SlideShare a Scribd company logo
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  RESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
oudera	
  5.3	
  Release	
  Overview	
  
ember	
  2014	
  
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
JficaJon	
  
informa,on	
  in	
  this	
  document	
  is	
  proprietary	
  to	
  Cloudera.	
  	
  No	
  part	
  of	
  this	
  document	
  may	
  be	
  reproduced,	
  copied	
  or	
  transmi:ed	
  in
m	
  for	
  any	
  purpose	
  without	
  the	
  express	
  prior	
  wri:en	
  permission	
  of	
  Cloudera.	
  
	
  document	
  is	
  a	
  preliminary	
  version	
  and	
  not	
  subject	
  to	
  your	
  license	
  agreement	
  or	
  any	
  other	
  agreement	
  with	
  Cloudera.	
  	
  This	
  docum
tains	
  only	
  intended	
  strategies,	
  developments	
  and	
  func,onali,es	
  of	
  Cloudera	
  products	
  and	
  is	
  not	
  intended	
  to	
  be	
  binding	
  upon	
  
udera	
  to	
  any	
  par,cular	
  course	
  of	
  business,	
  product	
  strategy	
  and/or	
  development.	
  	
  Please	
  note	
  that	
  this	
  document	
  is	
  subject	
  to	
  ch
may	
  be	
  changed	
  by	
  Cloudera	
  at	
  any	
  ,me	
  without	
  no,ce.	
  
udera	
  assumes	
  no	
  responsibility	
  for	
  errors	
  or	
  omissions	
  in	
  this	
  document.	
  	
  Cloudera	
  does	
  not	
  warrant	
  the	
  accuracy	
  or	
  completene
informa,on,	
  text,	
  graphics,	
  links	
  or	
  other	
  items	
  contained	
  within	
  this	
  material.	
  	
  This	
  document	
  is	
  provided	
  without	
  a	
  warranty	
  o
,	
  either	
  express	
  or	
  implied,	
  including	
  but	
  not	
  limited	
  to	
  the	
  implied	
  warran,es	
  of	
  merchantability,	
  fitness	
  for	
  a	
  par,cular	
  purpos
-­‐infringement.	
  
udera	
  shall	
  have	
  no	
  liability	
  for	
  damages	
  of	
  any	
  kind	
  including	
  without	
  limita,on	
  direct,	
  special,	
  indirect	
  or	
  consequen,al	
  damag
	
  may	
  result	
  from	
  the	
  use	
  of	
  these	
  materials.	
  	
  The	
  limita,on	
  shall	
  not	
  apply	
  in	
  cases	
  of	
  gross	
  negligence.	
  
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
Batch,	
  InteracJ
and	
  Real-­‐Time	
  
	
  
Leading	
  performan
and	
  usability	
  in	
  one
plaQorm.	
  
•  End-­‐to-­‐end	
  analyJ
workflows	
  
•  Access	
  more	
  data	
  
•  Work	
  with	
  data	
  in
new	
  ways	
  
•  Enable	
  new	
  users	
  
e	
  PlaQorm,	
  Many	
  Workloads	
  
Security	
  and	
  AdministraJon	
  
rocess	
  
Ingest	
  
oop,	
  Flume	
  
	
  
ransform	
  
Reduce,	
  Hive,	
  
ig,	
  Spark	
  
Discover	
  
AnalyJc	
  Database	
  
Impala	
  
Search	
  
Solr	
  
Model	
  
Machine	
  Learning	
  
SAS,	
  R,	
  Spark,	
  
Mahout	
  
Serve	
  
NoSQL	
  Database	
  
HBase	
  
Streaming	
  
Spark	
  Streaming	
  
Unlimited	
  Storage	
  HDFS,	
  HBase	
  
YARN,	
  Cloudera	
  Manager,	
  
Cloudera	
  Navigator	
  
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
e	
  importance	
  of	
  being	
  mulJ-­‐framework	
  
BATCH	
  
PROCESSING	
  
MR	
  /	
  PIG/	
  Hive	
  /	
  Spark	
  /	
  Crunch	
  
SQL	
  
IMPALA	
  
SEARCH	
  
SOLR	
  
MACHINE	
  
LEARNING	
  
SAS,	
  R,	
  0xdata,	
  Spark	
  /	
  MLlib	
  
STREAM	
  
PROCESSING	
  
SPARK	
  STREAMING	
  
NOSQL	
  
HBASE	
  
Process	
  Data	
   Train	
  &	
  Test	
  Models	
   Respond	
  to	
  Events	
  in	
  
Real	
  Time	
  
Explore	
  &	
  Analyz
Data	
  
ghly	
  mature	
  
ide	
  range	
  of	
  clients	
  
gnificant	
  advances	
  in	
  
peed	
  &	
  usability	
  
• Broad	
  range	
  of	
  opJons	
  
• Most	
  extensive	
  integraJon	
  
with	
  the	
  SAS	
  &	
  RevoluJon	
  
product	
  porQolio	
  
• Python	
  /	
  0xdata	
  /	
  ML	
  lib	
  for	
  
advanced	
  users	
  
• Very	
  low	
  (~10ms)	
  latency	
  
• High	
  volumes	
  of	
  single	
  
events	
  
• High	
  speed	
  
• High	
  concurrency	
  
• Workload	
  management	
  
• Broad	
  BI	
  support	
  
• For	
  unstructured	
  &	
  semi
structured	
  data	
  
• For	
  business	
  users	
  
• Low	
  (1	
  second)	
  latency	
  
• Windows	
  (collecJons)	
  of	
  
events	
  
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
• Security	
  focus	
  –	
  Richer	
  experience,	
  improved	
  automaJon	
  &	
  performance	
  
• Data	
  Governance	
  –	
  Rules-­‐based	
  engine	
  for	
  assigning	
  business	
  metadata	
  and	
  policy	
  rules	
  to	
  datasets
their	
  lifecycle	
  
erprise	
  governance	
  
• Insight	
  into	
  Job	
  SLAs,	
  improved	
  concurrency	
  
• Fine	
  grained	
  authorizaJon	
  for	
  cluster	
  management	
  
• Resource	
  isolaJon	
  across	
  more	
  resources	
  
red	
  infrastructure	
  
• Deep	
  integraJon	
  with	
  large	
  public	
  cloud	
  providers	
  
• Work	
  with	
  private	
  cloud	
  environments	
  
• Improved	
  integraJon	
  with	
  Intel	
  chipsets	
  to	
  maximize	
  performance	
  
PlaQorm	
  choice	
  
• Expanded	
  SQL	
  capabiliJes	
  –	
  nested	
  data	
  types,	
  compliance	
  with	
  3rd	
  party	
  extensions	
  
• Expanded	
  SQL	
  workloads	
  –	
  disk-­‐based	
  joins,	
  cost-­‐based	
  opJmizer	
  refinements	
  
• Performance	
  –	
  AddiJonal	
  performance	
  enhancements	
  
SQL	
  range	
  
• AutomaJc	
  handling	
  of	
  in-­‐memory	
  datasets,	
  HSM	
  including	
  flash	
  storage	
  
• Reduce	
  $$	
  /	
  TB	
  using	
  erasure	
  coding,	
  WORM	
  support	
  for	
  compliant	
  archival	
  Storage	
  
oduct	
  investment	
  themes	
  
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
pped	
  on	
  December	
  2014	
  
ckwards	
  compaJble,	
  incremental	
  update	
  on	
  5.x	
  stack	
  
ease	
  Themes	
  
ecurity	
  and	
  Data	
  Management	
  
•  HDFS	
  encrypJon	
  
•  Unified	
  authorizaJon	
  and	
  RBAC	
  with	
  Sentry	
  
•  Navigator	
  policy	
  engine	
  for	
  sekng,	
  monitoring	
  and	
  enforcing	
  stewardship	
  an
curaJon	
  policies	
  
nhanced	
  cloud	
  support	
  –	
  Microsol	
  Azure	
  
park	
  1.2	
  
ross-­‐stack	
  performance	
  and	
  stability	
  improvements	
  
oudera	
  5.3	
  
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
e	
  right	
  SQL	
  engine	
  for	
  the	
  use	
  case	
  
SQL	
  
BI	
  and	
  SQL	
  
AnalyJcs	
  
Batch	
  
Processing	
  
Spark	
  developers	
  
OR	
  
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
Security	
   Data	
  Management	
  (Navigator
H	
  2014	
  
•  Simplified	
  Kerberos	
  setup	
  
•  Partner	
  integraJon	
  –	
  pass-­‐thru	
  
credenJals	
  
•  Sentry	
  coverage	
  –	
  Impala,	
  Hive,	
  Search,	
  
HDFS	
  
•  Cloudera	
  Manager	
  fine-­‐grained	
  roles	
  
•  HBase	
  cell-­‐level	
  security	
  
•  HDFS	
  ACLs	
  
•  NaJve	
  HDFS	
  encrypJon	
  
•  Hue	
  applicaJon	
  to	
  manage	
  security	
  
•  IntegraJon	
  of	
  Navigator	
  Key	
  Trustee	
  
and	
  Navigator	
  Encrypt	
  
•  RBAC	
  for	
  Navigator	
  (Administrator,	
  
Auditor)	
  
•  Extensible	
  audiJng	
  support	
  
•  Comprehensive	
  Audit	
  support	
  (Impala
Search,	
  Hue,	
  etc)	
  
•  Consolidated	
  audiJng	
  and	
  lineage	
  
•  Policy	
  engine	
  –	
  associate	
  metadata	
  w
data	
  
•  Column	
  level	
  lineage	
  for	
  MapReduce	
  
terprise	
  governance	
  
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
Impala	
  
2H	
  2014	
  
•  DECIMAL	
  support	
  
•  ORDER	
  BY	
  without	
  LIMIT	
  
•  Correlated	
  subqueries	
  
•  AnalyJc	
  window	
  funcJons	
  
•  Use	
  in-­‐memory	
  datasets	
  for	
  improved	
  performance	
  
•  char	
  /	
  varchar	
  support	
  
•  Incremental	
  stats	
  gathering	
  
L	
  range	
  
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
Workload	
  Management	
   Cloudera	
  Manager	
  
2H	
  2014	
  
•  Dynamic	
  resource	
  management	
  for	
  
Impala	
  (YARN	
  integraJon)	
  
•  YARN	
  work	
  preserving	
  restarts	
  
•  Fair	
  scheduler	
  improvements	
  –	
  
Dominant	
  Resource	
  Fairness,	
  Pre-­‐
empJon	
  improvements	
  
•  SAS	
  integraJon	
  for	
  staJc	
  parJJoning	
  
•  Simplified	
  upgrades	
  with	
  upgrade	
  
wizard	
  
•  Impala,	
  Oozie,	
  Flume	
  monitoring	
  &	
  
advisors	
  
•  Custom	
  alerts	
  /	
  Configurable	
  Thresho
•  Fine-­‐grained	
  permissions	
  manageme
for	
  CM	
  
•  Direct-­‐to-­‐AD	
  integraJon	
  
•  Support	
  for	
  Isilon	
  
ared	
  infrastructure	
  
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
HDFS	
   HBase	
  
2H	
  2014	
  
•  HDFS	
  ACLs	
  
•  Key	
  Manager	
  interface	
  
•  Hardware	
  accelerated	
  encrypJon	
  
•  Write	
  pipeline	
  improvements	
  
•  HDFS	
  Caching	
  
•  Cell	
  level	
  ACLs	
  
•  Transparent	
  encrypJon	
  
•  Improved	
  WAL	
  write	
  performance	
  
•  Medium	
  Object	
  Store	
  
•  HBase	
  QOS	
  (user	
  level	
  and	
  workload
type)	
  
orage	
  
©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserRESTRICTED	
  —	
  DO	
  NOT	
  DISTRIBUTE	
  
Cloudera	
  Director	
   Intel	
  Enhancements	
  
2H	
  2014	
  
•  Automated	
  provisioning	
  of	
  nodes	
  on	
  
AWS	
  and	
  Azure	
  
•  Grow	
  /	
  Shrink	
  cluster	
  
•  User	
  Interface	
  for	
  cluster	
  management	
  
•  Security	
  setup	
  
•  MapReduce	
  shuffle	
  opJmizaJons	
  
•  AES-­‐NI	
  for	
  disk	
  writes	
  
aQorm	
  choice	
  
Thank	
  you.	
  
Ad

More Related Content

What's hot (16)

大数据数据治理及数据安全
大数据数据治理及数据安全大数据数据治理及数据安全
大数据数据治理及数据安全
Jianwei Li
 
Apache Spark: Usage and Roadmap in Hadoop
Apache Spark: Usage and Roadmap in HadoopApache Spark: Usage and Roadmap in Hadoop
Apache Spark: Usage and Roadmap in Hadoop
Cloudera Japan
 
大数据数据安全
大数据数据安全大数据数据安全
大数据数据安全
Jianwei Li
 
Road to Cloudera certification
Road to Cloudera certificationRoad to Cloudera certification
Road to Cloudera certification
Cloudera, Inc.
 
Multi-Tenant Operations with Cloudera 5.7 & BT
Multi-Tenant Operations with Cloudera 5.7 & BTMulti-Tenant Operations with Cloudera 5.7 & BT
Multi-Tenant Operations with Cloudera 5.7 & BT
Cloudera, Inc.
 
Envelope
Envelope Envelope
Envelope
نهاد مبارك
 
Kudu Cloudera Meetup Paris
Kudu Cloudera Meetup ParisKudu Cloudera Meetup Paris
Kudu Cloudera Meetup Paris
نهاد مبارك
 
How to use Impala query plan and profile to fix performance issues
How to use Impala query plan and profile to fix performance issuesHow to use Impala query plan and profile to fix performance issues
How to use Impala query plan and profile to fix performance issues
Cloudera, Inc.
 
Monitorando performance no Azure SQL Database
Monitorando performance no Azure SQL DatabaseMonitorando performance no Azure SQL Database
Monitorando performance no Azure SQL Database
Vitor Fava
 
Farming hadoop in_the_cloud
Farming hadoop in_the_cloudFarming hadoop in_the_cloud
Farming hadoop in_the_cloud
Steve Loughran
 
Enabling digital transformation with MySQL
Enabling digital transformation with MySQLEnabling digital transformation with MySQL
Enabling digital transformation with MySQL
MySQL Brasil
 
Meetup Oracle Database MAD_BCN: 1.1 Servicios de Oracle Database en la nube
 Meetup Oracle Database MAD_BCN: 1.1 Servicios de Oracle Database en la nube Meetup Oracle Database MAD_BCN: 1.1 Servicios de Oracle Database en la nube
Meetup Oracle Database MAD_BCN: 1.1 Servicios de Oracle Database en la nube
avanttic Consultoría Tecnológica
 
Unlock Hadoop Success with Cloudera Navigator Optimizer
Unlock Hadoop Success with Cloudera Navigator OptimizerUnlock Hadoop Success with Cloudera Navigator Optimizer
Unlock Hadoop Success with Cloudera Navigator Optimizer
Cloudera, Inc.
 
Cloudera のサポートエンジニアリング #supennight
Cloudera のサポートエンジニアリング #supennightCloudera のサポートエンジニアリング #supennight
Cloudera のサポートエンジニアリング #supennight
Cloudera Japan
 
John Zuniga Resume
John Zuniga ResumeJohn Zuniga Resume
John Zuniga Resume
John Zuniga
 
How to build leakproof stream processing pipelines with Apache Kafka and Apac...
How to build leakproof stream processing pipelines with Apache Kafka and Apac...How to build leakproof stream processing pipelines with Apache Kafka and Apac...
How to build leakproof stream processing pipelines with Apache Kafka and Apac...
Cloudera, Inc.
 
大数据数据治理及数据安全
大数据数据治理及数据安全大数据数据治理及数据安全
大数据数据治理及数据安全
Jianwei Li
 
Apache Spark: Usage and Roadmap in Hadoop
Apache Spark: Usage and Roadmap in HadoopApache Spark: Usage and Roadmap in Hadoop
Apache Spark: Usage and Roadmap in Hadoop
Cloudera Japan
 
大数据数据安全
大数据数据安全大数据数据安全
大数据数据安全
Jianwei Li
 
Road to Cloudera certification
Road to Cloudera certificationRoad to Cloudera certification
Road to Cloudera certification
Cloudera, Inc.
 
Multi-Tenant Operations with Cloudera 5.7 & BT
Multi-Tenant Operations with Cloudera 5.7 & BTMulti-Tenant Operations with Cloudera 5.7 & BT
Multi-Tenant Operations with Cloudera 5.7 & BT
Cloudera, Inc.
 
How to use Impala query plan and profile to fix performance issues
How to use Impala query plan and profile to fix performance issuesHow to use Impala query plan and profile to fix performance issues
How to use Impala query plan and profile to fix performance issues
Cloudera, Inc.
 
Monitorando performance no Azure SQL Database
Monitorando performance no Azure SQL DatabaseMonitorando performance no Azure SQL Database
Monitorando performance no Azure SQL Database
Vitor Fava
 
Farming hadoop in_the_cloud
Farming hadoop in_the_cloudFarming hadoop in_the_cloud
Farming hadoop in_the_cloud
Steve Loughran
 
Enabling digital transformation with MySQL
Enabling digital transformation with MySQLEnabling digital transformation with MySQL
Enabling digital transformation with MySQL
MySQL Brasil
 
Meetup Oracle Database MAD_BCN: 1.1 Servicios de Oracle Database en la nube
 Meetup Oracle Database MAD_BCN: 1.1 Servicios de Oracle Database en la nube Meetup Oracle Database MAD_BCN: 1.1 Servicios de Oracle Database en la nube
Meetup Oracle Database MAD_BCN: 1.1 Servicios de Oracle Database en la nube
avanttic Consultoría Tecnológica
 
Unlock Hadoop Success with Cloudera Navigator Optimizer
Unlock Hadoop Success with Cloudera Navigator OptimizerUnlock Hadoop Success with Cloudera Navigator Optimizer
Unlock Hadoop Success with Cloudera Navigator Optimizer
Cloudera, Inc.
 
Cloudera のサポートエンジニアリング #supennight
Cloudera のサポートエンジニアリング #supennightCloudera のサポートエンジニアリング #supennight
Cloudera のサポートエンジニアリング #supennight
Cloudera Japan
 
John Zuniga Resume
John Zuniga ResumeJohn Zuniga Resume
John Zuniga Resume
John Zuniga
 
How to build leakproof stream processing pipelines with Apache Kafka and Apac...
How to build leakproof stream processing pipelines with Apache Kafka and Apac...How to build leakproof stream processing pipelines with Apache Kafka and Apac...
How to build leakproof stream processing pipelines with Apache Kafka and Apac...
Cloudera, Inc.
 

Viewers also liked (20)

LinkedIn Reviews_People Are Saying
LinkedIn Reviews_People Are SayingLinkedIn Reviews_People Are Saying
LinkedIn Reviews_People Are Saying
Malcolm Ryder
 
Av2 8abr10
Av2  8abr10Av2  8abr10
Av2 8abr10
tahoma1
 
泛在个人桌面服务
泛在个人桌面服务泛在个人桌面服务
泛在个人桌面服务
ITband
 
Resume - Alison Lange
Resume - Alison LangeResume - Alison Lange
Resume - Alison Lange
Alison Lange
 
Cloudera Federal Forum 2014: Hadoop-Powered Solutions for Cybersecurity
Cloudera Federal Forum 2014: Hadoop-Powered Solutions for CybersecurityCloudera Federal Forum 2014: Hadoop-Powered Solutions for Cybersecurity
Cloudera Federal Forum 2014: Hadoop-Powered Solutions for Cybersecurity
Cloudera, Inc.
 
Marmalade boy
Marmalade boyMarmalade boy
Marmalade boy
Yuyu Gray
 
Vocales 1a
Vocales 1aVocales 1a
Vocales 1a
Verónica Blanco
 
Boston webcast nv_me_2016-09
Boston webcast nv_me_2016-09Boston webcast nv_me_2016-09
Boston webcast nv_me_2016-09
BOSTON Server & Storage Solutions GmbH
 
Apa
ApaApa
Apa
María Fernanda Torres
 
Intel - Nurcan Coskun - Hadoop World 2010
Intel - Nurcan Coskun - Hadoop World 2010Intel - Nurcan Coskun - Hadoop World 2010
Intel - Nurcan Coskun - Hadoop World 2010
Cloudera, Inc.
 
Is Cloud a right Companion for Hadoop
Is Cloud a right Companion for HadoopIs Cloud a right Companion for Hadoop
Is Cloud a right Companion for Hadoop
DataWorks Summit
 
RubenGasparyanCV June 2016
RubenGasparyanCV June 2016RubenGasparyanCV June 2016
RubenGasparyanCV June 2016
Ruben Gasparyan
 
Why Your Data and Analytics Should Live in the Cloud
Why Your Data and Analytics Should Live in the CloudWhy Your Data and Analytics Should Live in the Cloud
Why Your Data and Analytics Should Live in the Cloud
David Menninger
 
Engaging the Digital Customer
Engaging the Digital CustomerEngaging the Digital Customer
Engaging the Digital Customer
Moxie
 
Splunking HL7 Healthcare Data for Business Value
Splunking HL7 Healthcare Data for Business ValueSplunking HL7 Healthcare Data for Business Value
Splunking HL7 Healthcare Data for Business Value
Splunk
 
Routin
RoutinRoutin
Routin
guestfd40be4
 
Service Management Solution Framework (SMSF)
Service Management Solution Framework (SMSF)Service Management Solution Framework (SMSF)
Service Management Solution Framework (SMSF)
Malcolm Ryder
 
Company_Presentation_12 10 2016_EN
Company_Presentation_12 10 2016_ENCompany_Presentation_12 10 2016_EN
Company_Presentation_12 10 2016_EN
Ralf Hildenbrand
 
LinkedIn Reviews_People Are Saying
LinkedIn Reviews_People Are SayingLinkedIn Reviews_People Are Saying
LinkedIn Reviews_People Are Saying
Malcolm Ryder
 
Av2 8abr10
Av2  8abr10Av2  8abr10
Av2 8abr10
tahoma1
 
泛在个人桌面服务
泛在个人桌面服务泛在个人桌面服务
泛在个人桌面服务
ITband
 
Resume - Alison Lange
Resume - Alison LangeResume - Alison Lange
Resume - Alison Lange
Alison Lange
 
Cloudera Federal Forum 2014: Hadoop-Powered Solutions for Cybersecurity
Cloudera Federal Forum 2014: Hadoop-Powered Solutions for CybersecurityCloudera Federal Forum 2014: Hadoop-Powered Solutions for Cybersecurity
Cloudera Federal Forum 2014: Hadoop-Powered Solutions for Cybersecurity
Cloudera, Inc.
 
Marmalade boy
Marmalade boyMarmalade boy
Marmalade boy
Yuyu Gray
 
Intel - Nurcan Coskun - Hadoop World 2010
Intel - Nurcan Coskun - Hadoop World 2010Intel - Nurcan Coskun - Hadoop World 2010
Intel - Nurcan Coskun - Hadoop World 2010
Cloudera, Inc.
 
Is Cloud a right Companion for Hadoop
Is Cloud a right Companion for HadoopIs Cloud a right Companion for Hadoop
Is Cloud a right Companion for Hadoop
DataWorks Summit
 
RubenGasparyanCV June 2016
RubenGasparyanCV June 2016RubenGasparyanCV June 2016
RubenGasparyanCV June 2016
Ruben Gasparyan
 
Why Your Data and Analytics Should Live in the Cloud
Why Your Data and Analytics Should Live in the CloudWhy Your Data and Analytics Should Live in the Cloud
Why Your Data and Analytics Should Live in the Cloud
David Menninger
 
Engaging the Digital Customer
Engaging the Digital CustomerEngaging the Digital Customer
Engaging the Digital Customer
Moxie
 
Splunking HL7 Healthcare Data for Business Value
Splunking HL7 Healthcare Data for Business ValueSplunking HL7 Healthcare Data for Business Value
Splunking HL7 Healthcare Data for Business Value
Splunk
 
Service Management Solution Framework (SMSF)
Service Management Solution Framework (SMSF)Service Management Solution Framework (SMSF)
Service Management Solution Framework (SMSF)
Malcolm Ryder
 
Company_Presentation_12 10 2016_EN
Company_Presentation_12 10 2016_ENCompany_Presentation_12 10 2016_EN
Company_Presentation_12 10 2016_EN
Ralf Hildenbrand
 
Ad

Similar to Cloudera 5.3 Update (20)

NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science Workbench
NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science WorkbenchNOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science Workbench
NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science Workbench
NOVA DATASCIENCE
 
Introducing Cloudera Navigator Optimizer: Offload Assessments and Active Data...
Introducing Cloudera Navigator Optimizer: Offload Assessments and Active Data...Introducing Cloudera Navigator Optimizer: Offload Assessments and Active Data...
Introducing Cloudera Navigator Optimizer: Offload Assessments and Active Data...
Cloudera, Inc.
 
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Cloudera, Inc.
 
Impala 2.0 - The Best Analytic Database for Hadoop
Impala 2.0 - The Best Analytic Database for HadoopImpala 2.0 - The Best Analytic Database for Hadoop
Impala 2.0 - The Best Analytic Database for Hadoop
Cloudera, Inc.
 
Gartner Data and Analytics Summit: Bringing Self-Service BI & SQL Analytics ...
 Gartner Data and Analytics Summit: Bringing Self-Service BI & SQL Analytics ... Gartner Data and Analytics Summit: Bringing Self-Service BI & SQL Analytics ...
Gartner Data and Analytics Summit: Bringing Self-Service BI & SQL Analytics ...
Cloudera, Inc.
 
Cloudera GoDataFest Deploying Cloudera in the Cloud
Cloudera GoDataFest Deploying Cloudera in the CloudCloudera GoDataFest Deploying Cloudera in the Cloud
Cloudera GoDataFest Deploying Cloudera in the Cloud
GoDataDriven
 
What’s New in Cloudera Enterprise 6.0: The Inside Scoop 6.14.18
What’s New in Cloudera Enterprise 6.0: The Inside Scoop 6.14.18What’s New in Cloudera Enterprise 6.0: The Inside Scoop 6.14.18
What’s New in Cloudera Enterprise 6.0: The Inside Scoop 6.14.18
Cloudera, Inc.
 
How Big Data Can Enable Analytics from the Cloud (Technical Workshop)
How Big Data Can Enable Analytics from the Cloud (Technical Workshop)How Big Data Can Enable Analytics from the Cloud (Technical Workshop)
How Big Data Can Enable Analytics from the Cloud (Technical Workshop)
Cloudera, Inc.
 
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017
Stefan Lipp
 
Cloud-Native Machine Learning: Emerging Trends and the Road Ahead
Cloud-Native Machine Learning: Emerging Trends and the Road AheadCloud-Native Machine Learning: Emerging Trends and the Road Ahead
Cloud-Native Machine Learning: Emerging Trends and the Road Ahead
DataWorks Summit
 
Cloudera Director: Unlock the Full Potential of Hadoop in the Cloud
Cloudera Director: Unlock the Full Potential of Hadoop in the CloudCloudera Director: Unlock the Full Potential of Hadoop in the Cloud
Cloudera Director: Unlock the Full Potential of Hadoop in the Cloud
Cloudera, Inc.
 
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud Cloudera Analytics and Machine Learning Platform - Optimized for Cloud
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud
Stefan Lipp
 
How to Build Multi-disciplinary Analytics Applications on a Shared Data Platform
How to Build Multi-disciplinary Analytics Applications on a Shared Data PlatformHow to Build Multi-disciplinary Analytics Applications on a Shared Data Platform
How to Build Multi-disciplinary Analytics Applications on a Shared Data Platform
Cloudera, Inc.
 
Enterprise Hadoop in the Cloud. In Minutes. | How to Run Cloudera Enterprise ...
Enterprise Hadoop in the Cloud. In Minutes. | How to Run Cloudera Enterprise ...Enterprise Hadoop in the Cloud. In Minutes. | How to Run Cloudera Enterprise ...
Enterprise Hadoop in the Cloud. In Minutes. | How to Run Cloudera Enterprise ...
Cloudera, Inc.
 
Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19
Cloudera, Inc.
 
Multidisziplinäre Analyseanwendungen auf einer gemeinsamen Datenplattform ers...
Multidisziplinäre Analyseanwendungen auf einer gemeinsamen Datenplattform ers...Multidisziplinäre Analyseanwendungen auf einer gemeinsamen Datenplattform ers...
Multidisziplinäre Analyseanwendungen auf einer gemeinsamen Datenplattform ers...
Cloudera, Inc.
 
Supercharge Splunk with Cloudera

Supercharge Splunk with Cloudera
Supercharge Splunk with Cloudera

Supercharge Splunk with Cloudera

Cloudera, Inc.
 
Spark in the Enterprise - 2 Years Later by Alan Saldich
Spark in the Enterprise - 2 Years Later by Alan SaldichSpark in the Enterprise - 2 Years Later by Alan Saldich
Spark in the Enterprise - 2 Years Later by Alan Saldich
Spark Summit
 
High-Performance Analytics in the Cloud with Apache Impala
High-Performance Analytics in the Cloud with Apache ImpalaHigh-Performance Analytics in the Cloud with Apache Impala
High-Performance Analytics in the Cloud with Apache Impala
Cloudera, Inc.
 
Hive, Impala, and Spark, Oh My: SQL-on-Hadoop in Cloudera 5.5
Hive, Impala, and Spark, Oh My: SQL-on-Hadoop in Cloudera 5.5Hive, Impala, and Spark, Oh My: SQL-on-Hadoop in Cloudera 5.5
Hive, Impala, and Spark, Oh My: SQL-on-Hadoop in Cloudera 5.5
Cloudera, Inc.
 
NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science Workbench
NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science WorkbenchNOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science Workbench
NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science Workbench
NOVA DATASCIENCE
 
Introducing Cloudera Navigator Optimizer: Offload Assessments and Active Data...
Introducing Cloudera Navigator Optimizer: Offload Assessments and Active Data...Introducing Cloudera Navigator Optimizer: Offload Assessments and Active Data...
Introducing Cloudera Navigator Optimizer: Offload Assessments and Active Data...
Cloudera, Inc.
 
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Cloudera, Inc.
 
Impala 2.0 - The Best Analytic Database for Hadoop
Impala 2.0 - The Best Analytic Database for HadoopImpala 2.0 - The Best Analytic Database for Hadoop
Impala 2.0 - The Best Analytic Database for Hadoop
Cloudera, Inc.
 
Gartner Data and Analytics Summit: Bringing Self-Service BI & SQL Analytics ...
 Gartner Data and Analytics Summit: Bringing Self-Service BI & SQL Analytics ... Gartner Data and Analytics Summit: Bringing Self-Service BI & SQL Analytics ...
Gartner Data and Analytics Summit: Bringing Self-Service BI & SQL Analytics ...
Cloudera, Inc.
 
Cloudera GoDataFest Deploying Cloudera in the Cloud
Cloudera GoDataFest Deploying Cloudera in the CloudCloudera GoDataFest Deploying Cloudera in the Cloud
Cloudera GoDataFest Deploying Cloudera in the Cloud
GoDataDriven
 
What’s New in Cloudera Enterprise 6.0: The Inside Scoop 6.14.18
What’s New in Cloudera Enterprise 6.0: The Inside Scoop 6.14.18What’s New in Cloudera Enterprise 6.0: The Inside Scoop 6.14.18
What’s New in Cloudera Enterprise 6.0: The Inside Scoop 6.14.18
Cloudera, Inc.
 
How Big Data Can Enable Analytics from the Cloud (Technical Workshop)
How Big Data Can Enable Analytics from the Cloud (Technical Workshop)How Big Data Can Enable Analytics from the Cloud (Technical Workshop)
How Big Data Can Enable Analytics from the Cloud (Technical Workshop)
Cloudera, Inc.
 
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017
Stefan Lipp
 
Cloud-Native Machine Learning: Emerging Trends and the Road Ahead
Cloud-Native Machine Learning: Emerging Trends and the Road AheadCloud-Native Machine Learning: Emerging Trends and the Road Ahead
Cloud-Native Machine Learning: Emerging Trends and the Road Ahead
DataWorks Summit
 
Cloudera Director: Unlock the Full Potential of Hadoop in the Cloud
Cloudera Director: Unlock the Full Potential of Hadoop in the CloudCloudera Director: Unlock the Full Potential of Hadoop in the Cloud
Cloudera Director: Unlock the Full Potential of Hadoop in the Cloud
Cloudera, Inc.
 
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud Cloudera Analytics and Machine Learning Platform - Optimized for Cloud
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud
Stefan Lipp
 
How to Build Multi-disciplinary Analytics Applications on a Shared Data Platform
How to Build Multi-disciplinary Analytics Applications on a Shared Data PlatformHow to Build Multi-disciplinary Analytics Applications on a Shared Data Platform
How to Build Multi-disciplinary Analytics Applications on a Shared Data Platform
Cloudera, Inc.
 
Enterprise Hadoop in the Cloud. In Minutes. | How to Run Cloudera Enterprise ...
Enterprise Hadoop in the Cloud. In Minutes. | How to Run Cloudera Enterprise ...Enterprise Hadoop in the Cloud. In Minutes. | How to Run Cloudera Enterprise ...
Enterprise Hadoop in the Cloud. In Minutes. | How to Run Cloudera Enterprise ...
Cloudera, Inc.
 
Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19
Cloudera, Inc.
 
Multidisziplinäre Analyseanwendungen auf einer gemeinsamen Datenplattform ers...
Multidisziplinäre Analyseanwendungen auf einer gemeinsamen Datenplattform ers...Multidisziplinäre Analyseanwendungen auf einer gemeinsamen Datenplattform ers...
Multidisziplinäre Analyseanwendungen auf einer gemeinsamen Datenplattform ers...
Cloudera, Inc.
 
Supercharge Splunk with Cloudera

Supercharge Splunk with Cloudera
Supercharge Splunk with Cloudera

Supercharge Splunk with Cloudera

Cloudera, Inc.
 
Spark in the Enterprise - 2 Years Later by Alan Saldich
Spark in the Enterprise - 2 Years Later by Alan SaldichSpark in the Enterprise - 2 Years Later by Alan Saldich
Spark in the Enterprise - 2 Years Later by Alan Saldich
Spark Summit
 
High-Performance Analytics in the Cloud with Apache Impala
High-Performance Analytics in the Cloud with Apache ImpalaHigh-Performance Analytics in the Cloud with Apache Impala
High-Performance Analytics in the Cloud with Apache Impala
Cloudera, Inc.
 
Hive, Impala, and Spark, Oh My: SQL-on-Hadoop in Cloudera 5.5
Hive, Impala, and Spark, Oh My: SQL-on-Hadoop in Cloudera 5.5Hive, Impala, and Spark, Oh My: SQL-on-Hadoop in Cloudera 5.5
Hive, Impala, and Spark, Oh My: SQL-on-Hadoop in Cloudera 5.5
Cloudera, Inc.
 
Ad

More from Cloudera, Inc. (20)

Partner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptxPartner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptx
Cloudera, Inc.
 
Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists
Cloudera, Inc.
 
2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists
Cloudera, Inc.
 
Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019
Cloudera, Inc.
 
Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19
Cloudera, Inc.
 
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Cloudera, Inc.
 
Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19
Cloudera, Inc.
 
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Cloudera, Inc.
 
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Cloudera, Inc.
 
Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1
Cloudera, Inc.
 
Extending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the PlatformExtending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the Platform
Cloudera, Inc.
 
Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18
Cloudera, Inc.
 
Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360
Cloudera, Inc.
 
Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18
Cloudera, Inc.
 
Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18
Cloudera, Inc.
 
Cloudera SDX
Cloudera SDXCloudera SDX
Cloudera SDX
Cloudera, Inc.
 
Introducing Workload XM 8.7.18
Introducing Workload XM 8.7.18Introducing Workload XM 8.7.18
Introducing Workload XM 8.7.18
Cloudera, Inc.
 
Partner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptxPartner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptx
Cloudera, Inc.
 
Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists
Cloudera, Inc.
 
2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists
Cloudera, Inc.
 
Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019
Cloudera, Inc.
 
Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19
Cloudera, Inc.
 
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Cloudera, Inc.
 
Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19
Cloudera, Inc.
 
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Cloudera, Inc.
 
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Cloudera, Inc.
 
Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1
Cloudera, Inc.
 
Extending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the PlatformExtending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the Platform
Cloudera, Inc.
 
Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18
Cloudera, Inc.
 
Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360
Cloudera, Inc.
 
Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18
Cloudera, Inc.
 
Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18
Cloudera, Inc.
 
Introducing Workload XM 8.7.18
Introducing Workload XM 8.7.18Introducing Workload XM 8.7.18
Introducing Workload XM 8.7.18
Cloudera, Inc.
 

Recently uploaded (20)

AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
Dark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanizationDark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanization
Jakub Šimek
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
Dark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanizationDark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanization
Jakub Šimek
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 

Cloudera 5.3 Update

  • 1. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE  RESTRICTED  —  DO  NOT  DISTRIBUTE   oudera  5.3  Release  Overview   ember  2014  
  • 2. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE   JficaJon   informa,on  in  this  document  is  proprietary  to  Cloudera.    No  part  of  this  document  may  be  reproduced,  copied  or  transmi:ed  in m  for  any  purpose  without  the  express  prior  wri:en  permission  of  Cloudera.    document  is  a  preliminary  version  and  not  subject  to  your  license  agreement  or  any  other  agreement  with  Cloudera.    This  docum tains  only  intended  strategies,  developments  and  func,onali,es  of  Cloudera  products  and  is  not  intended  to  be  binding  upon   udera  to  any  par,cular  course  of  business,  product  strategy  and/or  development.    Please  note  that  this  document  is  subject  to  ch may  be  changed  by  Cloudera  at  any  ,me  without  no,ce.   udera  assumes  no  responsibility  for  errors  or  omissions  in  this  document.    Cloudera  does  not  warrant  the  accuracy  or  completene informa,on,  text,  graphics,  links  or  other  items  contained  within  this  material.    This  document  is  provided  without  a  warranty  o ,  either  express  or  implied,  including  but  not  limited  to  the  implied  warran,es  of  merchantability,  fitness  for  a  par,cular  purpos -­‐infringement.   udera  shall  have  no  liability  for  damages  of  any  kind  including  without  limita,on  direct,  special,  indirect  or  consequen,al  damag  may  result  from  the  use  of  these  materials.    The  limita,on  shall  not  apply  in  cases  of  gross  negligence.  
  • 3. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE   Batch,  InteracJ and  Real-­‐Time     Leading  performan and  usability  in  one plaQorm.   •  End-­‐to-­‐end  analyJ workflows   •  Access  more  data   •  Work  with  data  in new  ways   •  Enable  new  users   e  PlaQorm,  Many  Workloads   Security  and  AdministraJon   rocess   Ingest   oop,  Flume     ransform   Reduce,  Hive,   ig,  Spark   Discover   AnalyJc  Database   Impala   Search   Solr   Model   Machine  Learning   SAS,  R,  Spark,   Mahout   Serve   NoSQL  Database   HBase   Streaming   Spark  Streaming   Unlimited  Storage  HDFS,  HBase   YARN,  Cloudera  Manager,   Cloudera  Navigator  
  • 4. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE   e  importance  of  being  mulJ-­‐framework   BATCH   PROCESSING   MR  /  PIG/  Hive  /  Spark  /  Crunch   SQL   IMPALA   SEARCH   SOLR   MACHINE   LEARNING   SAS,  R,  0xdata,  Spark  /  MLlib   STREAM   PROCESSING   SPARK  STREAMING   NOSQL   HBASE   Process  Data   Train  &  Test  Models   Respond  to  Events  in   Real  Time   Explore  &  Analyz Data   ghly  mature   ide  range  of  clients   gnificant  advances  in   peed  &  usability   • Broad  range  of  opJons   • Most  extensive  integraJon   with  the  SAS  &  RevoluJon   product  porQolio   • Python  /  0xdata  /  ML  lib  for   advanced  users   • Very  low  (~10ms)  latency   • High  volumes  of  single   events   • High  speed   • High  concurrency   • Workload  management   • Broad  BI  support   • For  unstructured  &  semi structured  data   • For  business  users   • Low  (1  second)  latency   • Windows  (collecJons)  of   events  
  • 5. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE   • Security  focus  –  Richer  experience,  improved  automaJon  &  performance   • Data  Governance  –  Rules-­‐based  engine  for  assigning  business  metadata  and  policy  rules  to  datasets their  lifecycle   erprise  governance   • Insight  into  Job  SLAs,  improved  concurrency   • Fine  grained  authorizaJon  for  cluster  management   • Resource  isolaJon  across  more  resources   red  infrastructure   • Deep  integraJon  with  large  public  cloud  providers   • Work  with  private  cloud  environments   • Improved  integraJon  with  Intel  chipsets  to  maximize  performance   PlaQorm  choice   • Expanded  SQL  capabiliJes  –  nested  data  types,  compliance  with  3rd  party  extensions   • Expanded  SQL  workloads  –  disk-­‐based  joins,  cost-­‐based  opJmizer  refinements   • Performance  –  AddiJonal  performance  enhancements   SQL  range   • AutomaJc  handling  of  in-­‐memory  datasets,  HSM  including  flash  storage   • Reduce  $$  /  TB  using  erasure  coding,  WORM  support  for  compliant  archival  Storage   oduct  investment  themes  
  • 6. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE   pped  on  December  2014   ckwards  compaJble,  incremental  update  on  5.x  stack   ease  Themes   ecurity  and  Data  Management   •  HDFS  encrypJon   •  Unified  authorizaJon  and  RBAC  with  Sentry   •  Navigator  policy  engine  for  sekng,  monitoring  and  enforcing  stewardship  an curaJon  policies   nhanced  cloud  support  –  Microsol  Azure   park  1.2   ross-­‐stack  performance  and  stability  improvements   oudera  5.3  
  • 7. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE   e  right  SQL  engine  for  the  use  case   SQL   BI  and  SQL   AnalyJcs   Batch   Processing   Spark  developers   OR  
  • 8. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE   Security   Data  Management  (Navigator H  2014   •  Simplified  Kerberos  setup   •  Partner  integraJon  –  pass-­‐thru   credenJals   •  Sentry  coverage  –  Impala,  Hive,  Search,   HDFS   •  Cloudera  Manager  fine-­‐grained  roles   •  HBase  cell-­‐level  security   •  HDFS  ACLs   •  NaJve  HDFS  encrypJon   •  Hue  applicaJon  to  manage  security   •  IntegraJon  of  Navigator  Key  Trustee   and  Navigator  Encrypt   •  RBAC  for  Navigator  (Administrator,   Auditor)   •  Extensible  audiJng  support   •  Comprehensive  Audit  support  (Impala Search,  Hue,  etc)   •  Consolidated  audiJng  and  lineage   •  Policy  engine  –  associate  metadata  w data   •  Column  level  lineage  for  MapReduce   terprise  governance  
  • 9. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE   Impala   2H  2014   •  DECIMAL  support   •  ORDER  BY  without  LIMIT   •  Correlated  subqueries   •  AnalyJc  window  funcJons   •  Use  in-­‐memory  datasets  for  improved  performance   •  char  /  varchar  support   •  Incremental  stats  gathering   L  range  
  • 10. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE   Workload  Management   Cloudera  Manager   2H  2014   •  Dynamic  resource  management  for   Impala  (YARN  integraJon)   •  YARN  work  preserving  restarts   •  Fair  scheduler  improvements  –   Dominant  Resource  Fairness,  Pre-­‐ empJon  improvements   •  SAS  integraJon  for  staJc  parJJoning   •  Simplified  upgrades  with  upgrade   wizard   •  Impala,  Oozie,  Flume  monitoring  &   advisors   •  Custom  alerts  /  Configurable  Thresho •  Fine-­‐grained  permissions  manageme for  CM   •  Direct-­‐to-­‐AD  integraJon   •  Support  for  Isilon   ared  infrastructure  
  • 11. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE   HDFS   HBase   2H  2014   •  HDFS  ACLs   •  Key  Manager  interface   •  Hardware  accelerated  encrypJon   •  Write  pipeline  improvements   •  HDFS  Caching   •  Cell  level  ACLs   •  Transparent  encrypJon   •  Improved  WAL  write  performance   •  Medium  Object  Store   •  HBase  QOS  (user  level  and  workload type)   orage  
  • 12. ©  Cloudera,  Inc.  All  rights  reserRESTRICTED  —  DO  NOT  DISTRIBUTE   Cloudera  Director   Intel  Enhancements   2H  2014   •  Automated  provisioning  of  nodes  on   AWS  and  Azure   •  Grow  /  Shrink  cluster   •  User  Interface  for  cluster  management   •  Security  setup   •  MapReduce  shuffle  opJmizaJons   •  AES-­‐NI  for  disk  writes   aQorm  choice  
  翻译: