Since the mid of 1990s, functional connectivity study using fMRI (fcMRI) has drawn increasing
attention of neuroscientists and computer scientists, since it opens a new window to explore
functional network of human brain with relatively high resolution. BOLD technique provides
almost accurate state of brain. Past researches prove that neuro diseases damage the brain
network interaction, protein- protein interaction and gene-gene interaction. A number of
neurological research paper also analyse the relationship among damaged part. By
computational method especially machine learning technique we can show such classifications.
In this paper we used OASIS fMRI dataset affected with Alzheimer’s disease and normal
patient’s dataset. After proper processing the fMRI data we use the processed data to form
classifier models using SVM (Support Vector Machine), KNN (K- nearest neighbour) & Naïve
Bayes. We also compare the accuracy of our proposed method with existing methods. In future,
we will other combinations of methods for better accuracy.