SlideShare a Scribd company logo
COBOL Background
 Released in 1959
 Grace Hopper
 Industry, universities, and government collaboration
 Cold War pressures
 80% of business transactions
 65% of all code is in COBOL
COBOL – Why?
 Software Lifecycle
 Cheaper to maintain
 Y2K
 Self-documenting code
 Verbose
 “IF a < b AND > c …”
 Divisions
COBOL – Why?
 Divisions
 Identification Division
 Environment Division
 Data Division
 Procedure Division
COBOL – Data Division
 Data Division
 Pictures
 9 = digit
 X = any character
 A = alphabetic character
 V = decimal point position
 S = sign
 Repeats
 PIC 9 (4) = 9999
Cobol, lisp, and python
COBOL – Groups and Elementary data
Cobol, lisp, and python
COBOL
 Reliability
 Stood test of time
 Has “ALTER X TO PROCEED TO Y” (a negative)
 Uses GOTO statements (a negative)
 Today
 Cross platform: OpenCOBOL C translation
 IDEs (Net Express)
COBOL - Summary
 Readability
 Writability
 Reliability
 Portability
LISP
 LISt Processing
 List-based language
 2nd High-level language
 1958 – John McCarthy for MIT
Cobol, lisp, and python
LISP - Syntax
 Function call: “(fun arg1 arg2)”
 (+ 1 2 3)
 Lists
 (list ‘3 ‘7 ‘apples)
 (3 7 apples)
 (list ‘13 list(‘3 ‘5))
 (13 (3 5))
LISP – Innovations
 Garbage Collection
 If else statements
 Recursion
LISP – Linked Lists
 Car (first)
 Cdr (rest)
Cobol, lisp, and python
LISP - Examples
 If then else
 (if nil
(list ‘2 ‘3)
(list ‘5 ‘6))
 One line variant:
 (if nil (list ‘2 ‘3) (list ‘5 ‘6))
LISP - Examples
 Factorial
 (defun factorial (n)
(if (<= n 1)
1
(* n (factorial (- n 1)))))
 One line variant:
 (defun factorial (n) (if (<= n 1) 1 (* n (factorial (- n 1)))))
LISP - Examples
 Recursive List Size
 (defun recursiveSize (L)
(if (null L)
0
(1+ (recursiveSize(rest L)))))
LISP - Examples
 Recursive List Sum with “LET”
 (defun sum (L)
(if (null L)
0
(let
((S1 (first L))
(S2 (sum (rest L))))
+ S1 S2)))
LISP- Summary and Comparison
 Readability
 Writability
 Reliability
Python
 Developed early 1990’s
 Guido van Rossum
 ABC language
 Python 2.0
 2000
 Community-supported -> reliability
 Modular; community expandable
 Python 3.0
 2008
Python – Readability is Key
 Design goal
 One way to do things
 Clarity over clever code
 Whitespace over braces
 “pass” for No-Op
Python
 Writability
 Similar to other OO languages
 Verification support
 Interpreted, assert, no statements in conditions
 Clean style
 Few keywords
 Simple grammar -> few ways to do something
Python
 Comparisons
 == tests values, not references
 A < b <= C works properly
 Ternary operator readable
 “a if b else c”
Python
 System Requirements
 Cross platform
 Python Interpreter
 Simplicity
 Small core language
 Large libaraies
Python - Examples
 a = 15
if(a < 10):
print(“input less than 10”)
elif(10 < a < 20):
print(“input between 10 and 20”)
else:
print(“input greater than 20”)
Python - Examples
 Function definition
def greatest(a, b, c):
largest = a if a > b else b
largest = largest if largest > c else c
print(largest)
 Function call
greatest(7, 3, 14)
14
Python - Examples
 Determine if prime
def isPrime(num):
prime = True
for i in range(2, (num / 2) + 1):
if num % i == 0:
prime = False
return prime
def tenPrimes():
list = []
count = 0
current = 2
#store the first 10 primes in a list
while count < 10:
if isPrime(current):
count += 1
list.append(current)
current = current + 1
#print the list
for element in list:
print(element)
Python - Summary and Comparison
 Readability
 Writability
 Reliability
Ad

More Related Content

What's hot (14)

History of c++
History of c++ History of c++
History of c++
Ihsan Ali
 
Pda to cfg h2
Pda to cfg h2Pda to cfg h2
Pda to cfg h2
Rajendran
 
A brief introduction to lisp language
A brief introduction to lisp languageA brief introduction to lisp language
A brief introduction to lisp language
David Gu
 
presentation on C++ basics by prince kumar kushwaha
presentation on C++ basics by prince kumar kushwahapresentation on C++ basics by prince kumar kushwaha
presentation on C++ basics by prince kumar kushwaha
Rustamji Institute of Technology
 
Learn a language : LISP
Learn a language : LISPLearn a language : LISP
Learn a language : LISP
Devnology
 
3.5 equivalence of pushdown automata and cfl
3.5 equivalence of pushdown automata and cfl3.5 equivalence of pushdown automata and cfl
3.5 equivalence of pushdown automata and cfl
Sampath Kumar S
 
Clojure presentation
Clojure presentationClojure presentation
Clojure presentation
Karthik Raghunahtan
 
Lisp
LispLisp
Lisp
huzaifa ramzan
 
Pi - System Programming Language
Pi - System Programming LanguagePi - System Programming Language
Pi - System Programming Language
Philip
 
Los Angeles R users group - July 12 2011 - Part 2
Los Angeles R users group - July 12 2011 - Part 2Los Angeles R users group - July 12 2011 - Part 2
Los Angeles R users group - July 12 2011 - Part 2
rusersla
 
[Question Paper] Linux Administration (75:25 Pattern) [November / 2015]
[Question Paper] Linux Administration (75:25 Pattern) [November / 2015][Question Paper] Linux Administration (75:25 Pattern) [November / 2015]
[Question Paper] Linux Administration (75:25 Pattern) [November / 2015]
Mumbai B.Sc.IT Study
 
History of c++
History of c++History of c++
History of c++
Ihsan Ali
 
Intro of C
Intro of CIntro of C
Intro of C
rama shankar
 
Rcpp
RcppRcpp
Rcpp
Ajay Ohri
 
History of c++
History of c++ History of c++
History of c++
Ihsan Ali
 
A brief introduction to lisp language
A brief introduction to lisp languageA brief introduction to lisp language
A brief introduction to lisp language
David Gu
 
Learn a language : LISP
Learn a language : LISPLearn a language : LISP
Learn a language : LISP
Devnology
 
3.5 equivalence of pushdown automata and cfl
3.5 equivalence of pushdown automata and cfl3.5 equivalence of pushdown automata and cfl
3.5 equivalence of pushdown automata and cfl
Sampath Kumar S
 
Pi - System Programming Language
Pi - System Programming LanguagePi - System Programming Language
Pi - System Programming Language
Philip
 
Los Angeles R users group - July 12 2011 - Part 2
Los Angeles R users group - July 12 2011 - Part 2Los Angeles R users group - July 12 2011 - Part 2
Los Angeles R users group - July 12 2011 - Part 2
rusersla
 
[Question Paper] Linux Administration (75:25 Pattern) [November / 2015]
[Question Paper] Linux Administration (75:25 Pattern) [November / 2015][Question Paper] Linux Administration (75:25 Pattern) [November / 2015]
[Question Paper] Linux Administration (75:25 Pattern) [November / 2015]
Mumbai B.Sc.IT Study
 
History of c++
History of c++History of c++
History of c++
Ihsan Ali
 

Viewers also liked (20)

Prolog resume
Prolog resumeProlog resume
Prolog resume
Young Alista
 
Hashfunction
HashfunctionHashfunction
Hashfunction
Young Alista
 
Czego pragna klienci
Czego pragna klienciCzego pragna klienci
Czego pragna klienci
Kurs Na Nieruchomości
 
Memory caching
Memory cachingMemory caching
Memory caching
Young Alista
 
Linked list
Linked listLinked list
Linked list
Young Alista
 
Computer security
Computer securityComputer security
Computer security
Young Alista
 
Hash mac algorithms
Hash mac algorithmsHash mac algorithms
Hash mac algorithms
Young Alista
 
Optimizing shared caches in chip multiprocessors
Optimizing shared caches in chip multiprocessorsOptimizing shared caches in chip multiprocessors
Optimizing shared caches in chip multiprocessors
Young Alista
 
Introduction to security_and_crypto
Introduction to security_and_cryptoIntroduction to security_and_crypto
Introduction to security_and_crypto
Young Alista
 
Big data
Big dataBig data
Big data
Young Alista
 
Crypto passport authentication
Crypto passport authenticationCrypto passport authentication
Crypto passport authentication
Young Alista
 
Network
NetworkNetwork
Network
Young Alista
 
Api crash
Api crashApi crash
Api crash
Young Alista
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
Young Alista
 
Cryptography
CryptographyCryptography
Cryptography
Young Alista
 
Hardware managed cache
Hardware managed cacheHardware managed cache
Hardware managed cache
Young Alista
 
Poo java
Poo javaPoo java
Poo java
Young Alista
 
Data preparation
Data preparationData preparation
Data preparation
Young Alista
 
Python language data types
Python language data typesPython language data types
Python language data types
Young Alista
 
Python your new best friend
Python your new best friendPython your new best friend
Python your new best friend
Young Alista
 
Ad

Similar to Cobol, lisp, and python (20)

LISP: назад в будущее, Микола Мозговий
LISP: назад в будущее, Микола МозговийLISP: назад в будущее, Микола Мозговий
LISP: назад в будущее, Микола Мозговий
Sigma Software
 
Open Source .NET
Open Source .NETOpen Source .NET
Open Source .NET
Onyxfish
 
CPPDS Slide.pdf
CPPDS Slide.pdfCPPDS Slide.pdf
CPPDS Slide.pdf
Fadlie Ahdon
 
Prolog & lisp
Prolog & lispProlog & lisp
Prolog & lisp
Ismail El Gayar
 
Functional programming
Functional programmingFunctional programming
Functional programming
Christian Hujer
 
LISP: Introduction to lisp
LISP: Introduction to lispLISP: Introduction to lisp
LISP: Introduction to lisp
DataminingTools Inc
 
LISP: Introduction To Lisp
LISP: Introduction To LispLISP: Introduction To Lisp
LISP: Introduction To Lisp
LISP Content
 
Introduction to phyton , important topic
Introduction to phyton , important topicIntroduction to phyton , important topic
Introduction to phyton , important topic
akpgenious67
 
Introduction of Python
Introduction of PythonIntroduction of Python
Introduction of Python
ZENUS INFOTECH INDIA PVT. LTD.
 
Programming Basics
Programming BasicsProgramming Basics
Programming Basics
Abhishek Pratap Singh
 
LibreOffice Conf 2011 Desktop Publishing
LibreOffice Conf 2011 Desktop PublishingLibreOffice Conf 2011 Desktop Publishing
LibreOffice Conf 2011 Desktop Publishing
prokoudine
 
Restrição == inovação - 17o Encontro Locaweb SP
Restrição == inovação  - 17o Encontro Locaweb SPRestrição == inovação  - 17o Encontro Locaweb SP
Restrição == inovação - 17o Encontro Locaweb SP
Fabio Akita
 
Programming for Problem Solving
Programming for Problem SolvingProgramming for Problem Solving
Programming for Problem Solving
Kathirvel Ayyaswamy
 
Python Brasil 2010 - Potter vs Voldemort - Lições ofidiglotas da prática Pyth...
Python Brasil 2010 - Potter vs Voldemort - Lições ofidiglotas da prática Pyth...Python Brasil 2010 - Potter vs Voldemort - Lições ofidiglotas da prática Pyth...
Python Brasil 2010 - Potter vs Voldemort - Lições ofidiglotas da prática Pyth...
Rodrigo Senra
 
Report about the LISP Programming Language
Report about the LISP Programming LanguageReport about the LISP Programming Language
Report about the LISP Programming Language
maldosmelandrew
 
Introduction to D programming language at Weka.IO
Introduction to D programming language at Weka.IOIntroduction to D programming language at Weka.IO
Introduction to D programming language at Weka.IO
Liran Zvibel
 
Programing paradigm &amp; implementation
Programing paradigm &amp; implementationPrograming paradigm &amp; implementation
Programing paradigm &amp; implementation
Bilal Maqbool ツ
 
H2O World - What's New in H2O with Cliff Click
H2O World - What's New in H2O with Cliff ClickH2O World - What's New in H2O with Cliff Click
H2O World - What's New in H2O with Cliff Click
Sri Ambati
 
Python_Fundamentals_for_Everyone_Usefull
Python_Fundamentals_for_Everyone_UsefullPython_Fundamentals_for_Everyone_Usefull
Python_Fundamentals_for_Everyone_Usefull
rravipssrivastava
 
The Rise of Dynamic Languages
The Rise of Dynamic LanguagesThe Rise of Dynamic Languages
The Rise of Dynamic Languages
greenwop
 
LISP: назад в будущее, Микола Мозговий
LISP: назад в будущее, Микола МозговийLISP: назад в будущее, Микола Мозговий
LISP: назад в будущее, Микола Мозговий
Sigma Software
 
Open Source .NET
Open Source .NETOpen Source .NET
Open Source .NET
Onyxfish
 
LISP: Introduction To Lisp
LISP: Introduction To LispLISP: Introduction To Lisp
LISP: Introduction To Lisp
LISP Content
 
Introduction to phyton , important topic
Introduction to phyton , important topicIntroduction to phyton , important topic
Introduction to phyton , important topic
akpgenious67
 
LibreOffice Conf 2011 Desktop Publishing
LibreOffice Conf 2011 Desktop PublishingLibreOffice Conf 2011 Desktop Publishing
LibreOffice Conf 2011 Desktop Publishing
prokoudine
 
Restrição == inovação - 17o Encontro Locaweb SP
Restrição == inovação  - 17o Encontro Locaweb SPRestrição == inovação  - 17o Encontro Locaweb SP
Restrição == inovação - 17o Encontro Locaweb SP
Fabio Akita
 
Python Brasil 2010 - Potter vs Voldemort - Lições ofidiglotas da prática Pyth...
Python Brasil 2010 - Potter vs Voldemort - Lições ofidiglotas da prática Pyth...Python Brasil 2010 - Potter vs Voldemort - Lições ofidiglotas da prática Pyth...
Python Brasil 2010 - Potter vs Voldemort - Lições ofidiglotas da prática Pyth...
Rodrigo Senra
 
Report about the LISP Programming Language
Report about the LISP Programming LanguageReport about the LISP Programming Language
Report about the LISP Programming Language
maldosmelandrew
 
Introduction to D programming language at Weka.IO
Introduction to D programming language at Weka.IOIntroduction to D programming language at Weka.IO
Introduction to D programming language at Weka.IO
Liran Zvibel
 
Programing paradigm &amp; implementation
Programing paradigm &amp; implementationPrograming paradigm &amp; implementation
Programing paradigm &amp; implementation
Bilal Maqbool ツ
 
H2O World - What's New in H2O with Cliff Click
H2O World - What's New in H2O with Cliff ClickH2O World - What's New in H2O with Cliff Click
H2O World - What's New in H2O with Cliff Click
Sri Ambati
 
Python_Fundamentals_for_Everyone_Usefull
Python_Fundamentals_for_Everyone_UsefullPython_Fundamentals_for_Everyone_Usefull
Python_Fundamentals_for_Everyone_Usefull
rravipssrivastava
 
The Rise of Dynamic Languages
The Rise of Dynamic LanguagesThe Rise of Dynamic Languages
The Rise of Dynamic Languages
greenwop
 
Ad

More from Young Alista (20)

Google appenginejava.ppt
Google appenginejava.pptGoogle appenginejava.ppt
Google appenginejava.ppt
Young Alista
 
Motivation for multithreaded architectures
Motivation for multithreaded architecturesMotivation for multithreaded architectures
Motivation for multithreaded architectures
Young Alista
 
Serialization/deserialization
Serialization/deserializationSerialization/deserialization
Serialization/deserialization
Young Alista
 
Big picture of data mining
Big picture of data miningBig picture of data mining
Big picture of data mining
Young Alista
 
Business analytics and data mining
Business analytics and data miningBusiness analytics and data mining
Business analytics and data mining
Young Alista
 
Data mining and knowledge discovery
Data mining and knowledge discoveryData mining and knowledge discovery
Data mining and knowledge discovery
Young Alista
 
Directory based cache coherence
Directory based cache coherenceDirectory based cache coherence
Directory based cache coherence
Young Alista
 
Cache recap
Cache recapCache recap
Cache recap
Young Alista
 
How analysis services caching works
How analysis services caching worksHow analysis services caching works
How analysis services caching works
Young Alista
 
Object model
Object modelObject model
Object model
Young Alista
 
Abstract data types
Abstract data typesAbstract data types
Abstract data types
Young Alista
 
Abstraction file
Abstraction fileAbstraction file
Abstraction file
Young Alista
 
Concurrency with java
Concurrency with javaConcurrency with java
Concurrency with java
Young Alista
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithms
Young Alista
 
Abstract class
Abstract classAbstract class
Abstract class
Young Alista
 
Inheritance
InheritanceInheritance
Inheritance
Young Alista
 
Object oriented analysis
Object oriented analysisObject oriented analysis
Object oriented analysis
Young Alista
 
Programming for engineers in python
Programming for engineers in pythonProgramming for engineers in python
Programming for engineers in python
Young Alista
 
Learning python
Learning pythonLearning python
Learning python
Young Alista
 
Python basics
Python basicsPython basics
Python basics
Young Alista
 
Google appenginejava.ppt
Google appenginejava.pptGoogle appenginejava.ppt
Google appenginejava.ppt
Young Alista
 
Motivation for multithreaded architectures
Motivation for multithreaded architecturesMotivation for multithreaded architectures
Motivation for multithreaded architectures
Young Alista
 
Serialization/deserialization
Serialization/deserializationSerialization/deserialization
Serialization/deserialization
Young Alista
 
Big picture of data mining
Big picture of data miningBig picture of data mining
Big picture of data mining
Young Alista
 
Business analytics and data mining
Business analytics and data miningBusiness analytics and data mining
Business analytics and data mining
Young Alista
 
Data mining and knowledge discovery
Data mining and knowledge discoveryData mining and knowledge discovery
Data mining and knowledge discovery
Young Alista
 
Directory based cache coherence
Directory based cache coherenceDirectory based cache coherence
Directory based cache coherence
Young Alista
 
How analysis services caching works
How analysis services caching worksHow analysis services caching works
How analysis services caching works
Young Alista
 
Abstract data types
Abstract data typesAbstract data types
Abstract data types
Young Alista
 
Concurrency with java
Concurrency with javaConcurrency with java
Concurrency with java
Young Alista
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithms
Young Alista
 
Object oriented analysis
Object oriented analysisObject oriented analysis
Object oriented analysis
Young Alista
 
Programming for engineers in python
Programming for engineers in pythonProgramming for engineers in python
Programming for engineers in python
Young Alista
 

Recently uploaded (20)

Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
AI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamsonAI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamson
UXPA Boston
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
Agentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community MeetupAgentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community Meetup
Manoj Batra (1600 + Connections)
 
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
CSUC - Consorci de Serveis Universitaris de Catalunya
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
Build With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdfBuild With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdf
Google Developer Group - Harare
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
AI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamsonAI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamson
UXPA Boston
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 

Cobol, lisp, and python

  • 1. COBOL Background  Released in 1959  Grace Hopper  Industry, universities, and government collaboration  Cold War pressures  80% of business transactions  65% of all code is in COBOL
  • 2. COBOL – Why?  Software Lifecycle  Cheaper to maintain  Y2K  Self-documenting code  Verbose  “IF a < b AND > c …”  Divisions
  • 3. COBOL – Why?  Divisions  Identification Division  Environment Division  Data Division  Procedure Division
  • 4. COBOL – Data Division  Data Division  Pictures  9 = digit  X = any character  A = alphabetic character  V = decimal point position  S = sign  Repeats  PIC 9 (4) = 9999
  • 6. COBOL – Groups and Elementary data
  • 8. COBOL  Reliability  Stood test of time  Has “ALTER X TO PROCEED TO Y” (a negative)  Uses GOTO statements (a negative)  Today  Cross platform: OpenCOBOL C translation  IDEs (Net Express)
  • 9. COBOL - Summary  Readability  Writability  Reliability  Portability
  • 10. LISP  LISt Processing  List-based language  2nd High-level language  1958 – John McCarthy for MIT
  • 12. LISP - Syntax  Function call: “(fun arg1 arg2)”  (+ 1 2 3)  Lists  (list ‘3 ‘7 ‘apples)  (3 7 apples)  (list ‘13 list(‘3 ‘5))  (13 (3 5))
  • 13. LISP – Innovations  Garbage Collection  If else statements  Recursion
  • 14. LISP – Linked Lists  Car (first)  Cdr (rest)
  • 16. LISP - Examples  If then else  (if nil (list ‘2 ‘3) (list ‘5 ‘6))  One line variant:  (if nil (list ‘2 ‘3) (list ‘5 ‘6))
  • 17. LISP - Examples  Factorial  (defun factorial (n) (if (<= n 1) 1 (* n (factorial (- n 1)))))  One line variant:  (defun factorial (n) (if (<= n 1) 1 (* n (factorial (- n 1)))))
  • 18. LISP - Examples  Recursive List Size  (defun recursiveSize (L) (if (null L) 0 (1+ (recursiveSize(rest L)))))
  • 19. LISP - Examples  Recursive List Sum with “LET”  (defun sum (L) (if (null L) 0 (let ((S1 (first L)) (S2 (sum (rest L)))) + S1 S2)))
  • 20. LISP- Summary and Comparison  Readability  Writability  Reliability
  • 21. Python  Developed early 1990’s  Guido van Rossum  ABC language  Python 2.0  2000  Community-supported -> reliability  Modular; community expandable  Python 3.0  2008
  • 22. Python – Readability is Key  Design goal  One way to do things  Clarity over clever code  Whitespace over braces  “pass” for No-Op
  • 23. Python  Writability  Similar to other OO languages  Verification support  Interpreted, assert, no statements in conditions  Clean style  Few keywords  Simple grammar -> few ways to do something
  • 24. Python  Comparisons  == tests values, not references  A < b <= C works properly  Ternary operator readable  “a if b else c”
  • 25. Python  System Requirements  Cross platform  Python Interpreter  Simplicity  Small core language  Large libaraies
  • 26. Python - Examples  a = 15 if(a < 10): print(“input less than 10”) elif(10 < a < 20): print(“input between 10 and 20”) else: print(“input greater than 20”)
  • 27. Python - Examples  Function definition def greatest(a, b, c): largest = a if a > b else b largest = largest if largest > c else c print(largest)  Function call greatest(7, 3, 14) 14
  • 28. Python - Examples  Determine if prime def isPrime(num): prime = True for i in range(2, (num / 2) + 1): if num % i == 0: prime = False return prime
  • 29. def tenPrimes(): list = [] count = 0 current = 2 #store the first 10 primes in a list while count < 10: if isPrime(current): count += 1 list.append(current) current = current + 1 #print the list for element in list: print(element)
  • 30. Python - Summary and Comparison  Readability  Writability  Reliability
  翻译: