без NetFlix.
Введение в рекомендательные системы. 3 case-study без NetFlix.
Dmitrii Ignatov
 
Boolean matrix factorisation for collaborative filtering
Boolean matrix factorisation for collaborative filteringBoolean matrix factorisation for collaborative filtering
Boolean matrix factorisation for collaborative filtering
Dmitrii Ignatov
 
Intro to Data Mining and Machine Learning
Intro to Data Mining and Machine LearningIntro to Data Mining and Machine Learning
Intro to Data Mining and Machine Learning
Dmitrii Ignatov
 
Interval Pattern Structures: An introdution
Interval Pattern Structures: An introdutionInterval Pattern Structures: An introdution
Interval Pattern Structures: An introdution
INSA Lyon - L'Institut National des Sciences Appliquées de Lyon
 
Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?
Arjen de Vries
 
Online Recommender System for Radio Station Hosting: Experimental Results Rev...
Online Recommender System for Radio Station Hosting: Experimental Results Rev...Online Recommender System for Radio Station Hosting: Experimental Results Rev...
Online Recommender System for Radio Station Hosting: Experimental Results Rev...
Dmitrii Ignatov
 
A lattice-based consensus clustering
A lattice-based consensus clusteringA lattice-based consensus clustering
A lattice-based consensus clustering
Dmitrii Ignatov
 
Experimental Economics and Machine Learning workshop
Experimental Economics and Machine Learning workshopExperimental Economics and Machine Learning workshop
Experimental Economics and Machine Learning workshop
Dmitrii Ignatov
 
NIPS 2016, Tensor-Learn@NIPS, and IEEE ICDM 2016
NIPS 2016, Tensor-Learn@NIPS, and IEEE ICDM 2016NIPS 2016, Tensor-Learn@NIPS, and IEEE ICDM 2016
NIPS 2016, Tensor-Learn@NIPS, and IEEE ICDM 2016
Dmitrii Ignatov
 
Pattern-based classification of demographic sequences
Pattern-based classification of demographic sequencesPattern-based classification of demographic sequences
Pattern-based classification of demographic sequences
Dmitrii Ignatov
 
Поиск частых множеств признаков (товаров) и ассоциативные правила
Поиск частых множеств признаков (товаров) и ассоциативные правилаПоиск частых множеств признаков (товаров) и ассоциативные правила
Поиск частых множеств признаков (товаров) и ассоциативные правила
Dmitrii Ignatov
 
On the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCAOn the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCA
Dmitrii Ignatov
 
Pattern Mining and Machine Learning for Demographic Sequences
Pattern Mining and Machine Learning for Demographic SequencesPattern Mining and Machine Learning for Demographic Sequences
Pattern Mining and Machine Learning for Demographic Sequences
Dmitrii Ignatov
 
AIST 2016 Opening Slides
AIST 2016 Opening SlidesAIST 2016 Opening Slides
AIST 2016 Opening Slides
Dmitrii Ignatov
 
Putting OAC-triclustering on MapReduce
Putting OAC-triclustering on MapReducePutting OAC-triclustering on MapReduce
Putting OAC-triclustering on MapReduce
Dmitrii Ignatov
 
A lattice-based consensus clustering
A lattice-based consensus clusteringA lattice-based consensus clustering
A lattice-based consensus clustering
Dmitrii Ignatov
 
Searching for optimal patterns in Boolean tensors
Searching for optimal patterns in Boolean tensorsSearching for optimal patterns in Boolean tensors
Searching for optimal patterns in Boolean tensors
Dmitrii Ignatov
 
RAPS: A Recommender Algorithm Based on Pattern Structures
RAPS: A Recommender Algorithm Based on Pattern StructuresRAPS: A Recommender Algorithm Based on Pattern Structures
RAPS: A Recommender Algorithm Based on Pattern Structures
Dmitrii Ignatov
 
A One-Pass Triclustering Approach: Is There any Room for Big Data?
A One-Pass Triclustering Approach: Is There any Room for Big Data?A One-Pass Triclustering Approach: Is There any Room for Big Data?
A One-Pass Triclustering Approach: Is There any Room for Big Data?
Dmitrii Ignatov
 
Введение в рекомендательные системы. 3 case-study без NetFlix.
Введение в рекомендательные системы. 3 case-study без NetFlix.Введение в рекомендательные системы. 3 case-study без NetFlix.
Введение в рекомендательные системы. 3 case-study без NetFlix.
Dmitrii Ignatov
 
Boolean matrix factorisation for collaborative filtering
Boolean matrix factorisation for collaborative filteringBoolean matrix factorisation for collaborative filtering
Boolean matrix factorisation for collaborative filtering
Dmitrii Ignatov
 
Intro to Data Mining and Machine Learning
Intro to Data Mining and Machine LearningIntro to Data Mining and Machine Learning
Intro to Data Mining and Machine Learning
Dmitrii Ignatov
 
Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?Recommendation and Information Retrieval: Two Sides of the Same Coin?
Recommendation and Information Retrieval: Two Sides of the Same Coin?
Arjen de Vries
 
Online Recommender System for Radio Station Hosting: Experimental Results Rev...
Online Recommender System for Radio Station Hosting: Experimental Results Rev...Online Recommender System for Radio Station Hosting: Experimental Results Rev...
Online Recommender System for Radio Station Hosting: Experimental Results Rev...
Dmitrii Ignatov
 
Ad

Similar to Context-Aware Recommender System Based on Boolean Matrix Factorisation (20)

Contextual Information Elicitation in Travel Recommender Systems
Contextual Information Elicitation in Travel Recommender SystemsContextual Information Elicitation in Travel Recommender Systems
Contextual Information Elicitation in Travel Recommender Systems
Matthias Braunhofer
 
Contextual information elicitation in travel recommender systems
Contextual information elicitation in travel recommender systemsContextual information elicitation in travel recommender systems
Contextual information elicitation in travel recommender systems
International Federation for Information Technologies in Travel and Tourism (IFITT)
 
On the Selection of Optimum Blend of WPO – Combinatorial Mathematics Based Ap...
On the Selection of Optimum Blend of WPO – Combinatorial Mathematics Based Ap...On the Selection of Optimum Blend of WPO – Combinatorial Mathematics Based Ap...
On the Selection of Optimum Blend of WPO – Combinatorial Mathematics Based Ap...
IRJET Journal
 
Social recommender system
Social recommender systemSocial recommender system
Social recommender system
Yueshen Xu
 
Splay Method of Model Acquisition Assessment
Splay Method of Model Acquisition AssessmentSplay Method of Model Acquisition Assessment
Splay Method of Model Acquisition Assessment
ijtsrd
 
Matrix Factorization Technique for Recommender Systems
Matrix Factorization Technique for Recommender SystemsMatrix Factorization Technique for Recommender Systems
Matrix Factorization Technique for Recommender Systems
Aladejubelo Oluwashina
 
Recommender System Based On Statistical Implicative Analysis.doc
Recommender System Based On Statistical Implicative Analysis.docRecommender System Based On Statistical Implicative Analysis.doc
Recommender System Based On Statistical Implicative Analysis.doc
Dịch vụ viết đề tài trọn gói 0934.573.149
 
Determination of Education Scholarship Recipients Using Preference Selection ...
Determination of Education Scholarship Recipients Using Preference Selection ...Determination of Education Scholarship Recipients Using Preference Selection ...
Determination of Education Scholarship Recipients Using Preference Selection ...
Universitas Pembangunan Panca Budi
 
Structural equation-models-introduction-kimmo-vehkalahti-2013
Structural equation-models-introduction-kimmo-vehkalahti-2013Structural equation-models-introduction-kimmo-vehkalahti-2013
Structural equation-models-introduction-kimmo-vehkalahti-2013
Kimmo Vehkalahti
 
Replicable Evaluation of Recommender Systems
Replicable Evaluation of Recommender SystemsReplicable Evaluation of Recommender Systems
Replicable Evaluation of Recommender Systems
Alejandro Bellogin
 
Minghui Conference Cross-Validation Talk
Minghui Conference Cross-Validation TalkMinghui Conference Cross-Validation Talk
Minghui Conference Cross-Validation Talk
Wei Wang
 
The circles of relations modifiers modeller from smartphone photo gallery
The circles of relations modifiers modeller from smartphone photo galleryThe circles of relations modifiers modeller from smartphone photo gallery
The circles of relations modifiers modeller from smartphone photo gallery
Aboul Ella Hassanien
 
ppt2.pptx
ppt2.pptxppt2.pptx
ppt2.pptx
shreyaparti1
 
The Comparative Study of Gray Model and Markov Model in Pavement Performance ...
The Comparative Study of Gray Model and Markov Model in Pavement Performance ...The Comparative Study of Gray Model and Markov Model in Pavement Performance ...
The Comparative Study of Gray Model and Markov Model in Pavement Performance ...
IJERA Editor
 
_1ab41a6be58a91bb70623682c706d9fe_Module-3-Probabilistic-models.pdf
_1ab41a6be58a91bb70623682c706d9fe_Module-3-Probabilistic-models.pdf_1ab41a6be58a91bb70623682c706d9fe_Module-3-Probabilistic-models.pdf
_1ab41a6be58a91bb70623682c706d9fe_Module-3-Probabilistic-models.pdf
AdityaKumarGupta21
 
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
CHENNAKESAVA KADAPA
 
IRJET- Analysis of Chi-Square Independence Test for Naïve Bayes Feature Selec...
IRJET- Analysis of Chi-Square Independence Test for Naïve Bayes Feature Selec...IRJET- Analysis of Chi-Square Independence Test for Naïve Bayes Feature Selec...
IRJET- Analysis of Chi-Square Independence Test for Naïve Bayes Feature Selec...
IRJET Journal
 
Fin500J_MatrixAlgebra_2011.ppt
Fin500J_MatrixAlgebra_2011.pptFin500J_MatrixAlgebra_2011.ppt
Fin500J_MatrixAlgebra_2011.ppt
AMNA487167
 
S2-22-MM ZG515-QM ZG515-L2.pdf
S2-22-MM ZG515-QM ZG515-L2.pdfS2-22-MM ZG515-QM ZG515-L2.pdf
S2-22-MM ZG515-QM ZG515-L2.pdf
naveen211425
 
Multi-Armed Bandit: an algorithmic perspective
Multi-Armed Bandit: an algorithmic perspectiveMulti-Armed Bandit: an algorithmic perspective
Multi-Armed Bandit: an algorithmic perspective
Gabriele Sottocornola
 
Contextual Information Elicitation in Travel Recommender Systems
Contextual Information Elicitation in Travel Recommender SystemsContextual Information Elicitation in Travel Recommender Systems
Contextual Information Elicitation in Travel Recommender Systems
Matthias Braunhofer
 
On the Selection of Optimum Blend of WPO – Combinatorial Mathematics Based Ap...
On the Selection of Optimum Blend of WPO – Combinatorial Mathematics Based Ap...On the Selection of Optimum Blend of WPO – Combinatorial Mathematics Based Ap...
On the Selection of Optimum Blend of WPO – Combinatorial Mathematics Based Ap...
IRJET Journal
 
Social recommender system
Social recommender systemSocial recommender system
Social recommender system
Yueshen Xu
 
Splay Method of Model Acquisition Assessment
Splay Method of Model Acquisition AssessmentSplay Method of Model Acquisition Assessment
Splay Method of Model Acquisition Assessment
ijtsrd
 
Matrix Factorization Technique for Recommender Systems
Matrix Factorization Technique for Recommender SystemsMatrix Factorization Technique for Recommender Systems
Matrix Factorization Technique for Recommender Systems
Aladejubelo Oluwashina
 
Determination of Education Scholarship Recipients Using Preference Selection ...
Determination of Education Scholarship Recipients Using Preference Selection ...Determination of Education Scholarship Recipients Using Preference Selection ...
Determination of Education Scholarship Recipients Using Preference Selection ...
Universitas Pembangunan Panca Budi
 
Structural equation-models-introduction-kimmo-vehkalahti-2013
Structural equation-models-introduction-kimmo-vehkalahti-2013Structural equation-models-introduction-kimmo-vehkalahti-2013
Structural equation-models-introduction-kimmo-vehkalahti-2013
Kimmo Vehkalahti
 
Replicable Evaluation of Recommender Systems
Replicable Evaluation of Recommender SystemsReplicable Evaluation of Recommender Systems
Replicable Evaluation of Recommender Systems
Alejandro Bellogin
 
Minghui Conference Cross-Validation Talk
Minghui Conference Cross-Validation TalkMinghui Conference Cross-Validation Talk
Minghui Conference Cross-Validation Talk
Wei Wang
 
The circles of relations modifiers modeller from smartphone photo gallery
The circles of relations modifiers modeller from smartphone photo galleryThe circles of relations modifiers modeller from smartphone photo gallery
The circles of relations modifiers modeller from smartphone photo gallery
Aboul Ella Hassanien
 
The Comparative Study of Gray Model and Markov Model in Pavement Performance ...
The Comparative Study of Gray Model and Markov Model in Pavement Performance ...The Comparative Study of Gray Model and Markov Model in Pavement Performance ...
The Comparative Study of Gray Model and Markov Model in Pavement Performance ...
IJERA Editor
 
_1ab41a6be58a91bb70623682c706d9fe_Module-3-Probabilistic-models.pdf
_1ab41a6be58a91bb70623682c706d9fe_Module-3-Probabilistic-models.pdf_1ab41a6be58a91bb70623682c706d9fe_Module-3-Probabilistic-models.pdf
_1ab41a6be58a91bb70623682c706d9fe_Module-3-Probabilistic-models.pdf
AdityaKumarGupta21
 
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
Inf-Sup Stable Displacement-Pressure Combinations for Isogeometric Analysis o...
CHENNAKESAVA KADAPA
 
IRJET- Analysis of Chi-Square Independence Test for Naïve Bayes Feature Selec...
IRJET- Analysis of Chi-Square Independence Test for Naïve Bayes Feature Selec...IRJET- Analysis of Chi-Square Independence Test for Naïve Bayes Feature Selec...
IRJET- Analysis of Chi-Square Independence Test for Naïve Bayes Feature Selec...
IRJET Journal
 
Fin500J_MatrixAlgebra_2011.ppt
Fin500J_MatrixAlgebra_2011.pptFin500J_MatrixAlgebra_2011.ppt
Fin500J_MatrixAlgebra_2011.ppt
AMNA487167
 
S2-22-MM ZG515-QM ZG515-L2.pdf
S2-22-MM ZG515-QM ZG515-L2.pdfS2-22-MM ZG515-QM ZG515-L2.pdf
S2-22-MM ZG515-QM ZG515-L2.pdf
naveen211425
 
Multi-Armed Bandit: an algorithmic perspective
Multi-Armed Bandit: an algorithmic perspectiveMulti-Armed Bandit: an algorithmic perspective
Multi-Armed Bandit: an algorithmic perspective
Gabriele Sottocornola
 
Ad

More from Dmitrii Ignatov (11)

Interpretable Concept-Based Classification with Shapley Values
Interpretable Concept-Based Classification with Shapley ValuesInterpretable Concept-Based Classification with Shapley Values
Interpretable Concept-Based Classification with Shapley Values
Dmitrii Ignatov
 
AIST2019 – opening slides
AIST2019 – opening slidesAIST2019 – opening slides
AIST2019 – opening slides
Dmitrii Ignatov
 
Turning Krimp into a Triclustering Technique on Sets of Attribute-Condition P...
Turning Krimp into a Triclustering Technique on Sets of Attribute-Condition P...Turning Krimp into a Triclustering Technique on Sets of Attribute-Condition P...
Turning Krimp into a Triclustering Technique on Sets of Attribute-Condition P...
Dmitrii Ignatov
 
Personal Experiences of Publishing with Springer from both Editor and Author ...
Personal Experiences of Publishing with Springer from both Editor and Author ...Personal Experiences of Publishing with Springer from both Editor and Author ...
Personal Experiences of Publishing with Springer from both Editor and Author ...
Dmitrii Ignatov
 
Aist2014
Aist2014Aist2014
Aist2014
Dmitrii Ignatov
 
Social Learning in Networks: Extraction Deterministic Rules
Social Learning in Networks: Extraction Deterministic RulesSocial Learning in Networks: Extraction Deterministic Rules
Social Learning in Networks: Extraction Deterministic Rules
Dmitrii Ignatov
 
Orpailleur -- triclustering talk
Orpailleur -- triclustering talkOrpailleur -- triclustering talk
Orpailleur -- triclustering talk
Dmitrii Ignatov
 
CoClus ICDM Workshop talk
CoClus ICDM Workshop talkCoClus ICDM Workshop talk
CoClus ICDM Workshop talk
Dmitrii Ignatov
 
Pseudo-triclustering
Pseudo-triclusteringPseudo-triclustering
Pseudo-triclustering
Dmitrii Ignatov
 
Radio recommender system for FMHost
Radio recommender system for FMHostRadio recommender system for FMHost
Radio recommender system for FMHost
Dmitrii Ignatov
 
CrowDM system
CrowDM systemCrowDM system
CrowDM system
Dmitrii Ignatov
 
Interpretable Concept-Based Classification with Shapley Values
Interpretable Concept-Based Classification with Shapley ValuesInterpretable Concept-Based Classification with Shapley Values
Interpretable Concept-Based Classification with Shapley Values
Dmitrii Ignatov
 
AIST2019 – opening slides
AIST2019 – opening slidesAIST2019 – opening slides
AIST2019 – opening slides
Dmitrii Ignatov
 
Turning Krimp into a Triclustering Technique on Sets of Attribute-Condition P...
Turning Krimp into a Triclustering Technique on Sets of Attribute-Condition P...Turning Krimp into a Triclustering Technique on Sets of Attribute-Condition P...
Turning Krimp into a Triclustering Technique on Sets of Attribute-Condition P...
Dmitrii Ignatov
 
Personal Experiences of Publishing with Springer from both Editor and Author ...
Personal Experiences of Publishing with Springer from both Editor and Author ...Personal Experiences of Publishing with Springer from both Editor and Author ...
Personal Experiences of Publishing with Springer from both Editor and Author ...
Dmitrii Ignatov
 
Social Learning in Networks: Extraction Deterministic Rules
Social Learning in Networks: Extraction Deterministic RulesSocial Learning in Networks: Extraction Deterministic Rules
Social Learning in Networks: Extraction Deterministic Rules
Dmitrii Ignatov
 
Orpailleur -- triclustering talk
Orpailleur -- triclustering talkOrpailleur -- triclustering talk
Orpailleur -- triclustering talk
Dmitrii Ignatov
 
CoClus ICDM Workshop talk
CoClus ICDM Workshop talkCoClus ICDM Workshop talk
CoClus ICDM Workshop talk
Dmitrii Ignatov
 
Radio recommender system for FMHost
Radio recommender system for FMHostRadio recommender system for FMHost
Radio recommender system for FMHost
Dmitrii Ignatov
 

Recently uploaded (20)

Phytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and ManagementpptxPhytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and Managementpptx
Dr Showkat Ahmad Wani
 
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Helena Celeste Mata Rico
 
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Sérgio Sacani
 
Preparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptxPreparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptx
klynct
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Freud e sua Historia na Psicanalise Psic
Freud e sua Historia na Psicanalise PsicFreud e sua Historia na Psicanalise Psic
Freud e sua Historia na Psicanalise Psic
StefannyGoffi1
 
physics of renewable energy sources .pptx
physics of renewable energy sources  .pptxphysics of renewable energy sources  .pptx
physics of renewable energy sources .pptx
zaramunir6
 
External Application in Homoeopathy- Definition,Scope and Types.
External Application  in Homoeopathy- Definition,Scope and Types.External Application  in Homoeopathy- Definition,Scope and Types.
External Application in Homoeopathy- Definition,Scope and Types.
AdharshnaPatrick
 
Electroencephalogram_ wave components_Aignificancr
Electroencephalogram_ wave components_AignificancrElectroencephalogram_ wave components_Aignificancr
Electroencephalogram_ wave components_Aignificancr
klynct
 
Anti tubercular drug Medicinal Chemistry III
Anti tubercular drug Medicinal Chemistry  IIIAnti tubercular drug Medicinal Chemistry  III
Anti tubercular drug Medicinal Chemistry III
HRUTUJA WAGH
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx
fafyfskhan251kmf
 
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptxA CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
ANJALICHANDRASEKARAN
 
Macrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.pptMacrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.ppt
HRUTUJA WAGH
 
Funakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalogFunakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalog
fu7koshi
 
Seismic evidence of liquid water at the base of Mars' upper crust
Seismic evidence of liquid water at the base of Mars' upper crustSeismic evidence of liquid water at the base of Mars' upper crust
Seismic evidence of liquid water at the base of Mars' upper crust
Sérgio Sacani
 
Anti fungal agents Medicinal Chemistry III
Anti fungal agents Medicinal Chemistry  IIIAnti fungal agents Medicinal Chemistry  III
Anti fungal agents Medicinal Chemistry III
HRUTUJA WAGH
 
Anthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPTAnthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPT
HRUTUJA WAGH
 
8. Gait cycle and it's determinants completely
8. Gait cycle and it's determinants completely8. Gait cycle and it's determinants completely
8. Gait cycle and it's determinants completely
Mominaakram4
 
Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
vahanp
 
Phytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and ManagementpptxPhytonematodes, Ecology, Biology and Managementpptx
Phytonematodes, Ecology, Biology and Managementpptx
Dr Showkat Ahmad Wani
 
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Chaos and Psychology: Modeling the Human Mind through Nonlinear Dynamical Sys...
Helena Celeste Mata Rico
 
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brow...
Sérgio Sacani
 
Preparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptxPreparation of Experimental Animals.pptx
Preparation of Experimental Animals.pptx
klynct
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Freud e sua Historia na Psicanalise Psic
Freud e sua Historia na Psicanalise PsicFreud e sua Historia na Psicanalise Psic
Freud e sua Historia na Psicanalise Psic
StefannyGoffi1
 
physics of renewable energy sources .pptx
physics of renewable energy sources  .pptxphysics of renewable energy sources  .pptx
physics of renewable energy sources .pptx
zaramunir6
 
External Application in Homoeopathy- Definition,Scope and Types.
External Application  in Homoeopathy- Definition,Scope and Types.External Application  in Homoeopathy- Definition,Scope and Types.
External Application in Homoeopathy- Definition,Scope and Types.
AdharshnaPatrick
 
Electroencephalogram_ wave components_Aignificancr
Electroencephalogram_ wave components_AignificancrElectroencephalogram_ wave components_Aignificancr
Electroencephalogram_ wave components_Aignificancr
klynct
 
Anti tubercular drug Medicinal Chemistry III
Anti tubercular drug Medicinal Chemistry  IIIAnti tubercular drug Medicinal Chemistry  III
Anti tubercular drug Medicinal Chemistry III
HRUTUJA WAGH
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx2. peptic ulcer (1) (1) for Pharm D .pptx
2. peptic ulcer (1) (1) for Pharm D .pptx
fafyfskhan251kmf
 
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptxA CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
A CASE OF MULTINODULAR GOITRE,clinical presentation and management.pptx
ANJALICHANDRASEKARAN
 
Macrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.pptMacrolide and Miscellaneous Antibiotics.ppt
Macrolide and Miscellaneous Antibiotics.ppt
HRUTUJA WAGH
 
Funakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalogFunakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalog
fu7koshi
 
Seismic evidence of liquid water at the base of Mars' upper crust
Seismic evidence of liquid water at the base of Mars' upper crustSeismic evidence of liquid water at the base of Mars' upper crust
Seismic evidence of liquid water at the base of Mars' upper crust
Sérgio Sacani
 
Anti fungal agents Medicinal Chemistry III
Anti fungal agents Medicinal Chemistry  IIIAnti fungal agents Medicinal Chemistry  III
Anti fungal agents Medicinal Chemistry III
HRUTUJA WAGH
 
Anthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPTAnthelmintics Medicinal Chemistry III PPT
Anthelmintics Medicinal Chemistry III PPT
HRUTUJA WAGH
 
8. Gait cycle and it's determinants completely
8. Gait cycle and it's determinants completely8. Gait cycle and it's determinants completely
8. Gait cycle and it's determinants completely
Mominaakram4
 
Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
Everyday Science Explained: Simple Answers to Why the Sky Is Blue, Rainbows F...
vahanp
 

Context-Aware Recommender System Based on Boolean Matrix Factorisation

  • 1. Context-Aware Recommender System Based on Boolean Matrix Factorisation Marat Akhmatnurov and Dmitry I. Ignatov National Research University Higher School of Economics, Moscow, Russia Faculty of Computer Science October 13–16, CLA 2015 Clermont-Ferrand, France
  • 2. Outline Problem Statement Contextual information Singular Value Decomposition Related work Boolean Matrix Factorisation Quality evaluation Conclusion and future work Akhmatnurov & Ignatov Higher School of Economics CLA 2015 2 / 29
  • 3. Recommender Systems Collaborative Filtering • Age • Gender • Occupation • Location • Genre • Date Akhmatnurov & Ignatov Higher School of Economics CLA 2015 3 / 29
  • 4. Contextual information [Adomavicius & Tuzhilin, 2005] I = [ R Cuser Citem O ] , Movies Sex Age m1 m2 m3 m4 m5 m6 M F 0-20 21-45 46+ u1 5 5 5 2 + + u2 5 5 3 5 + + u3 4 4 5 4 + + u4 3 5 5 5 + + u5 2 5 4 + + u6 5 3 4 5 + + u7 5 4 5 4 + + Drama + + + + + Action + + + + Comedy + + Akhmatnurov & Ignatov Higher School of Economics CLA 2015 4 / 29
  • 5. Singular Value Decomposition SVD is de facto standard in RS domain [Koren et al., 2009] Singular Value Decomposition (SVD) is a decomposition of a rectangular matrix A ∈ Rm×n(m > n) into a product of three matrices A = U ( Σ 0 ) VT , where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Σ ∈ Rn×n is a diagonal matrix such that Σ = diag(σ1, . . . , σn) and σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. The columns of the matrix U and V are called singular vectors, and the numbers σi are singular values. 2mn2 + 2n3 floating-point operations [Trefthen et al., 1997] Akhmatnurov & Ignatov Higher School of Economics CLA 2015 5 / 29
  • 6. Related work What about Formal Concept Analysis? • du Boucher-Ryan et al., Collaborative recommending using Formal Concept Analysis. Knowledge-Based Systems (2006) • J¨aschke et al. Folksonomy (Bibsonomy) recommendations and mining, since 2006 • Ignatov et al., Concept-based recommendations for internet advertisement. CLA 2008 • Symeonidis et al., Nearest-biclusters collaborative filtering based on constant and coherent values. Information Retrieval (2008) • Ignatov et al., Concept-Based Biclustering for Internet Advertisement. IEEE ICDMW 2012 Akhmatnurov & Ignatov Higher School of Economics CLA 2015 6 / 29
  • 7. Related work What about Formal Concept Analysis? • Jelassi et al., A personalized recommender system based on users’ information in folksonomies. WWW 2013 • Alqadah et al., Biclustering neighborhood-based collaborative filtering method for top-n recommender systems. Knowledge and Information Systems (2014) • Ignatov et al. Boolean Matrix Factorisation for Collaborative Filtering: An FCA-Based Approach. AIMSA 2014 (FCA meets IR @ ECIR 2013) • Ignatov et al. RAPS: A recommender algorithm based on pattern structures. FCA4AI@IJCAI 2015 Akhmatnurov & Ignatov Higher School of Economics CLA 2015 7 / 29
  • 8. Boolean Matrix Factorisation Formal Concept Analysis [Wille, 1982; Ganter & Wille, 1999] A formal context K is a triple (G, M, I), where G is a set of objects, M is a set of attributes, I ⊆ G × M is an incidence relation. We write gIm when the object g ∈ G has the attribute m ∈ M Derivation (Galois) operators: For A ⊆ G and for B ⊆ M we have A′ = {m ∈ M | gIm for all g ∈ A} , B′ = {g ∈ G | gIm for all m ∈ B} . A formal concept of the formal context K = (G, M, I) is a pair (A, B) such that A ∈ G, B ∈ M, A′ = B and B′ = A. Akhmatnurov & Ignatov Higher School of Economics CLA 2015 8 / 29
  • 9. Boolean Matrix Factorisation Formal Concept Analysis B(G, M, I) is the set of all formal concepts of a context K = (G, M, I). F = {(A1, B1), . . . (Ak, Bk)} ⊆ B(G, M, I) (PF )il = { 1, i ∈ Al 0, otherwise , l = 1, k, (QF )lj = { 1, j ∈ Bl 0, otherwise , l = 1, k. Akhmatnurov & Ignatov Higher School of Economics CLA 2015 9 / 29
  • 10. Boolean Matrix Factorisation [Belohlavek & Vychodil, 2010] Boolean matrix factorisation is a decomposition of the input binary matrix I = {0, 1}m×n into a product of two binary matrices P = {0, 1}m×k and Q = {0, 1}k×n by the following rule: (P ◦ Q)ij = k∨ l=1 Pil ∧ Qlj Theorem 1 (Universality of formal concepts as factors) For every binary matrix I there is F ⊆ B(G, M, I) such that I = PF ◦ QF . Theorem 2 (Optimality of formal concepts as factors) Let I = P ◦ Q is a decomposition of I = {0, 1}m×n, where P = {0, 1}m×k and Q = {0, 1}k×n. Then there exists F ⊆ B(G, M, I) such that |F| ≤ k, I = PF ◦ QF . Akhmatnurov & Ignatov Higher School of Economics CLA 2015 10 / 29
  • 11. Boolean Matrix Factorisation Searching for formal concept as factors • Greedy algorithm (Belohlavek & Vychodil, 2010); O(k|G||M|3), where k is the number of found factors. • Close-by-one (CbO) algorithm (Kuznetsov S.O., 1993); O(|G||M|2|L|) • CbO modification with balanced factors (concepts) W = 2|A||B| |A|2 + |B|2 , where (A, B) ∈ B(G, M, I) Akhmatnurov & Ignatov Higher School of Economics CLA 2015 11 / 29
  • 12. Boolean Matrix Factorisation • K = (U, M, I) is a user-to-movie rating formal context m1 m2 m3 m4 m5 m6 f1 f2 f3 f4 f5 u1 1 0 1 1 0 0 0 1 1 0 0 u2 1 0 1 1 0 0 1 0 0 1 0 u3 1 0 1 1 0 1 0 1 0 1 0 u4 1 0 1 1 0 0 1 0 0 1 0 u5 0 0 0 0 1 1 1 0 0 0 1 u6 1 0 1 1 0 0 0 1 1 0 0 u7 1 0 0 1 1 1 1 0 0 0 1 g1 1 0 1 1 1 1 0 0 0 0 0 g2 0 1 1 0 1 1 0 0 0 0 0 g3 1 0 0 1 0 0 0 0 0 0 0 • ({u1, u3, u6, u7, g1, g2}, {m1, m4}), • ({u2, u4}, {m2, m3, m6, f1, f4}), • ({u5, u7}, {m5, m6, f1, f5}) , • ({u1, u6}, {m1, m3, m4, f2, f3}), • ({u5, u7, g1, g3}, {m5, m6}), • ({u2, u3, u4}, {m3, m6, f4}), • ({u2, u4, g3}, {m2, m3, m6}), • ({u1, u3, u6, g1}, {m1, m3, m4}), • ({u1, u3, u6}, {m1, m3, m4, f2}). Akhmatnurov & Ignatov Higher School of Economics CLA 2015 12 / 29
  • 13. Boolean Matrix Factorisation • 10 × 9 ◦ 9 × 12                 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0                 ◦               1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0               Akhmatnurov & Ignatov Higher School of Economics CLA 2015 13 / 29
  • 14. Projections to the factor space Boolean projection vs weighted projection • ˜Puf = ∧ m∈u′ Ium · Qfm • ˜Puf = (Iu· , Qf·) ||Qf·||1 = ∑ m∈M Ium·Qfm ∑ m∈M Qfm                 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0                                 1 1 5 0 1 0 1 3 1 3 1 1 0 1 1 2 1 5 1 2 1 1 1 3 1 4 1 3 5 1 4 4 5 1 2 1 2 3 1 1 0 1 1 2 1 5 1 2 1 1 1 3 1 4 0 2 5 1 0 1 2 3 1 3 0 0 1 1 5 0 1 0 1 3 1 3 1 1 1 2 5 1 1 5 1 1 3 1 3 2 3 1 2 1 2 5 1 2 2 5 1 2 3 2 3 1 3 4 0 2 5 1 2 1 5 1 2 3 1 1 3 1 4 1 0 0 1 5 0 0 0 2 3 1 2                 Akhmatnurov & Ignatov Higher School of Economics CLA 2015 14 / 29
  • 15. User-based nearest neighbour approach How to recommend? • Similarity search • simcos(u, v) = (ru , rv) |ru|·|rv| = ∑ m∈M rum·rim √ ∑ m∈M r2 um √ ∑ m∈M r2 vm • simHam(u, v) = 1 − ∑ m∈M |rum−rvm| |M| • Rating prediction ˆrum = ∑ v∈ˆU sim(v, u) · rvm ∑ v∈ˆU sim(v, u) , Akhmatnurov & Ignatov Higher School of Economics CLA 2015 15 / 29
  • 16. Quality evaluation of the proposed approach Data MovieLens-100k dataset • 100 000 ratings (5-star scale) • 943 users • Gender • Age • Occupation (21 categories) • ZIP • 1682 movies • 19 genres Five star ratings are converted to binary scale: Ium = { 1, rum > 3, 0, else Akhmatnurov & Ignatov Higher School of Economics CLA 2015 16 / 29
  • 17. Quality evaluation Criteria • Mean Absolute Error MAE = ∑ (u,m)∈U×M∩Itest |ˆrum − rum| |Itest| • Precision P = TP TP + FP • Recall R = TP TP + FN • F-measure (F1-measure) F = 2PR P + R Akhmatnurov & Ignatov Higher School of Economics CLA 2015 17 / 29
  • 18. Quality evaluation Bimodal cross-validation [Ignatov et al., 2012] Akhmatnurov & Ignatov Higher School of Economics CLA 2015 18 / 29
  • 19. Quality evaluation Similarity measures 0 20 40 60 80 100 0.2 0.25 0.3 0.35 0.4 Number of neighbours MAE 0 20 40 60 80 100 0.1 0.2 0.3 0.4 0.5 Number of neighbours F−measure 0 20 40 60 80 100 0.2 0.4 0.6 0.8 1 Number of neighbours Precision 0 20 40 60 80 100 0 0.1 0.2 0.3 0.4 Number of neighbours Recall Hamming Cosine Akhmatnurov & Ignatov Higher School of Economics CLA 2015 19 / 29
  • 20. Quality evaluation Projections 0 20 40 60 80 100 0.22 0.24 0.26 0.28 0.3 Number of neigbours MAE 0 20 40 60 80 100 0 0.1 0.2 0.3 0.4 Number of neigbours F−measure 0 20 40 60 80 100 0 0.2 0.4 0.6 0.8 Number of neigbours Precision 0 20 40 60 80 100 0 0.1 0.2 0.3 0.4 Number of neigbours Recall Weighted projection Boolean projection Akhmatnurov & Ignatov Higher School of Economics CLA 2015 20 / 29
  • 21. Quality evaluation Number of covering factors • BMF p% = |used marks| |all marks| 100% • SVD p% = K∑ i=1 σ2 i ∑ σ2 100% Coverage 50% 60% 70% 80% 90% Close-by-one 168 228 305 421 622 Belohlavek’s alg. 222 297 397 533 737 BMFCbO (no contextual information) 163 220 294 401 596 SVD 162 218 287 373 496 SVD (no contextual information) 157 211 277 361 480 Akhmatnurov & Ignatov Higher School of Economics CLA 2015 21 / 29
  • 22. Quality evaluation Coverage influence Number of Precision Recall F-measure MAE neighb. 60% 80% 60% 80% 60% 80% 60% 80% 1 0.3553 0.3609 0.2682 0.2647 0.3056 0.3054 0.2468 0.2434 5 0.6335 0.6442 0.1422 0.1412 0.2323 0.2317 0.2383 0.2359 10 0.7006 0.7045 0.1134 0.1114 0.1953 0.1924 0.2411 0.2388 15 0.7226 0.7258 0.0998 0.0979 0.1754 0.1726 0.2436 0.2411 20 0.7301 0.7373 0.0915 0.0903 0.1626 0.1610 0.2456 0.2429 25 0.7387 0.7427 0.0865 0.0853 0.1549 0.1531 0.2473 0.2445 30 0.7402 0.7426 0.0823 0.0818 0.1482 0.1474 0.2488 0.2459 40 0.7405 0.7508 0.0752 0.0759 0.1365 0.1379 0.2513 0.2484 50 0.7419 0.7487 0.0712 0.0712 0.1299 0.1301 0.2534 0.2504 60 0.7419 0.7478 0.0674 0.0678 0.1236 0.1243 0.2553 0.2522 70 0.7415 0.7477 0.0648 0.0654 0.1191 0.1202 0.2570 0.2538 80 0.7398 0.7449 0.0624 0.0624 0.1150 0.1151 0.2586 0.2553 100 0.7377 0.7461 0.0584 0.0583 0.1082 0.1081 0.2615 0.2580 Akhmatnurov & Ignatov Higher School of Economics CLA 2015 22 / 29
  • 23. Quality evaluation Algorithms for factor search Number of Precision Recall F-measure MAE neighb. Blhlv CbO Blhlv CbO Blhlv CbO Blhlv CbO 1 0.3626 0.3609 0.2582 0.2647 0.3016 0.3054 0.2436 0.2434 5 0.6435 0.6442 0.1331 0.1412 0.2205 0.2317 0.2371 0.2359 10 0.7127 0.7045 0.1061 0.1114 0.1848 0.1924 0.2395 0.2388 15 0.7323 0.7258 0.0936 0.0979 0.1660 0.1726 0.2415 0.2411 20 0.7424 0.7373 0.0860 0.0903 0.1542 0.1610 0.2429 0.2429 25 0.7479 0.7427 0.0812 0.0853 0.1465 0.1531 0.2442 0.2445 30 0.7519 0.7426 0.0774 0.0818 0.1403 0.1474 0.2454 0.2459 40 0.7579 0.7508 0.0721 0.0759 0.1317 0.1379 0.2475 0.2484 50 0.7569 0.7487 0.0678 0.0712 0.1244 0.1301 0.2492 0.2504 60 0.7602 0.7478 0.0651 0.0678 0.1199 0.1243 0.2507 0.2522 70 0.7600 0.7477 0.0623 0.0654 0.1151 0.1202 0.2520 0.2538 80 0.7589 0.7449 0.0601 0.0624 0.1114 0.1151 0.2531 0.2553 100 0.7559 0.7461 0.0562 0.0583 0.1046 0.1081 0.2553 0.2580 Akhmatnurov & Ignatov Higher School of Economics CLA 2015 23 / 29
  • 24. Quality evaluation Influence of contextual information (80% coverage) Number Precision Recall F-measure MAE of neighb. clean cntxt clean cntxt clean cntxt clean cntxt 1 0.3589 0.3609 0.2668 0.2647 0.3061 0.3054 0.2446 0.2434 5 0.6353 0.6442 0.1420 0.1412 0.2321 0.2317 0.2371 0.2359 10 0.6975 0.7045 0.1126 0.1114 0.1938 0.1924 0.2399 0.2388 15 0.7168 0.7258 0.0994 0.0979 0.1746 0.1726 0.2422 0.2411 20 0.7282 0.7373 0.0911 0.0903 0.1619 0.1610 0.2442 0.2429 25 0.7291 0.7427 0.0861 0.0853 0.1540 0.1531 0.2457 0.2445 30 0.7318 0.7426 0.0823 0.0818 0.1480 0.1474 0.2472 0.2459 40 0.7342 0.7508 0.0767 0.0759 0.1389 0.1379 0.2497 0.2484 50 0.7332 0.7487 0.0716 0.0712 0.1304 0.1301 0.2518 0.2504 60 0.7314 0.7478 0.0682 0.0678 0.1247 0.1243 0.2536 0.2522 70 0.7333 0.7477 0.0658 0.0654 0.1208 0.1202 0.2552 0.2538 80 0.7342 0.7449 0.0632 0.0624 0.1164 0.1151 0.2567 0.2553 100 0.7299 0.7461 0.0590 0.0583 0.1092 0.1081 0.2594 0.2580 Akhmatnurov & Ignatov Higher School of Economics CLA 2015 24 / 29
  • 25. Quality evaluation Comparison with SVD 0 20 40 60 80 100 0.2 0.25 0.3 0.35 0.4 Number of neighbours MAE 0 20 40 60 80 100 0 0.1 0.2 0.3 0.4 Number of neighbours F−measure 0 20 40 60 80 100 0.2 0.4 0.6 0.8 1 Number of neighbours Precision 0 20 40 60 80 100 0 0.1 0.2 0.3 0.4 Number of neighbours Recall BMF80 +context SVD85 +context SVD85 Akhmatnurov & Ignatov Higher School of Economics CLA 2015 25 / 29
  • 26. Conclusion • We have proposed a rather straightforward BMF-based approach for recommendations with contextual information • MAE of our BMF-based approach is sufficiently lower than MAE of SVD-based approach for almost the same number of factors at fixed coverage level. • The Precision of BMF-based approach is slightly lower when the number of neighbours is about a couple of dozens and comparable for the remaining observed range. • The Recall is lower that results in lower F-measure. Akhmatnurov & Ignatov Higher School of Economics CLA 2015 26 / 29
  • 27. Conclusion • The greedy algorithm of Belohlavek & Vychodyl results in more factors with larger extent, but it is faster and shows almost the same quality as the balanced factors search by CbO. • Our weighted projection alleviates the information loss of Boolean projection and results in a substantial quality gain. • Contextual information demonstrates a small quality increase (about 1-2%) in terms of MAE and Precision, but not in Recall and Precision. Akhmatnurov & Ignatov Higher School of Economics CLA 2015 27 / 29
  • 28. Future work • Incorporation of time and location as contextual information • Treatment of contextual information by means of Triadic FCA and triclustering • Comparison, usage, extension of the following works: • [Jelassi et al., 2013] Recommendations in personalised folksomies • [Belohlávek et al, 2013] Factorization of three-way binary data using triadic concepts • [Trnecka et al., 2014] Multi-Relational Boolean Factor Analysis • [Belholavek et al., 2015; Metzler et al., 2015; Nourine et. al., 2015] Efficient Boolean matrix factorisation algorithms Akhmatnurov & Ignatov Higher School of Economics CLA 2015 28 / 29
  • 29. Thank you! Questions? Akhmatnurov & Ignatov Higher School of Economics CLA 2015 29 / 29
  翻译: