SlideShare a Scribd company logo
CIDOC CRM in Practice
               - Experiences, Problems, and Possible Solutions -




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Background

           • BRICKS Project (2003 - 2007)
           • Goal
            • build an infrastructure for integrating contents
                        and metadata from heterogeneous sources
                 • build value added services on top

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Background
           • Build an application that provides access to
                  archaeological findings from two distinct
                  institutions
           • Provided advanced search (e.g. faceted search)
           • Use the CIDOC-CRM to deal with metadata
                  heterogeneities


Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Background




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
CIDOC CRM Mapping
       • Metadata Schemes:
                                                   !&,?@;                   A&589-                        !"#$%&'&(                  7&589-
                      .!#$%&'()*$+(*,-,*,




                                                                                                                                                 !"#$%&'()*$+(*,-,*,
                                                 )*+&,-./$&                  'B%&1                        )*+&,-./$&                :#$&121

                                                012"34&1523              ;&<2#5<"-52<                     012"34&1523             ;&<2#5<"-52<

                                               415#"1/6"-&15"%               65<-                       415#"1/6"-&15"%               65<-

                                             )*=&1>&C3&>,15$-52<      '&=&1>&C3&>,15$-52<                     )*=&1>&               '&=&1>&

                                            6&-923)(6"<B(",-B1&               DDD                             ;2<21                 ;2<21'&(



                                                            !/<-",-5,"%%/E"<3E>&#"<-5,"%%/E&FB5="%&<-              !&#"<-5,"%%/E&FB5="%&<-

                                                                                            G2E&FB5="%&<,&>




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
CIDOC CRM Mapping
       • Sample Metadata Instance:
                                                                       !"#$%&'(
                                                              !"#$%&         !""#$%&'()*+"#,"%

                                                            '()"#*+,-"                '-./

                                                         '()"#*&".#/0-*012    0-12/34-563789

                                                              3"045*                 (:#%34

                                                         6/078/,98*"/08:              ;-56

                                                         9"*51;'<982=<>           <=>?@A3->3789

                                                                >>>                    :::




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
CIDOC CRM Mapping
       • The CIDOC CRM:                                                                                          !""#&0?)I)<2()0'
                                                                                                                                        !"+#510?K<()0'

                                                                                                                                         EEE

                                                         !;#$0'?)()0'#:(2(-                                                            !;M#O)6K23#7(-.    !;J#7.2B-
                                                                                               !4#D<()P)(*           EEE
                                  !+#,-./0123#!'()(*                                                                                   !;"#>0<K.-'(         EEE
                                                             !=#5-1)0?          !8#!P-'(         EEE
                                                                                                             !4;#7'I01.2()0'#FGH-<(     !+C#>-6)B'#01#510<-?K1-
                                                                                                                                          EEE
                                                                                                                                                     !8M#N2'BK2B-
                                                             !4@#,A)'B        !++#&2'9&2?-#FGH-<(            !+J#$0'<-/(K23#FGH-<(
                                                                                                                                       !88#,*/-       !84#&2(-1)23
                                                             !;C#D<(01              EEE                        EEE
                                 !44#5-16)6(-'(#7(-.                                                                                     EEE         !8J#&-26K1-.-'(#L')(
                                                         !8"#$0'(2<(#50)'(      !=8#D??1-66
               !"#$%&#!'()(*
                                                                                !=+#FGH-<(#7?-'()I)-1

                                                          !="#D//-332()0'       !=C#,).-#D//-332()0'          !8@#>2(-
                                   !8+#,).-9:/2'
                                                                               !==#532<-#D//-332()0'         !=4#:/2()23#$001?)'2(-6
                                      !8;#532<-
                                                                                    EEE                        EEE
                                   !8=#>).-'6)0'


                                                                                                 !M@#QK.G-1

                                                              !8C#51).)()P-#O23K-             !M"#,).-#51).)()P-

                                                                                                  !M+#:(1)'B

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
CIDOC CRM Mapping
       • Source Metadata Expressed in CRM:
                                >MH$/66#,,-2130                    >MH$/66#,,-2130
                                                                                              GH$1.$1E#02141#E$78$
                                                                                                  51E#02141#.=                                                        >LL$!86#
                                                                                                                              >?H$'3+<A#02
                                      K<L                      GHH-?.B!+I=AH-JH.                                                                                            !40&
                                                                                              GHJK$1.$+3A63.#E$34$
                                                                                                543:A.$6-:2$34=                 GIJ$E3+<A#02.$
                                            GH$1.$1E#02141#E$78$
                                                                              >?H$'3+<A#02                                    51.$E3+<A#02#E$10=             GC$"-.$286#$
                                                51E#02141#.=
                                                                                                                                                             51.$286#$34=


                                 >LI$*-2#:1-,                                                                         >CC$*-0D*-E#$(7F#+2
                                                          GHCK$#A6,38#E              GHJ@$"-.$6:3E<+#E
                                     M4"6                59-.$#A6,38#E$10=           59-.$6:3E<+#E$78=                                             G?$"-.$032#       >KC$Q2:10B
                                                                                                                                                                 2345#&2*4"62#78)7$2
                                                                   >HC$G:3E<+2130                             GM?$"-.$E1A#0.130                                  492:)842;<=2>?@ABC,2
                                                                                                               51.$E1A#0.130$34=      GH?@$:#6:#.#02.            DEF)20$$7)62(08(#2<=2
                                                         GHK$<.#E$.6#+141+$37F#+2$                                                  5"-.$:#6:#.#02-2130=                A?@A>,
                                                             59-.$<.#E$43:=

                                                                                                             >LM$'1A#0.130
                                             >CN$'#.1B0$3:$G:3+#E<:#

                                                          GH$1.$1E#02141#E$78$               GNH$"-.$<012      GNJ$"-.$;-,<# GC$"-.$286#$                         >?@$&A-B#
                                                                                              51.$<012$34=                   51.$286#$34=
                                                              51E#02141#.=

                                   >MH$/66#,,-2130                      >L@$*#-.<:#A#02$O012                  >KJ$P<A7#:              >LL$!86#
                                  L'87(N24821#55)8)6                                   *                             +,-.               /)0*1'




                                                                   !!"#$#%&
                                                                       !"#$$         !"#$%&'(%$%)*$+,-..
                                                                      %&$'#&()       /0$10.2-0+#$34$2"#$+,-..$563..17,8$912"$+30+:#2#$;-,<#=

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
CIDOC CRM Mapping
       • Mappings expressed as mapping chains:
                           !"#$%                                                                                                                      4"0/7%#$%
                                !$&'()*%+,,-./0123*4,-5,/!6$&'()*%                                                                                   !89:!%!;4
                                !789&':;<=&% !"#$ !6789&':;<=&%                                                                WNNF;<=&
                                !789&':;<=&1&>:?@A:<%1&>:?@A!6789&':;<=&1&>:?@A:<%                                                .(/0

                                !789&':*&B'>@=:@CA%                                                 "XFU?BF:<=&FM@BF:<=&FCKO
                                     DCE?AFGCHIF?J>&JBFCKFL&>CFM#*FN. 40OFPQQQR
                                !6789&':*&B'>@=:@CA%                                                      WXXFT?A T?I&F789&':
                                !789&':*?:&-1&>:?@A:<%1&>:?@A!6789&':*?:&-1&>:?@A:<%                                                             "-,0FU?BF=>CIJ'&IF
                                                                                                             "-4FJB&IFB=&'@K@'FC89&':F           M?BF=>CIJ'&IF8<O
                                !*?:&S>CE%4.!6*?:&S>CE%                                                          M?BFJB&IFKC>O
                                !"&>@CIS>CE%D7T#L!6"&>@CIS>CE%                                                                           W-XF">CIJ':@CA
                                                                                          WX3F*&B@GAFC>F">C'&IJ>&
                                !T&:UCI7KT?AJK?':J>&%
                          %%%%%%%%%%&'()*+%"(%,-../(/0                                          "-F@BF@I&A:@K@&IF8<F           W.-F#==&HH?:@CA
                                                                                                    M@I&A:@K@&BO               !"#$%&'(#')*++,#,-
                                !6T&:UCI7KT?AJK?':J>&%
                                     V
                           !6"#$%                              12&%345%&")(*/%6#7/



                                                                                              12&%'"%!89:!%4-<<#$=
                                                     F"#$Y789&':;<=&          Z%FWXX "X WNN
                                                     F"#$YT&:UCI7KT?AJK?':J>& Z%FWXX @A["-,0 "-4 WX3 "- W.-




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Problems encountered



Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Problem 1: Lifting and
       Normalisation
           • How to technically represent metadata in terms
                  of the CRM?
           • RDFS / OWL model exists
            • lack essential features (e.g. properties for
                        literals)
                 • require application-specific extensions
Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Problem 2: Mapping Ambiguity
        • Different valid representations for the same
                  attributes:                             !;;$I834
                                                             0"12
                                                                           %#$012$+834$
                                                                           5,2$+834$'<9
                                                                                                                !"#$"%"&'(')*&+,

                                                                                                           !;= >1+4&,1?
                                                                       !##$>1-@>1(4$A7B4*+                      !"#$                              !"#$"%"&'".+/*&/"#'0+
                                                                                                                                                        !*#"./*0
                                                                                                       %"#G$4H3?'84(
                                                            %"./$012$3&'()*4($
                                                                                                      5612$4H3?'84($,-9
                                                            5612$3&'()*4($789
                                                                                    !"#$%&'()*+,'-

                                                                !:"$F334??1+,'-                      %"G$)24($234*,<,*$'7B4*+$
                                                                                                         5612$)24($<'&9                                  !"#$"%"&'(')*&+-
                                                               %&'()*+"'+,-../'/$
                                                                        %"$,2$,(4-+,<,4($78$   !#C$D42,E-$'&$%&'*4()&4                                 !;= >1+4&,1?
                                                                            5,(4-+,<,429                                                                    !"#$
                                                                                                                                                   %:;$*'-2,2+2$'<$
                                                                                                                                                5,2$,-*'&3'&1+4($,-9
                                                                                                                             !##$>1-@>1(4$A7B4*+
                                                                                                                                      0"12

                                                                                                                                                        %"./$012$3&'()*4($
                                                                                                                                                        5612$3&'()*4($789
                                                         !"#$"%"&'".+/*&/"#'0+                              !;;$I834
                                                         !"#$%&'%(')*+,(*-#,."                                                                     !"#$%&'()*+,'-
                                                                                                        %&'()*+"'+,-../'/$       %#$012$+834$
                                                                                                                                 5,2$+834$'<9




                                                                          ++1"2"&.
                                                                               0#-33      I04$JKDAJ$JL>$*?122
                                                                             423&-2)/     F-$,-2+1-*4$'<$+04$*?122$53'22,7?8$6,+0$*'-*&4+4$M1?)49
Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Problem 3: Processing and
       Visualisation
           • The human / machine must “remember” the
                  meaning of mapping chains in order to retrieve
                  information
                 • E22-P2-E55 = the object type
                 • E22-invP108-P16-E29-P1-E41 = manufacture
                        method
Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Possible solutions



Bernhard Haslhofer & Philipp Nussbaumer, November 2009
A Simple Approach to (partially) solve Problem II + III

                   !"#$%&'(               )$'*                                  +",,-.%/!0"-.

                                                                               3.4#05#0'(&-010('#*6#
                                                                                   70'(&-010(58
                                        !"#$%&'&#(       !""#$%& $%'(#)*+(,-                             !."#)*+(,-#/'(&-010(2

                   )*+(,-5
                                                                                  3G#>%5#&:-(
                                       )#*+(&,%&-$       !""#$%& $%'(#)*+(,-                                  !A"#E-20&F



                                                         !""#$%& $%'(#)*+(,-                                !9"#32:';,-0:&
                                                                                39<=#>%5#?2:';,('                       39"A#(B?C:6('#
                                        ./%#(&/0                                                                       7@%5#(B?C:6('#0&8
                                                                                7@%5#?2:';,('#*68
                                                                                                             !D4#$%-(20%C


                   E(B%&-0,                                                    3.G#>%5#'0B(&50:&
                    E-%-(5                                                      705#'0B(&50:&#:18
                                                         !""#$%& $%'(#)*+(,-                                !D.#H0B(&50:&
                                                                               3L9#>%5#;&0-                                 3"#>%5#-6?(#
                                     )&1#$*&-$*2
                                                                                705#;&0-#:18                                705#-6?(#:18
                                 3)&/1#%#(425#&67%289                                                  3L<#>%5#M%C;(

                                                                 !D=#$(%5;2(B(&-#I&0-           !A<#J;B*(2             !DD#K6?(




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Generic Approach to solve Problems I+II+III
           • Methodology to create consistent mappings to
                  the CRM
                 • Step 1: Lifting the data source-specific data
                        model (e.g., relational model, XML) to the level
                        of CIDOC CRM
                 • Step 2: Map the lifted model to the CRM using
                        specific mapping guidelines (mapping
                        “algorithm”)

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
(1) Lifting & Normalisation
           • Lift a relational model to the CRM via an
                  intermediate semantic model




                                                                                                                     "'4C"0"?A
                                            /*$-&/'(")*+,          /*$-&/'0*/1              /*$-&/'$*,-&
                                        !LMM0A.% A.()0CDE)2*&                           !L8M0CDE)2*0'()%*$+$),&
                                                                   G8;0$/0$()%*$+$)(0
                                                 5'&(               DN0!$()%*$+$)/&     566789:";<4=67>69




                                                                                                                     1)B.%*$20A#()@
                                             !"#$%&'(")*+,         !"#$%&'0*/1             !"#$%&'$*,-&
                                                 !"#$%&                                     !'()%*$+$),&
                                                                     -./01)23'4
                                                                                        566789:";<4=67>69

                                                         0%%+&12%")($3")                       0%%+&12%")4$#2")$,)
                                                           $,)-+'-"+%/                          "(%&%/)&(,%$(*"

                                    !"#$%&'()*'++",-'(.,) !"#$




                                                                                                                     ?)@.*$#%.@0A#()@
                                          %')"(%&%/       1)23'4                 566789:";<4=67>69
                                                          CDE)2*4)/2,$F*$#%      ?#B.%0I#@(0.J,)J/
                                                          G),$#(H,#B             ?#B.%
                                                          >,#.(G),$#(            ?#B.%
                                                          ...                    KKK
Bernhard Haslhofer & Philipp Nussbaumer, November 2009
(2) Reducing Mapping Ambiguity
           • Mapping Methodology (Principles):
            • start from the lifted semantic model
            • find most specific CRM entities for source
                        domain and target range
                 • determine the shortest possible path between
                        these entities


Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Mapping                                                          Start                       p := next property of P




       “Algorithm”                                               E := set of source
                                                                  domain entities
                                                                                                    mapping chain c := ∅



                                                                                                            eend =
                                                                                                     findTargetRange(p)
                                                                    all entities of
                                              End        yes
                                                                     E iterated?
                                                                                                        add eend to c
                                                                         no


                                                                e := next entity of E
                                                                                                          x := eend



                                                                estart := findTarget
                                                                     Domain(e)
                                                                                               no
                                                                                                        isA(estart, x)?       yes

                                                               e := instanceOf(estart)                                               invert c
                                                                                                              no

                                                                   P : = Set of                       cl = findChainLink
                                                                properties p where       yes               (estart, x)              estart := x
                                                                getDomain(p) = e


                                                                                                          add cl to c

                                                                   all properties
                                                                   of P iterated?
                                                                                                    x := first element of cl


Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Mapping Example
              @"8A&B$96:&;$<1)*C1$1D9?
                                                    %"
       #"       EFF$9"G 9":&$CHI&'B                                  E.F$):&GBJKJ&8    $"
                                           =.2$J#$J:&GBJKJ&:$HL$
                                               <J:&GBJKJ&#?



                                               !"#$%&'()*
                          !"#$                                     +,,-./0123*4,-5,/


              %678'&$96:&;$<=>%?                    !"



            Comments:

                  ad 1.: define the source path (table as source domain, field name
Bernhard Haslhofer & Philipp Nussbaumer, November 2009
                  as relationship, field value as instance)
Limitations
        • Problem:
         • mapping might fail because there is no
                        “obvious” entity to map to
                 • unclear how to close mapping chain
           • Solution:
            • application context specific functions with
                        hardwired chains for given entities

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Discussion



Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Discussion
           • Problem 1:
            • could be resolved by providing precise
                        technical specifications
           • Problem 2:
            • users will always map differently against a
                        global ontology; guidelines can only reduce but
                        not completely resolve ambiguities

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Discussion

           • Problem 3:
            • “remembering” mapping chains = introducing
                        an application-specific model
                 • why not use this model instead of the CRM?

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Discussion
       • Why not map directly in a P2P manner?
                                                                                                equivalent            equivalent



                                                      !&,?@;                   A&589-                          !"#$%&'&(                7&589-
                         .!#$%&'()*$+(*,-,*,




                                                                                                                                                    !"#$%&'()*$+(*,-,*,
                                                    )*+&,-./$&                  'B%&1                          )*+&,-./$&              :#$&121

                                                   012"34&1523              ;&<2#5<"-52<                      012"34&1523            ;&<2#5<"-52<

                                                  415#"1/6"-&15"%               65<-                         415#"1/6"-&15"%             65<-

                                                )*=&1>&C3&>,15$-52<      '&=&1>&C3&>,15$-52<                     )*=&1>&               '&=&1>&

                                               6&-923)(6"<B(",-B1&               DDD                             ;2<21                 ;2<21'&(



                                                               !/<-",-5,"%%/E"<3E>&#"<-5,"%%/E&FB5="%&<-              !&#"<-5,"%%/E&FB5="%&<-

                                                                                               G2E&FB5="%&<,&>


Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Ad

More Related Content

What's hot (11)

Apache Kafka and the Data Mesh | Michael Noll, Confluent
Apache Kafka and the Data Mesh | Michael Noll, ConfluentApache Kafka and the Data Mesh | Michael Noll, Confluent
Apache Kafka and the Data Mesh | Michael Noll, Confluent
HostedbyConfluent
 
Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog
 Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog
Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog
Redis Labs
 
Parquet Strata/Hadoop World, New York 2013
Parquet Strata/Hadoop World, New York 2013Parquet Strata/Hadoop World, New York 2013
Parquet Strata/Hadoop World, New York 2013
Julien Le Dem
 
Image Processing on Delta Lake
Image Processing on Delta LakeImage Processing on Delta Lake
Image Processing on Delta Lake
Databricks
 
Rebecca Grant - Archival Description and Archival Arrangement
Rebecca Grant - Archival Description and Archival ArrangementRebecca Grant - Archival Description and Archival Arrangement
Rebecca Grant - Archival Description and Archival Arrangement
dri_ireland
 
Introduction to RDF
Introduction to RDFIntroduction to RDF
Introduction to RDF
Narni Rajesh
 
MongoDB and Azure Databricks
MongoDB and Azure DatabricksMongoDB and Azure Databricks
MongoDB and Azure Databricks
MongoDB
 
RDF and OWL
RDF and OWLRDF and OWL
RDF and OWL
Rachel Lovinger
 
Archivos, Archivonomia y manual de procedimientos
Archivos, Archivonomia y manual de procedimientosArchivos, Archivonomia y manual de procedimientos
Archivos, Archivonomia y manual de procedimientos
Centro de Investigación e Innovación Tecnológica (CIITEC)
 
Data Engineering A Deep Dive into Databricks
Data Engineering A Deep Dive into DatabricksData Engineering A Deep Dive into Databricks
Data Engineering A Deep Dive into Databricks
Knoldus Inc.
 
Sistemas de Archivo y Manejo de Correspondencia
Sistemas de Archivo y Manejo de CorrespondenciaSistemas de Archivo y Manejo de Correspondencia
Sistemas de Archivo y Manejo de Correspondencia
guestb250c0
 
Apache Kafka and the Data Mesh | Michael Noll, Confluent
Apache Kafka and the Data Mesh | Michael Noll, ConfluentApache Kafka and the Data Mesh | Michael Noll, Confluent
Apache Kafka and the Data Mesh | Michael Noll, Confluent
HostedbyConfluent
 
Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog
 Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog
Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog
Redis Labs
 
Parquet Strata/Hadoop World, New York 2013
Parquet Strata/Hadoop World, New York 2013Parquet Strata/Hadoop World, New York 2013
Parquet Strata/Hadoop World, New York 2013
Julien Le Dem
 
Image Processing on Delta Lake
Image Processing on Delta LakeImage Processing on Delta Lake
Image Processing on Delta Lake
Databricks
 
Rebecca Grant - Archival Description and Archival Arrangement
Rebecca Grant - Archival Description and Archival ArrangementRebecca Grant - Archival Description and Archival Arrangement
Rebecca Grant - Archival Description and Archival Arrangement
dri_ireland
 
Introduction to RDF
Introduction to RDFIntroduction to RDF
Introduction to RDF
Narni Rajesh
 
MongoDB and Azure Databricks
MongoDB and Azure DatabricksMongoDB and Azure Databricks
MongoDB and Azure Databricks
MongoDB
 
Data Engineering A Deep Dive into Databricks
Data Engineering A Deep Dive into DatabricksData Engineering A Deep Dive into Databricks
Data Engineering A Deep Dive into Databricks
Knoldus Inc.
 
Sistemas de Archivo y Manejo de Correspondencia
Sistemas de Archivo y Manejo de CorrespondenciaSistemas de Archivo y Manejo de Correspondencia
Sistemas de Archivo y Manejo de Correspondencia
guestb250c0
 

Viewers also liked (20)

Types and Annotations for CIDOC CRM Properties - Presentation
Types and Annotations for CIDOC CRM Properties - PresentationTypes and Annotations for CIDOC CRM Properties - Presentation
Types and Annotations for CIDOC CRM Properties - Presentation
Vladimir Alexiev, PhD, PMP
 
Mapping Cultural Heritage Information to CIDOC-CRM
Mapping Cultural Heritage Information to CIDOC-CRMMapping Cultural Heritage Information to CIDOC-CRM
Mapping Cultural Heritage Information to CIDOC-CRM
Maria Theodoridou
 
Methodological tips for mappings to CIDOC CRM
Methodological tips for mappings to CIDOC CRMMethodological tips for mappings to CIDOC CRM
Methodological tips for mappings to CIDOC CRM
ariadnenetwork
 
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRMDH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
Frederic Kaplan
 
Mapping VRA Core 4.0 to the CIDOC/CRM ontology
Mapping VRA Core 4.0 to the CIDOC/CRM ontologyMapping VRA Core 4.0 to the CIDOC/CRM ontology
Mapping VRA Core 4.0 to the CIDOC/CRM ontology
Giannis Tsakonas
 
Mapping Encoded Archival Description to CIDOC CRM
Mapping Encoded Archival Description to CIDOC CRMMapping Encoded Archival Description to CIDOC CRM
Mapping Encoded Archival Description to CIDOC CRM
Giannis Tsakonas
 
Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
 Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ... Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
Vladimir Alexiev, PhD, PMP
 
Metadata for 3D models, Sheena Bassett
Metadata for 3D models, Sheena BassettMetadata for 3D models, Sheena Bassett
Metadata for 3D models, Sheena Bassett
3D ICONS Project
 
The CIDOC CRM Family and LOD
The CIDOC CRM Family and LODThe CIDOC CRM Family and LOD
The CIDOC CRM Family and LOD
American Art Collaborative
 
The Future of Museum Documentation
The Future of Museum DocumentationThe Future of Museum Documentation
The Future of Museum Documentation
Collections Trust
 
601 Session5-Encyclopedias
601 Session5-Encyclopedias601 Session5-Encyclopedias
601 Session5-Encyclopedias
Diane Nahl
 
601 l5-encycs-100902165613-phpapp01
601 l5-encycs-100902165613-phpapp01601 l5-encycs-100902165613-phpapp01
601 l5-encycs-100902165613-phpapp01
bellhawaii
 
Big data - The beauty or the Beast
Big data  - The beauty or the BeastBig data  - The beauty or the Beast
Big data - The beauty or the Beast
Steliana Moraru
 
Searching beyond google
Searching beyond googleSearching beyond google
Searching beyond google
tdurnell
 
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...
Frederic Kaplan
 
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...
Ciro Mattia Gonano
 
ARIADNE: Final report on standards and project registry
ARIADNE: Final report on standards and project registryARIADNE: Final report on standards and project registry
ARIADNE: Final report on standards and project registry
ariadnenetwork
 
The Story behind Maphub
The Story behind MaphubThe Story behind Maphub
The Story behind Maphub
Bernhard Haslhofer
 
Cidoc2009 H20
Cidoc2009 H20Cidoc2009 H20
Cidoc2009 H20
Erfgoed 2.0
 
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...
Frederic Kaplan
 
Types and Annotations for CIDOC CRM Properties - Presentation
Types and Annotations for CIDOC CRM Properties - PresentationTypes and Annotations for CIDOC CRM Properties - Presentation
Types and Annotations for CIDOC CRM Properties - Presentation
Vladimir Alexiev, PhD, PMP
 
Mapping Cultural Heritage Information to CIDOC-CRM
Mapping Cultural Heritage Information to CIDOC-CRMMapping Cultural Heritage Information to CIDOC-CRM
Mapping Cultural Heritage Information to CIDOC-CRM
Maria Theodoridou
 
Methodological tips for mappings to CIDOC CRM
Methodological tips for mappings to CIDOC CRMMethodological tips for mappings to CIDOC CRM
Methodological tips for mappings to CIDOC CRM
ariadnenetwork
 
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRMDH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
Frederic Kaplan
 
Mapping VRA Core 4.0 to the CIDOC/CRM ontology
Mapping VRA Core 4.0 to the CIDOC/CRM ontologyMapping VRA Core 4.0 to the CIDOC/CRM ontology
Mapping VRA Core 4.0 to the CIDOC/CRM ontology
Giannis Tsakonas
 
Mapping Encoded Archival Description to CIDOC CRM
Mapping Encoded Archival Description to CIDOC CRMMapping Encoded Archival Description to CIDOC CRM
Mapping Encoded Archival Description to CIDOC CRM
Giannis Tsakonas
 
Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
 Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ... Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
Vladimir Alexiev, PhD, PMP
 
Metadata for 3D models, Sheena Bassett
Metadata for 3D models, Sheena BassettMetadata for 3D models, Sheena Bassett
Metadata for 3D models, Sheena Bassett
3D ICONS Project
 
The Future of Museum Documentation
The Future of Museum DocumentationThe Future of Museum Documentation
The Future of Museum Documentation
Collections Trust
 
601 Session5-Encyclopedias
601 Session5-Encyclopedias601 Session5-Encyclopedias
601 Session5-Encyclopedias
Diane Nahl
 
601 l5-encycs-100902165613-phpapp01
601 l5-encycs-100902165613-phpapp01601 l5-encycs-100902165613-phpapp01
601 l5-encycs-100902165613-phpapp01
bellhawaii
 
Big data - The beauty or the Beast
Big data  - The beauty or the BeastBig data  - The beauty or the Beast
Big data - The beauty or the Beast
Steliana Moraru
 
Searching beyond google
Searching beyond googleSearching beyond google
Searching beyond google
tdurnell
 
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...
Frederic Kaplan
 
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...
Ciro Mattia Gonano
 
ARIADNE: Final report on standards and project registry
ARIADNE: Final report on standards and project registryARIADNE: Final report on standards and project registry
ARIADNE: Final report on standards and project registry
ariadnenetwork
 
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...
Frederic Kaplan
 
Ad

Similar to CIDOC CRM in Practice (20)

Chinese
ChineseChinese
Chinese
1234bateman
 
OSGi - beyond the myth
OSGi -  beyond the mythOSGi -  beyond the myth
OSGi - beyond the myth
Clément Escoffier
 
The Lean Startup - simplified
The Lean Startup - simplifiedThe Lean Startup - simplified
The Lean Startup - simplified
Stefano Bernardi
 
referente
referentereferente
referente
betsycaru
 
2012 Report to the Council on Postsecondary Education by Kentucky's private c...
2012 Report to the Council on Postsecondary Education by Kentucky's private c...2012 Report to the Council on Postsecondary Education by Kentucky's private c...
2012 Report to the Council on Postsecondary Education by Kentucky's private c...
Association of Independent Kentucky Colleges and Universities
 
9t rainforest menus
9t rainforest menus9t rainforest menus
9t rainforest menus
Ashleigh100
 
Overview of APEC Region Wine Trade 2011
Overview of APEC Region Wine Trade 2011Overview of APEC Region Wine Trade 2011
Overview of APEC Region Wine Trade 2011
Asian Food Regulation Information Service
 
Google Talk: DOs and DON'Ts of Mobile Strategy
Google Talk: DOs and DON'Ts of Mobile StrategyGoogle Talk: DOs and DON'Ts of Mobile Strategy
Google Talk: DOs and DON'Ts of Mobile Strategy
Jason Grigsby
 
分光光度法快速测定玉米叶片中的叶绿素
分光光度法快速测定玉米叶片中的叶绿素分光光度法快速测定玉米叶片中的叶绿素
分光光度法快速测定玉米叶片中的叶绿素
sugeladi
 
Company Resume
Company ResumeCompany Resume
Company Resume
Parsa Tadbir Sanat Engineering and Consulting Co.
 
Entrepreneurship 101 - The Nuts and Bolts of Starting a Business
Entrepreneurship 101 -  The Nuts and Bolts of Starting a BusinessEntrepreneurship 101 -  The Nuts and Bolts of Starting a Business
Entrepreneurship 101 - The Nuts and Bolts of Starting a Business
MaRS Discovery District
 
Get me a mobile strategy or you're fired web 2
Get me a mobile strategy or you're fired   web 2Get me a mobile strategy or you're fired   web 2
Get me a mobile strategy or you're fired web 2
Jason Grigsby
 
Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!
Jason Grigsby
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentation
Carissa Caloud
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentation
Carissa Caloud
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentation
guyvonh
 
Nota 041109
Nota 041109Nota 041109
Nota 041109
el emboscado
 
[Harvard CS264] 04 - Intermediate-level CUDA Programming
[Harvard CS264] 04 - Intermediate-level CUDA Programming[Harvard CS264] 04 - Intermediate-level CUDA Programming
[Harvard CS264] 04 - Intermediate-level CUDA Programming
npinto
 
PQ Issue 4_2015
PQ Issue 4_2015PQ Issue 4_2015
PQ Issue 4_2015
Siti Aisyah Che Mahzan
 
SEO - It Works Even if You Don’t Know How or Why
SEO - It Works Even if You Don’t Know How or Why SEO - It Works Even if You Don’t Know How or Why
SEO - It Works Even if You Don’t Know How or Why
Wolfgang Weicht
 
The Lean Startup - simplified
The Lean Startup - simplifiedThe Lean Startup - simplified
The Lean Startup - simplified
Stefano Bernardi
 
9t rainforest menus
9t rainforest menus9t rainforest menus
9t rainforest menus
Ashleigh100
 
Google Talk: DOs and DON'Ts of Mobile Strategy
Google Talk: DOs and DON'Ts of Mobile StrategyGoogle Talk: DOs and DON'Ts of Mobile Strategy
Google Talk: DOs and DON'Ts of Mobile Strategy
Jason Grigsby
 
分光光度法快速测定玉米叶片中的叶绿素
分光光度法快速测定玉米叶片中的叶绿素分光光度法快速测定玉米叶片中的叶绿素
分光光度法快速测定玉米叶片中的叶绿素
sugeladi
 
Entrepreneurship 101 - The Nuts and Bolts of Starting a Business
Entrepreneurship 101 -  The Nuts and Bolts of Starting a BusinessEntrepreneurship 101 -  The Nuts and Bolts of Starting a Business
Entrepreneurship 101 - The Nuts and Bolts of Starting a Business
MaRS Discovery District
 
Get me a mobile strategy or you're fired web 2
Get me a mobile strategy or you're fired   web 2Get me a mobile strategy or you're fired   web 2
Get me a mobile strategy or you're fired web 2
Jason Grigsby
 
Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!
Jason Grigsby
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentation
Carissa Caloud
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentation
Carissa Caloud
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentation
guyvonh
 
[Harvard CS264] 04 - Intermediate-level CUDA Programming
[Harvard CS264] 04 - Intermediate-level CUDA Programming[Harvard CS264] 04 - Intermediate-level CUDA Programming
[Harvard CS264] 04 - Intermediate-level CUDA Programming
npinto
 
SEO - It Works Even if You Don’t Know How or Why
SEO - It Works Even if You Don’t Know How or Why SEO - It Works Even if You Don’t Know How or Why
SEO - It Works Even if You Don’t Know How or Why
Wolfgang Weicht
 
Ad

More from Bernhard Haslhofer (20)

Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Bernhard Haslhofer
 
Token Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate CurrenciesToken Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate Currencies
Bernhard Haslhofer
 
Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?
Bernhard Haslhofer
 
Measurements in Cryptocurrency Networks
Measurements in Cryptocurrency NetworksMeasurements in Cryptocurrency Networks
Measurements in Cryptocurrency Networks
Bernhard Haslhofer
 
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
 Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur... Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
Bernhard Haslhofer
 
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Bernhard Haslhofer
 
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency AnalyticsO Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
Bernhard Haslhofer
 
Mind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software EngineeringMind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software Engineering
Bernhard Haslhofer
 
GraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency EcosystemsGraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency Ecosystems
Bernhard Haslhofer
 
BITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection StrategiesBITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection Strategies
Bernhard Haslhofer
 
Bitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing DevelopmentsBitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing Developments
Bernhard Haslhofer
 
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Bernhard Haslhofer
 
The value of open data and the OpenGLAM network
The value of open data and the OpenGLAM networkThe value of open data and the OpenGLAM network
The value of open data and the OpenGLAM network
Bernhard Haslhofer
 
Offene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische PerspektiveOffene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische Perspektive
Bernhard Haslhofer
 
Open Data - Principles and Techniques
Open Data - Principles and TechniquesOpen Data - Principles and Techniques
Open Data - Principles and Techniques
Bernhard Haslhofer
 
Semantic Tagging on Historical Maps
Semantic Tagging on Historical MapsSemantic Tagging on Historical Maps
Semantic Tagging on Historical Maps
Bernhard Haslhofer
 
OpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup GrazOpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup Graz
Bernhard Haslhofer
 
Semantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the WebSemantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the Web
Bernhard Haslhofer
 
Linked (Open) Data
Linked (Open) DataLinked (Open) Data
Linked (Open) Data
Bernhard Haslhofer
 
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Bernhard Haslhofer
 
Token Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate CurrenciesToken Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate Currencies
Bernhard Haslhofer
 
Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?
Bernhard Haslhofer
 
Measurements in Cryptocurrency Networks
Measurements in Cryptocurrency NetworksMeasurements in Cryptocurrency Networks
Measurements in Cryptocurrency Networks
Bernhard Haslhofer
 
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
 Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur... Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
Bernhard Haslhofer
 
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Bernhard Haslhofer
 
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency AnalyticsO Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
Bernhard Haslhofer
 
Mind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software EngineeringMind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software Engineering
Bernhard Haslhofer
 
GraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency EcosystemsGraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency Ecosystems
Bernhard Haslhofer
 
BITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection StrategiesBITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection Strategies
Bernhard Haslhofer
 
Bitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing DevelopmentsBitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing Developments
Bernhard Haslhofer
 
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Bernhard Haslhofer
 
The value of open data and the OpenGLAM network
The value of open data and the OpenGLAM networkThe value of open data and the OpenGLAM network
The value of open data and the OpenGLAM network
Bernhard Haslhofer
 
Offene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische PerspektiveOffene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische Perspektive
Bernhard Haslhofer
 
Open Data - Principles and Techniques
Open Data - Principles and TechniquesOpen Data - Principles and Techniques
Open Data - Principles and Techniques
Bernhard Haslhofer
 
Semantic Tagging on Historical Maps
Semantic Tagging on Historical MapsSemantic Tagging on Historical Maps
Semantic Tagging on Historical Maps
Bernhard Haslhofer
 
OpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup GrazOpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup Graz
Bernhard Haslhofer
 
Semantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the WebSemantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the Web
Bernhard Haslhofer
 

Recently uploaded (20)

Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
AI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamsonAI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamson
UXPA Boston
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Agentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community MeetupAgentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community Meetup
Manoj Batra (1600 + Connections)
 
Developing System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptxDeveloping System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptx
wondimagegndesta
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?
Eric Torreborre
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
AI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamsonAI-proof your career by Olivier Vroom and David WIlliamson
AI-proof your career by Olivier Vroom and David WIlliamson
UXPA Boston
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Developing System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptxDeveloping System Infrastructure Design Plan.pptx
Developing System Infrastructure Design Plan.pptx
wondimagegndesta
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?
Eric Torreborre
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 

CIDOC CRM in Practice

  • 1. CIDOC CRM in Practice - Experiences, Problems, and Possible Solutions - Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 2. Background • BRICKS Project (2003 - 2007) • Goal • build an infrastructure for integrating contents and metadata from heterogeneous sources • build value added services on top Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 3. Background • Build an application that provides access to archaeological findings from two distinct institutions • Provided advanced search (e.g. faceted search) • Use the CIDOC-CRM to deal with metadata heterogeneities Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 4. Background Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 5. CIDOC CRM Mapping • Metadata Schemes: !&,?@; A&589- !"#$%&'&( 7&589- .!#$%&'()*$+(*,-,*, !"#$%&'()*$+(*,-,*, )*+&,-./$& 'B%&1 )*+&,-./$& :#$&121 012"34&1523 ;&<2#5<"-52< 012"34&1523 ;&<2#5<"-52< 415#"1/6"-&15"% 65<- 415#"1/6"-&15"% 65<- )*=&1>&C3&>,15$-52< '&=&1>&C3&>,15$-52< )*=&1>& '&=&1>& 6&-923)(6"<B(",-B1& DDD ;2<21 ;2<21'&( !/<-",-5,"%%/E"<3E>&#"<-5,"%%/E&FB5="%&<- !&#"<-5,"%%/E&FB5="%&<- G2E&FB5="%&<,&> Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 6. CIDOC CRM Mapping • Sample Metadata Instance: !"#$%&'( !"#$%& !""#$%&'()*+"#,"% '()"#*+,-" '-./ '()"#*&".#/0-*012 0-12/34-563789 3"045* (:#%34 6/078/,98*"/08: ;-56 9"*51;'<982=<> <=>?@A3->3789 >>> ::: Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 7. CIDOC CRM Mapping • The CIDOC CRM: !""#&0?)I)<2()0' !"+#510?K<()0' EEE !;#$0'?)()0'#:(2(- !;M#O)6K23#7(-. !;J#7.2B- !4#D<()P)(* EEE !+#,-./0123#!'()(* !;"#>0<K.-'( EEE !=#5-1)0? !8#!P-'( EEE !4;#7'I01.2()0'#FGH-<( !+C#>-6)B'#01#510<-?K1- EEE !8M#N2'BK2B- !4@#,A)'B !++#&2'9&2?-#FGH-<( !+J#$0'<-/(K23#FGH-<( !88#,*/- !84#&2(-1)23 !;C#D<(01 EEE EEE !44#5-16)6(-'(#7(-. EEE !8J#&-26K1-.-'(#L')( !8"#$0'(2<(#50)'( !=8#D??1-66 !"#$%&#!'()(* !=+#FGH-<(#7?-'()I)-1 !="#D//-332()0' !=C#,).-#D//-332()0' !8@#>2(- !8+#,).-9:/2' !==#532<-#D//-332()0' !=4#:/2()23#$001?)'2(-6 !8;#532<- EEE EEE !8=#>).-'6)0' !M@#QK.G-1 !8C#51).)()P-#O23K- !M"#,).-#51).)()P- !M+#:(1)'B Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 8. CIDOC CRM Mapping • Source Metadata Expressed in CRM: >MH$/66#,,-2130 >MH$/66#,,-2130 GH$1.$1E#02141#E$78$ 51E#02141#.= >LL$!86# >?H$'3+<A#02 K<L GHH-?.B!+I=AH-JH. !40& GHJK$1.$+3A63.#E$34$ 543:A.$6-:2$34= GIJ$E3+<A#02.$ GH$1.$1E#02141#E$78$ >?H$'3+<A#02 51.$E3+<A#02#E$10= GC$"-.$286#$ 51E#02141#.= 51.$286#$34= >LI$*-2#:1-, >CC$*-0D*-E#$(7F#+2 GHCK$#A6,38#E GHJ@$"-.$6:3E<+#E M4"6 59-.$#A6,38#E$10= 59-.$6:3E<+#E$78= G?$"-.$032# >KC$Q2:10B 2345#&2*4"62#78)7$2 >HC$G:3E<+2130 GM?$"-.$E1A#0.130 492:)842;<=2>?@ABC,2 51.$E1A#0.130$34= GH?@$:#6:#.#02. DEF)20$$7)62(08(#2<=2 GHK$<.#E$.6#+141+$37F#+2$ 5"-.$:#6:#.#02-2130= A?@A>, 59-.$<.#E$43:= >LM$'1A#0.130 >CN$'#.1B0$3:$G:3+#E<:# GH$1.$1E#02141#E$78$ GNH$"-.$<012 GNJ$"-.$;-,<# GC$"-.$286#$ >?@$&A-B# 51.$<012$34= 51.$286#$34= 51E#02141#.= >MH$/66#,,-2130 >L@$*#-.<:#A#02$O012 >KJ$P<A7#: >LL$!86# L'87(N24821#55)8)6 * +,-. /)0*1' !!"#$#%& !"#$$ !"#$%&'(%$%)*$+,-.. %&$'#&() /0$10.2-0+#$34$2"#$+,-..$563..17,8$912"$+30+:#2#$;-,<#= Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 9. CIDOC CRM Mapping • Mappings expressed as mapping chains: !"#$% 4"0/7%#$% !$&'()*%+,,-./0123*4,-5,/!6$&'()*% !89:!%!;4 !789&':;<=&% !"#$ !6789&':;<=&% WNNF;<=& !789&':;<=&1&>:?@A:<%1&>:?@A!6789&':;<=&1&>:?@A:<% .(/0 !789&':*&B'>@=:@CA% "XFU?BF:<=&FM@BF:<=&FCKO DCE?AFGCHIF?J>&JBFCKFL&>CFM#*FN. 40OFPQQQR !6789&':*&B'>@=:@CA% WXXFT?A T?I&F789&': !789&':*?:&-1&>:?@A:<%1&>:?@A!6789&':*?:&-1&>:?@A:<% "-,0FU?BF=>CIJ'&IF "-4FJB&IFB=&'@K@'FC89&':F M?BF=>CIJ'&IF8<O !*?:&S>CE%4.!6*?:&S>CE% M?BFJB&IFKC>O !"&>@CIS>CE%D7T#L!6"&>@CIS>CE% W-XF">CIJ':@CA WX3F*&B@GAFC>F">C'&IJ>& !T&:UCI7KT?AJK?':J>&% %%%%%%%%%%&'()*+%"(%,-../(/0 "-F@BF@I&A:@K@&IF8<F W.-F#==&HH?:@CA M@I&A:@K@&BO !"#$%&'(#')*++,#,- !6T&:UCI7KT?AJK?':J>&% V !6"#$% 12&%345%&")(*/%6#7/ 12&%'"%!89:!%4-<<#$= F"#$Y789&':;<=& Z%FWXX "X WNN F"#$YT&:UCI7KT?AJK?':J>& Z%FWXX @A["-,0 "-4 WX3 "- W.- Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 10. Problems encountered Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 11. Problem 1: Lifting and Normalisation • How to technically represent metadata in terms of the CRM? • RDFS / OWL model exists • lack essential features (e.g. properties for literals) • require application-specific extensions Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 12. Problem 2: Mapping Ambiguity • Different valid representations for the same attributes: !;;$I834 0"12 %#$012$+834$ 5,2$+834$'<9 !"#$"%"&'(')*&+, !;= >1+4&,1? !##$>1-@>1(4$A7B4*+ !"#$ !"#$"%"&'".+/*&/"#'0+ !*#"./*0 %"#G$4H3?'84( %"./$012$3&'()*4($ 5612$4H3?'84($,-9 5612$3&'()*4($789 !"#$%&'()*+,'- !:"$F334??1+,'- %"G$)24($234*,<,*$'7B4*+$ 5612$)24($<'&9 !"#$"%"&'(')*&+- %&'()*+"'+,-../'/$ %"$,2$,(4-+,<,4($78$ !#C$D42,E-$'&$%&'*4()&4 !;= >1+4&,1? 5,(4-+,<,429 !"#$ %:;$*'-2,2+2$'<$ 5,2$,-*'&3'&1+4($,-9 !##$>1-@>1(4$A7B4*+ 0"12 %"./$012$3&'()*4($ 5612$3&'()*4($789 !"#$"%"&'".+/*&/"#'0+ !;;$I834 !"#$%&'%(')*+,(*-#,." !"#$%&'()*+,'- %&'()*+"'+,-../'/$ %#$012$+834$ 5,2$+834$'<9 ++1"2"&. 0#-33 I04$JKDAJ$JL>$*?122 423&-2)/ F-$,-2+1-*4$'<$+04$*?122$53'22,7?8$6,+0$*'-*&4+4$M1?)49 Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 13. Problem 3: Processing and Visualisation • The human / machine must “remember” the meaning of mapping chains in order to retrieve information • E22-P2-E55 = the object type • E22-invP108-P16-E29-P1-E41 = manufacture method Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 14. Possible solutions Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 15. A Simple Approach to (partially) solve Problem II + III !"#$%&'( )$'* +",,-.%/!0"-. 3.4#05#0'(&-010('#*6# 70'(&-010(58 !"#$%&'&#( !""#$%& $%'(#)*+(,- !."#)*+(,-#/'(&-010(2 )*+(,-5 3G#>%5#&:-( )#*+(&,%&-$ !""#$%& $%'(#)*+(,- !A"#E-20&F !""#$%& $%'(#)*+(,- !9"#32:';,-0:& 39<=#>%5#?2:';,(' 39"A#(B?C:6('# ./%#(&/0 7@%5#(B?C:6('#0&8 7@%5#?2:';,('#*68 !D4#$%-(20%C E(B%&-0, 3.G#>%5#'0B(&50:& E-%-(5 705#'0B(&50:&#:18 !""#$%& $%'(#)*+(,- !D.#H0B(&50:& 3L9#>%5#;&0- 3"#>%5#-6?(# )&1#$*&-$*2 705#;&0-#:18 705#-6?(#:18 3)&/1#%#(425#&67%289 3L<#>%5#M%C;( !D=#$(%5;2(B(&-#I&0- !A<#J;B*(2 !DD#K6?( Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 16. Generic Approach to solve Problems I+II+III • Methodology to create consistent mappings to the CRM • Step 1: Lifting the data source-specific data model (e.g., relational model, XML) to the level of CIDOC CRM • Step 2: Map the lifted model to the CRM using specific mapping guidelines (mapping “algorithm”) Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 17. (1) Lifting & Normalisation • Lift a relational model to the CRM via an intermediate semantic model "'4C"0"?A /*$-&/'(")*+, /*$-&/'0*/1 /*$-&/'$*,-& !LMM0A.% A.()0CDE)2*& !L8M0CDE)2*0'()%*$+$),& G8;0$/0$()%*$+$)(0 5'&( DN0!$()%*$+$)/& 566789:";<4=67>69 1)B.%*$20A#()@ !"#$%&'(")*+, !"#$%&'0*/1 !"#$%&'$*,-& !"#$%& !'()%*$+$),& -./01)23'4 566789:";<4=67>69 0%%+&12%")($3") 0%%+&12%")4$#2")$,) $,)-+'-"+%/ "(%&%/)&(,%$(*" !"#$%&'()*'++",-'(.,) !"#$ ?)@.*$#%.@0A#()@ %')"(%&%/ 1)23'4 566789:";<4=67>69 CDE)2*4)/2,$F*$#% ?#B.%0I#@(0.J,)J/ G),$#(H,#B ?#B.% >,#.(G),$#( ?#B.% ... KKK Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 18. (2) Reducing Mapping Ambiguity • Mapping Methodology (Principles): • start from the lifted semantic model • find most specific CRM entities for source domain and target range • determine the shortest possible path between these entities Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 19. Mapping Start p := next property of P “Algorithm” E := set of source domain entities mapping chain c := ∅ eend = findTargetRange(p) all entities of End yes E iterated? add eend to c no e := next entity of E x := eend estart := findTarget Domain(e) no isA(estart, x)? yes e := instanceOf(estart) invert c no P : = Set of cl = findChainLink properties p where yes (estart, x) estart := x getDomain(p) = e add cl to c all properties of P iterated? x := first element of cl Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 20. Mapping Example @"8A&B$96:&;$<1)*C1$1D9? %" #" EFF$9"G 9":&$CHI&'B E.F$):&GBJKJ&8 $" =.2$J#$J:&GBJKJ&:$HL$ <J:&GBJKJ&#? !"#$%&'()* !"#$ +,,-./0123*4,-5,/ %678'&$96:&;$<=>%? !" Comments: ad 1.: define the source path (table as source domain, field name Bernhard Haslhofer & Philipp Nussbaumer, November 2009 as relationship, field value as instance)
  • 21. Limitations • Problem: • mapping might fail because there is no “obvious” entity to map to • unclear how to close mapping chain • Solution: • application context specific functions with hardwired chains for given entities Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 22. Discussion Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 23. Discussion • Problem 1: • could be resolved by providing precise technical specifications • Problem 2: • users will always map differently against a global ontology; guidelines can only reduce but not completely resolve ambiguities Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 24. Discussion • Problem 3: • “remembering” mapping chains = introducing an application-specific model • why not use this model instead of the CRM? Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 25. Discussion • Why not map directly in a P2P manner? equivalent equivalent !&,?@; A&589- !"#$%&'&( 7&589- .!#$%&'()*$+(*,-,*, !"#$%&'()*$+(*,-,*, )*+&,-./$& 'B%&1 )*+&,-./$& :#$&121 012"34&1523 ;&<2#5<"-52< 012"34&1523 ;&<2#5<"-52< 415#"1/6"-&15"% 65<- 415#"1/6"-&15"% 65<- )*=&1>&C3&>,15$-52< '&=&1>&C3&>,15$-52< )*=&1>& '&=&1>& 6&-923)(6"<B(",-B1& DDD ;2<21 ;2<21'&( !/<-",-5,"%%/E"<3E>&#"<-5,"%%/E&FB5="%&<- !&#"<-5,"%%/E&FB5="%&<- G2E&FB5="%&<,&> Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  翻译: