SlideShare a Scribd company logo
1
Capturing and querying fine-grained provenance of
preprocessing pipelines in data science
(DP4DS)
Adriane Chapman1, Paolo Missier2, Giulia Simonelli3, Riccardo Torlone3
(1) University of Southampton, UK
(2) Newcastle University, UK
(3) Universita’ Roma Tre, Italy
VLDB 2021
2
M
Data
sources
Acquisition,
wrangling
Test
set
Training
set
Preparing for learning
Model
Selection
Training /
test split
Model
Testing
Model
Learning
Model
Validation
Predictions
Model
Usage
Decision points:
- Source selection
- Sample / population shape
- Cleaning
- Integration
Decision points:
- Sampling / stratification
- Feature selection
- Feature engineering
- Dimensionality reduction
- Regularisation
- Imputation
- Class rebalancing
- …
Provenance
trace
M
Model
Learning
Training
set
Training /
test split
Imputation
Feature
selection
D’ D’’
…
Hyper
parameters
C1 C2
C3
Pipeline structure with provenance annotations
3
<event
name>
Provenance of what?
Base case:
- opaque program Po
- coarse-grained dataset
Default provenance:
- Every output depends on every input
P0
- Transparent program PT
- coarse-grained datasets
PT
f
if c:
y1  x1
else:
y1  x2
Y2  f(x1, x2)
- Transparent program PT
- Fine-grained datasets
PT
…
…
…
…
…
…
…
…
- Transparent pipeline
- Fine-grained datasets
P’T
…
…
…
…
…
…
…
…
Pn
T
Pn
T
Pn
T
4
Typical operators used in data prep
vertical augmentation
Example:
5
Operators
14/03/2021 03_ b _c .
:///U / 65/D a /03_ b _c . 1/1
14/03/2021 03_ b _c .
:///U / 65/D a /03_ b _c . 1/1
op
Ex.: vertical augmentation  adding columns
- Values change
- Shape change
6
Provenance patterns for each operator
7
Provenance templates
Template + binding rules = instantiated provenance fragment
+
14/03/2021 03_ b _c .
:///U / 65/D a /03_ b _c . 1/1
14/03/2021 03_ b _c .
:///U / 65/D a /03_ b _c . 1/1
op
{old values: F, I, V}  {new values: F’, J, V’}
8
This applies to all operators…
9
Making your code provenance-aware
df = pd.DataFrame(…)
# Create a new provenance document
p = pr.Provenance(df, savepath)
# create provanance tracker
tracker=ProvenanceTracker.ProvenanceTracker(df, p)
# instance generation
tracker.df = tracker.df.append({'key2': 'K4'},
ignore_index=True)
# imputation
tracker.df = tracker.df.fillna('imputato')
# feature transformation of column D
tracker.df['D'] = tracker.df['D']*2
# Feature transformation of column key2
tracker.df['key2'] = tracker.df['key2']*2
Approach:
A python tracker object intercepts dataframe
operations
Operations that are channeled through the tracker
generate provenance fragments
10
Shape change example: one-hot encoding
Regular pandas operators are “observed” by
the tracker
The tracker object should be constantly in sync
with the state of the underlying dataframe
1
2
11
Shape change example: one-hot encoding
1
2
New entities with unknown derivation
Runtime analysis Provenance construction
Detect shape change operator
1
New columns added
1
2 Column ‘c’ removed
Inference: space transformation
- New columns derived from ‘c’,
- Column ‘c’ invalidated
12
Putting it all together
13
Evaluation – benchmark datasets
Census pipeline:
Clerical cleaning on
every cell
(removing blanks)
Replace all ‘?’
with NaN
One-hot encoding
7 categorical
variables
Map binary
labels to 0,1
Drop one
column
14
Evaluation – benchmark queries
15
Evaluation: Provenance capture and query times
16
Scalability
Synthetic Benchmarking datasets created using TPC-DI. (*)
- 6 operations tested in isolation (no pipeline)
(*) Meikel Poess, Tilmann Rabl, Hans-Arno Jacobsen, and Brian Caufield. 2014. TPC-DI: The First Industry Benchmark for Data Integration. VLDB 7, 13(Aug. 2014),
17
Scalability
(*) Meikel Poess, Tilmann Rabl, Hans-Arno Jacobsen, and Brian Caufield. 2014. TPC-DI: The First Industry Benchmark for Data Integration. VLDB 7, 13(Aug. 2014),
• IG only affects a small number of data values
• FS touches every data item but only Invalidates cells
• VT and Imputation only touch a small number of cells
• FT and ST are more likely to touch every data item and
create new entities
18
Summary
Practical and efficient, but:
1. Can it be extended to arbitrary python / pandas programs?
2. What is the killer app for such granular provenance?
A method and infrastructure for collecting and querying very fine-grained
provenance from data processing pipelines
Ad

More Related Content

What's hot (20)

How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?
Anubhav Jain
 
Sentiment Knowledge Discovery in Twitter Streaming Data
Sentiment Knowledge Discovery in Twitter Streaming DataSentiment Knowledge Discovery in Twitter Streaming Data
Sentiment Knowledge Discovery in Twitter Streaming Data
Albert Bifet
 
The Influence of the Java Collection Framework on Overall Energy Consumption
The Influence of the Java Collection Framework on Overall Energy ConsumptionThe Influence of the Java Collection Framework on Overall Energy Consumption
The Influence of the Java Collection Framework on Overall Energy Consumption
GreenLabAtDI
 
DuraMat Data Analytics
DuraMat Data AnalyticsDuraMat Data Analytics
DuraMat Data Analytics
Anubhav Jain
 
Scalable Whole-Exome Sequence Data Processing Using Workflow On A Cloud
Scalable Whole-Exome Sequence Data Processing Using Workflow On A CloudScalable Whole-Exome Sequence Data Processing Using Workflow On A Cloud
Scalable Whole-Exome Sequence Data Processing Using Workflow On A Cloud
Paolo Missier
 
The lifecycle of reproducible science data and what provenance has got to do ...
The lifecycle of reproducible science data and what provenance has got to do ...The lifecycle of reproducible science data and what provenance has got to do ...
The lifecycle of reproducible science data and what provenance has got to do ...
Paolo Missier
 
Materials Project computation and database infrastructure
Materials Project computation and database infrastructureMaterials Project computation and database infrastructure
Materials Project computation and database infrastructure
Anubhav Jain
 
Software tools for high-throughput materials data generation and data mining
Software tools for high-throughput materials data generation and data miningSoftware tools for high-throughput materials data generation and data mining
Software tools for high-throughput materials data generation and data mining
Anubhav Jain
 
Deep Learning on nVidia GPUs for QSAR, QSPR and QNAR predictions
Deep Learning on nVidia GPUs for QSAR, QSPR and QNAR predictionsDeep Learning on nVidia GPUs for QSAR, QSPR and QNAR predictions
Deep Learning on nVidia GPUs for QSAR, QSPR and QNAR predictions
Valery Tkachenko
 
Pathogen phylogenetics using BEAST
Pathogen phylogenetics using BEASTPathogen phylogenetics using BEAST
Pathogen phylogenetics using BEAST
Bioinformatics and Computational Biosciences Branch
 
Computing Just What You Need: Online Data Analysis and Reduction at Extreme ...
Computing Just What You Need: Online Data Analysis and Reduction  at Extreme ...Computing Just What You Need: Online Data Analysis and Reduction  at Extreme ...
Computing Just What You Need: Online Data Analysis and Reduction at Extreme ...
Ian Foster
 
Automating materials science workflows with pymatgen, FireWorks, and atomate
Automating materials science workflows with pymatgen, FireWorks, and atomateAutomating materials science workflows with pymatgen, FireWorks, and atomate
Automating materials science workflows with pymatgen, FireWorks, and atomate
Anubhav Jain
 
Project Matsu: Elastic Clouds for Disaster Relief
Project Matsu: Elastic Clouds for Disaster ReliefProject Matsu: Elastic Clouds for Disaster Relief
Project Matsu: Elastic Clouds for Disaster Relief
Robert Grossman
 
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Ian Foster
 
Many Task Applications for Grids and Supercomputers
Many Task Applications for Grids and SupercomputersMany Task Applications for Grids and Supercomputers
Many Task Applications for Grids and Supercomputers
Ian Foster
 
Speeding up information extraction programs: a holistic optimizer and a learn...
Speeding up information extraction programs: a holistic optimizer and a learn...Speeding up information extraction programs: a holistic optimizer and a learn...
Speeding up information extraction programs: a holistic optimizer and a learn...
INRIA-OAK
 
Automated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design ProblemsAutomated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design Problems
Anubhav Jain
 
Bioclouds CAMDA (Robert Grossman) 09-v9p
Bioclouds CAMDA (Robert Grossman) 09-v9pBioclouds CAMDA (Robert Grossman) 09-v9p
Bioclouds CAMDA (Robert Grossman) 09-v9p
Robert Grossman
 
Coding the Continuum
Coding the ContinuumCoding the Continuum
Coding the Continuum
Ian Foster
 
Conducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials ProjectConducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials Project
Anubhav Jain
 
How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?
Anubhav Jain
 
Sentiment Knowledge Discovery in Twitter Streaming Data
Sentiment Knowledge Discovery in Twitter Streaming DataSentiment Knowledge Discovery in Twitter Streaming Data
Sentiment Knowledge Discovery in Twitter Streaming Data
Albert Bifet
 
The Influence of the Java Collection Framework on Overall Energy Consumption
The Influence of the Java Collection Framework on Overall Energy ConsumptionThe Influence of the Java Collection Framework on Overall Energy Consumption
The Influence of the Java Collection Framework on Overall Energy Consumption
GreenLabAtDI
 
DuraMat Data Analytics
DuraMat Data AnalyticsDuraMat Data Analytics
DuraMat Data Analytics
Anubhav Jain
 
Scalable Whole-Exome Sequence Data Processing Using Workflow On A Cloud
Scalable Whole-Exome Sequence Data Processing Using Workflow On A CloudScalable Whole-Exome Sequence Data Processing Using Workflow On A Cloud
Scalable Whole-Exome Sequence Data Processing Using Workflow On A Cloud
Paolo Missier
 
The lifecycle of reproducible science data and what provenance has got to do ...
The lifecycle of reproducible science data and what provenance has got to do ...The lifecycle of reproducible science data and what provenance has got to do ...
The lifecycle of reproducible science data and what provenance has got to do ...
Paolo Missier
 
Materials Project computation and database infrastructure
Materials Project computation and database infrastructureMaterials Project computation and database infrastructure
Materials Project computation and database infrastructure
Anubhav Jain
 
Software tools for high-throughput materials data generation and data mining
Software tools for high-throughput materials data generation and data miningSoftware tools for high-throughput materials data generation and data mining
Software tools for high-throughput materials data generation and data mining
Anubhav Jain
 
Deep Learning on nVidia GPUs for QSAR, QSPR and QNAR predictions
Deep Learning on nVidia GPUs for QSAR, QSPR and QNAR predictionsDeep Learning on nVidia GPUs for QSAR, QSPR and QNAR predictions
Deep Learning on nVidia GPUs for QSAR, QSPR and QNAR predictions
Valery Tkachenko
 
Computing Just What You Need: Online Data Analysis and Reduction at Extreme ...
Computing Just What You Need: Online Data Analysis and Reduction  at Extreme ...Computing Just What You Need: Online Data Analysis and Reduction  at Extreme ...
Computing Just What You Need: Online Data Analysis and Reduction at Extreme ...
Ian Foster
 
Automating materials science workflows with pymatgen, FireWorks, and atomate
Automating materials science workflows with pymatgen, FireWorks, and atomateAutomating materials science workflows with pymatgen, FireWorks, and atomate
Automating materials science workflows with pymatgen, FireWorks, and atomate
Anubhav Jain
 
Project Matsu: Elastic Clouds for Disaster Relief
Project Matsu: Elastic Clouds for Disaster ReliefProject Matsu: Elastic Clouds for Disaster Relief
Project Matsu: Elastic Clouds for Disaster Relief
Robert Grossman
 
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Accelerating the Experimental Feedback Loop: Data Streams and the Advanced Ph...
Ian Foster
 
Many Task Applications for Grids and Supercomputers
Many Task Applications for Grids and SupercomputersMany Task Applications for Grids and Supercomputers
Many Task Applications for Grids and Supercomputers
Ian Foster
 
Speeding up information extraction programs: a holistic optimizer and a learn...
Speeding up information extraction programs: a holistic optimizer and a learn...Speeding up information extraction programs: a holistic optimizer and a learn...
Speeding up information extraction programs: a holistic optimizer and a learn...
INRIA-OAK
 
Automated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design ProblemsAutomated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design Problems
Anubhav Jain
 
Bioclouds CAMDA (Robert Grossman) 09-v9p
Bioclouds CAMDA (Robert Grossman) 09-v9pBioclouds CAMDA (Robert Grossman) 09-v9p
Bioclouds CAMDA (Robert Grossman) 09-v9p
Robert Grossman
 
Coding the Continuum
Coding the ContinuumCoding the Continuum
Coding the Continuum
Ian Foster
 
Conducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials ProjectConducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials Project
Anubhav Jain
 

Similar to Capturing and querying fine-grained provenance of preprocessing pipelines in data science (DP4DS) (20)

Provenance Week 2023 talk on DP4DS (Data Provenance for Data Science)
Provenance Week 2023 talk on DP4DS (Data Provenance for Data Science)Provenance Week 2023 talk on DP4DS (Data Provenance for Data Science)
Provenance Week 2023 talk on DP4DS (Data Provenance for Data Science)
Paolo Missier
 
Capturing and querying fine-grained provenance of preprocessing pipelines in ...
Capturing and querying fine-grained provenance of preprocessing pipelines in ...Capturing and querying fine-grained provenance of preprocessing pipelines in ...
Capturing and querying fine-grained provenance of preprocessing pipelines in ...
Paolo Missier
 
Towards explanations for Data-Centric AI using provenance records
Towards explanations for Data-Centric AI using provenance recordsTowards explanations for Data-Centric AI using provenance records
Towards explanations for Data-Centric AI using provenance records
Paolo Missier
 
Opensample: A Low-latency, Sampling-based Measurement Platform for Software D...
Opensample: A Low-latency, Sampling-based Measurement Platform for Software D...Opensample: A Low-latency, Sampling-based Measurement Platform for Software D...
Opensample: A Low-latency, Sampling-based Measurement Platform for Software D...
Junho Suh
 
Transfer defect learning
Transfer defect learningTransfer defect learning
Transfer defect learning
Sung Kim
 
CapellaDays2022 | ThermoFisher - ESI TNO | A method for quantitative evaluati...
CapellaDays2022 | ThermoFisher - ESI TNO | A method for quantitative evaluati...CapellaDays2022 | ThermoFisher - ESI TNO | A method for quantitative evaluati...
CapellaDays2022 | ThermoFisher - ESI TNO | A method for quantitative evaluati...
Obeo
 
Ns fundamentals 1
Ns fundamentals 1Ns fundamentals 1
Ns fundamentals 1
narmada alaparthi
 
RAMSES: Robust Analytic Models for Science at Extreme Scales
RAMSES: Robust Analytic Models for Science at Extreme ScalesRAMSES: Robust Analytic Models for Science at Extreme Scales
RAMSES: Robust Analytic Models for Science at Extreme Scales
Ian Foster
 
HOP-Rec_RecSys18
HOP-Rec_RecSys18HOP-Rec_RecSys18
HOP-Rec_RecSys18
Matt Yang
 
Anomaly detection using One-Class Neural Networks (OCNN)
Anomaly detection using One-Class Neural Networks (OCNN)Anomaly detection using One-Class Neural Networks (OCNN)
Anomaly detection using One-Class Neural Networks (OCNN)
DaeJin Kim
 
ntcir14centre-overview
ntcir14centre-overviewntcir14centre-overview
ntcir14centre-overview
Tetsuya Sakai
 
Mpp Rsv 2008 Public
Mpp Rsv 2008 PublicMpp Rsv 2008 Public
Mpp Rsv 2008 Public
lab13unisa
 
Automated Parameterization of Performance Models from Measurements
Automated Parameterization of Performance Models from MeasurementsAutomated Parameterization of Performance Models from Measurements
Automated Parameterization of Performance Models from Measurements
Weikun Wang
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data Science
Paolo Missier
 
Basic use of xcms
Basic use of xcmsBasic use of xcms
Basic use of xcms
Xiuxia Du
 
"An adaptive modular approach to the mining of sensor network ...
"An adaptive modular approach to the mining of sensor network ..."An adaptive modular approach to the mining of sensor network ...
"An adaptive modular approach to the mining of sensor network ...
butest
 
The study on mining temporal patterns and related applications in dynamic soc...
The study on mining temporal patterns and related applications in dynamic soc...The study on mining temporal patterns and related applications in dynamic soc...
The study on mining temporal patterns and related applications in dynamic soc...
Thanh Hieu
 
Data Automation at Light Sources
Data Automation at Light SourcesData Automation at Light Sources
Data Automation at Light Sources
Ian Foster
 
Sample Project Report okokokokokokokokok
Sample Project Report okokokokokokokokokSample Project Report okokokokokokokokok
Sample Project Report okokokokokokokokok
SamraKanwal9
 
AML4DT: A Model-Driven Framework for Developing and Maintaining Digital Twin...
AML4DT: A Model-Driven Framework for Developing  and Maintaining Digital Twin...AML4DT: A Model-Driven Framework for Developing  and Maintaining Digital Twin...
AML4DT: A Model-Driven Framework for Developing and Maintaining Digital Twin...
Daniel Lehner
 
Provenance Week 2023 talk on DP4DS (Data Provenance for Data Science)
Provenance Week 2023 talk on DP4DS (Data Provenance for Data Science)Provenance Week 2023 talk on DP4DS (Data Provenance for Data Science)
Provenance Week 2023 talk on DP4DS (Data Provenance for Data Science)
Paolo Missier
 
Capturing and querying fine-grained provenance of preprocessing pipelines in ...
Capturing and querying fine-grained provenance of preprocessing pipelines in ...Capturing and querying fine-grained provenance of preprocessing pipelines in ...
Capturing and querying fine-grained provenance of preprocessing pipelines in ...
Paolo Missier
 
Towards explanations for Data-Centric AI using provenance records
Towards explanations for Data-Centric AI using provenance recordsTowards explanations for Data-Centric AI using provenance records
Towards explanations for Data-Centric AI using provenance records
Paolo Missier
 
Opensample: A Low-latency, Sampling-based Measurement Platform for Software D...
Opensample: A Low-latency, Sampling-based Measurement Platform for Software D...Opensample: A Low-latency, Sampling-based Measurement Platform for Software D...
Opensample: A Low-latency, Sampling-based Measurement Platform for Software D...
Junho Suh
 
Transfer defect learning
Transfer defect learningTransfer defect learning
Transfer defect learning
Sung Kim
 
CapellaDays2022 | ThermoFisher - ESI TNO | A method for quantitative evaluati...
CapellaDays2022 | ThermoFisher - ESI TNO | A method for quantitative evaluati...CapellaDays2022 | ThermoFisher - ESI TNO | A method for quantitative evaluati...
CapellaDays2022 | ThermoFisher - ESI TNO | A method for quantitative evaluati...
Obeo
 
RAMSES: Robust Analytic Models for Science at Extreme Scales
RAMSES: Robust Analytic Models for Science at Extreme ScalesRAMSES: Robust Analytic Models for Science at Extreme Scales
RAMSES: Robust Analytic Models for Science at Extreme Scales
Ian Foster
 
HOP-Rec_RecSys18
HOP-Rec_RecSys18HOP-Rec_RecSys18
HOP-Rec_RecSys18
Matt Yang
 
Anomaly detection using One-Class Neural Networks (OCNN)
Anomaly detection using One-Class Neural Networks (OCNN)Anomaly detection using One-Class Neural Networks (OCNN)
Anomaly detection using One-Class Neural Networks (OCNN)
DaeJin Kim
 
ntcir14centre-overview
ntcir14centre-overviewntcir14centre-overview
ntcir14centre-overview
Tetsuya Sakai
 
Mpp Rsv 2008 Public
Mpp Rsv 2008 PublicMpp Rsv 2008 Public
Mpp Rsv 2008 Public
lab13unisa
 
Automated Parameterization of Performance Models from Measurements
Automated Parameterization of Performance Models from MeasurementsAutomated Parameterization of Performance Models from Measurements
Automated Parameterization of Performance Models from Measurements
Weikun Wang
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data Science
Paolo Missier
 
Basic use of xcms
Basic use of xcmsBasic use of xcms
Basic use of xcms
Xiuxia Du
 
"An adaptive modular approach to the mining of sensor network ...
"An adaptive modular approach to the mining of sensor network ..."An adaptive modular approach to the mining of sensor network ...
"An adaptive modular approach to the mining of sensor network ...
butest
 
The study on mining temporal patterns and related applications in dynamic soc...
The study on mining temporal patterns and related applications in dynamic soc...The study on mining temporal patterns and related applications in dynamic soc...
The study on mining temporal patterns and related applications in dynamic soc...
Thanh Hieu
 
Data Automation at Light Sources
Data Automation at Light SourcesData Automation at Light Sources
Data Automation at Light Sources
Ian Foster
 
Sample Project Report okokokokokokokokok
Sample Project Report okokokokokokokokokSample Project Report okokokokokokokokok
Sample Project Report okokokokokokokokok
SamraKanwal9
 
AML4DT: A Model-Driven Framework for Developing and Maintaining Digital Twin...
AML4DT: A Model-Driven Framework for Developing  and Maintaining Digital Twin...AML4DT: A Model-Driven Framework for Developing  and Maintaining Digital Twin...
AML4DT: A Model-Driven Framework for Developing and Maintaining Digital Twin...
Daniel Lehner
 
Ad

More from Paolo Missier (19)

(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
Paolo Missier
 
Interpretable and robust hospital readmission predictions from Electronic Hea...
Interpretable and robust hospital readmission predictions from Electronic Hea...Interpretable and robust hospital readmission predictions from Electronic Hea...
Interpretable and robust hospital readmission predictions from Electronic Hea...
Paolo Missier
 
Data-centric AI and the convergence of data and model engineering: opportunit...
Data-centric AI and the convergence of data and model engineering:opportunit...Data-centric AI and the convergence of data and model engineering:opportunit...
Data-centric AI and the convergence of data and model engineering: opportunit...
Paolo Missier
 
Realising the potential of Health Data Science: opportunities and challenges ...
Realising the potential of Health Data Science:opportunities and challenges ...Realising the potential of Health Data Science:opportunities and challenges ...
Realising the potential of Health Data Science: opportunities and challenges ...
Paolo Missier
 
A Data-centric perspective on Data-driven healthcare: a short overview
A Data-centric perspective on Data-driven healthcare: a short overviewA Data-centric perspective on Data-driven healthcare: a short overview
A Data-centric perspective on Data-driven healthcare: a short overview
Paolo Missier
 
Tracking trajectories of multiple long-term conditions using dynamic patient...
Tracking trajectories of  multiple long-term conditions using dynamic patient...Tracking trajectories of  multiple long-term conditions using dynamic patient...
Tracking trajectories of multiple long-term conditions using dynamic patient...
Paolo Missier
 
Delivering on the promise of data-driven healthcare: trade-offs, challenges, ...
Delivering on the promise of data-driven healthcare: trade-offs, challenges, ...Delivering on the promise of data-driven healthcare: trade-offs, challenges, ...
Delivering on the promise of data-driven healthcare: trade-offs, challenges, ...
Paolo Missier
 
Digital biomarkers for preventive personalised healthcare
Digital biomarkers for preventive personalised healthcareDigital biomarkers for preventive personalised healthcare
Digital biomarkers for preventive personalised healthcare
Paolo Missier
 
Digital biomarkers for preventive personalised healthcare
Digital biomarkers for preventive personalised healthcareDigital biomarkers for preventive personalised healthcare
Digital biomarkers for preventive personalised healthcare
Paolo Missier
 
Data Provenance for Data Science
Data Provenance for Data ScienceData Provenance for Data Science
Data Provenance for Data Science
Paolo Missier
 
Quo vadis, provenancer?  Cui prodest?  our own trajectory: provenance of data...
Quo vadis, provenancer? Cui prodest? our own trajectory: provenance of data...Quo vadis, provenancer? Cui prodest? our own trajectory: provenance of data...
Quo vadis, provenancer?  Cui prodest?  our own trajectory: provenance of data...
Paolo Missier
 
Data Science for (Health) Science: tales from a challenging front line, and h...
Data Science for (Health) Science:tales from a challenging front line, and h...Data Science for (Health) Science:tales from a challenging front line, and h...
Data Science for (Health) Science: tales from a challenging front line, and h...
Paolo Missier
 
Efficient Re-computation of Big Data Analytics Processes in the Presence of C...
Efficient Re-computation of Big Data Analytics Processes in the Presence of C...Efficient Re-computation of Big Data Analytics Processes in the Presence of C...
Efficient Re-computation of Big Data Analytics Processes in the Presence of C...
Paolo Missier
 
Decentralized, Trust-less Marketplace for Brokered IoT Data Trading using Blo...
Decentralized, Trust-less Marketplacefor Brokered IoT Data Tradingusing Blo...Decentralized, Trust-less Marketplacefor Brokered IoT Data Tradingusing Blo...
Decentralized, Trust-less Marketplace for Brokered IoT Data Trading using Blo...
Paolo Missier
 
A Customisable Pipeline for Continuously Harvesting Socially-Minded Twitter U...
A Customisable Pipeline for Continuously Harvesting Socially-Minded Twitter U...A Customisable Pipeline for Continuously Harvesting Socially-Minded Twitter U...
A Customisable Pipeline for Continuously Harvesting Socially-Minded Twitter U...
Paolo Missier
 
ReComp and P4@NU: Reproducible Data Science for Health
ReComp and P4@NU: Reproducible Data Science for HealthReComp and P4@NU: Reproducible Data Science for Health
ReComp and P4@NU: Reproducible Data Science for Health
Paolo Missier
 
algorithmic-decisions, fairness, machine learning, provenance, transparency
algorithmic-decisions, fairness, machine learning, provenance, transparencyalgorithmic-decisions, fairness, machine learning, provenance, transparency
algorithmic-decisions, fairness, machine learning, provenance, transparency
Paolo Missier
 
Provenance Annotation and Analysis to Support Process Re-Computation
Provenance Annotation and Analysis to Support Process Re-ComputationProvenance Annotation and Analysis to Support Process Re-Computation
Provenance Annotation and Analysis to Support Process Re-Computation
Paolo Missier
 
Transparency in ML and AI (humble views from a concerned academic)
Transparency in ML and AI (humble views from a concerned academic)Transparency in ML and AI (humble views from a concerned academic)
Transparency in ML and AI (humble views from a concerned academic)
Paolo Missier
 
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
Paolo Missier
 
Interpretable and robust hospital readmission predictions from Electronic Hea...
Interpretable and robust hospital readmission predictions from Electronic Hea...Interpretable and robust hospital readmission predictions from Electronic Hea...
Interpretable and robust hospital readmission predictions from Electronic Hea...
Paolo Missier
 
Data-centric AI and the convergence of data and model engineering: opportunit...
Data-centric AI and the convergence of data and model engineering:opportunit...Data-centric AI and the convergence of data and model engineering:opportunit...
Data-centric AI and the convergence of data and model engineering: opportunit...
Paolo Missier
 
Realising the potential of Health Data Science: opportunities and challenges ...
Realising the potential of Health Data Science:opportunities and challenges ...Realising the potential of Health Data Science:opportunities and challenges ...
Realising the potential of Health Data Science: opportunities and challenges ...
Paolo Missier
 
A Data-centric perspective on Data-driven healthcare: a short overview
A Data-centric perspective on Data-driven healthcare: a short overviewA Data-centric perspective on Data-driven healthcare: a short overview
A Data-centric perspective on Data-driven healthcare: a short overview
Paolo Missier
 
Tracking trajectories of multiple long-term conditions using dynamic patient...
Tracking trajectories of  multiple long-term conditions using dynamic patient...Tracking trajectories of  multiple long-term conditions using dynamic patient...
Tracking trajectories of multiple long-term conditions using dynamic patient...
Paolo Missier
 
Delivering on the promise of data-driven healthcare: trade-offs, challenges, ...
Delivering on the promise of data-driven healthcare: trade-offs, challenges, ...Delivering on the promise of data-driven healthcare: trade-offs, challenges, ...
Delivering on the promise of data-driven healthcare: trade-offs, challenges, ...
Paolo Missier
 
Digital biomarkers for preventive personalised healthcare
Digital biomarkers for preventive personalised healthcareDigital biomarkers for preventive personalised healthcare
Digital biomarkers for preventive personalised healthcare
Paolo Missier
 
Digital biomarkers for preventive personalised healthcare
Digital biomarkers for preventive personalised healthcareDigital biomarkers for preventive personalised healthcare
Digital biomarkers for preventive personalised healthcare
Paolo Missier
 
Data Provenance for Data Science
Data Provenance for Data ScienceData Provenance for Data Science
Data Provenance for Data Science
Paolo Missier
 
Quo vadis, provenancer?  Cui prodest?  our own trajectory: provenance of data...
Quo vadis, provenancer? Cui prodest? our own trajectory: provenance of data...Quo vadis, provenancer? Cui prodest? our own trajectory: provenance of data...
Quo vadis, provenancer?  Cui prodest?  our own trajectory: provenance of data...
Paolo Missier
 
Data Science for (Health) Science: tales from a challenging front line, and h...
Data Science for (Health) Science:tales from a challenging front line, and h...Data Science for (Health) Science:tales from a challenging front line, and h...
Data Science for (Health) Science: tales from a challenging front line, and h...
Paolo Missier
 
Efficient Re-computation of Big Data Analytics Processes in the Presence of C...
Efficient Re-computation of Big Data Analytics Processes in the Presence of C...Efficient Re-computation of Big Data Analytics Processes in the Presence of C...
Efficient Re-computation of Big Data Analytics Processes in the Presence of C...
Paolo Missier
 
Decentralized, Trust-less Marketplace for Brokered IoT Data Trading using Blo...
Decentralized, Trust-less Marketplacefor Brokered IoT Data Tradingusing Blo...Decentralized, Trust-less Marketplacefor Brokered IoT Data Tradingusing Blo...
Decentralized, Trust-less Marketplace for Brokered IoT Data Trading using Blo...
Paolo Missier
 
A Customisable Pipeline for Continuously Harvesting Socially-Minded Twitter U...
A Customisable Pipeline for Continuously Harvesting Socially-Minded Twitter U...A Customisable Pipeline for Continuously Harvesting Socially-Minded Twitter U...
A Customisable Pipeline for Continuously Harvesting Socially-Minded Twitter U...
Paolo Missier
 
ReComp and P4@NU: Reproducible Data Science for Health
ReComp and P4@NU: Reproducible Data Science for HealthReComp and P4@NU: Reproducible Data Science for Health
ReComp and P4@NU: Reproducible Data Science for Health
Paolo Missier
 
algorithmic-decisions, fairness, machine learning, provenance, transparency
algorithmic-decisions, fairness, machine learning, provenance, transparencyalgorithmic-decisions, fairness, machine learning, provenance, transparency
algorithmic-decisions, fairness, machine learning, provenance, transparency
Paolo Missier
 
Provenance Annotation and Analysis to Support Process Re-Computation
Provenance Annotation and Analysis to Support Process Re-ComputationProvenance Annotation and Analysis to Support Process Re-Computation
Provenance Annotation and Analysis to Support Process Re-Computation
Paolo Missier
 
Transparency in ML and AI (humble views from a concerned academic)
Transparency in ML and AI (humble views from a concerned academic)Transparency in ML and AI (humble views from a concerned academic)
Transparency in ML and AI (humble views from a concerned academic)
Paolo Missier
 
Ad

Recently uploaded (20)

論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
Toru Tamaki
 
Sustainable_Development_Goals_INDIANWraa
Sustainable_Development_Goals_INDIANWraaSustainable_Development_Goals_INDIANWraa
Sustainable_Development_Goals_INDIANWraa
03ANMOLCHAURASIYA
 
Computer Systems Quiz Presentation in Purple Bold Style (4).pdf
Computer Systems Quiz Presentation in Purple Bold Style (4).pdfComputer Systems Quiz Presentation in Purple Bold Style (4).pdf
Computer Systems Quiz Presentation in Purple Bold Style (4).pdf
fizarcse
 
How Top Companies Benefit from Outsourcing
How Top Companies Benefit from OutsourcingHow Top Companies Benefit from Outsourcing
How Top Companies Benefit from Outsourcing
Nascenture
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Google DeepMind’s New AI Coding Agent AlphaEvolve.pdf
Google DeepMind’s New AI Coding Agent AlphaEvolve.pdfGoogle DeepMind’s New AI Coding Agent AlphaEvolve.pdf
Google DeepMind’s New AI Coding Agent AlphaEvolve.pdf
derrickjswork
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Gary Arora
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
React Native for Business Solutions: Building Scalable Apps for Success
React Native for Business Solutions: Building Scalable Apps for SuccessReact Native for Business Solutions: Building Scalable Apps for Success
React Native for Business Solutions: Building Scalable Apps for Success
Amelia Swank
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Alan Dix
 
Top Hyper-Casual Game Studio Services
Top  Hyper-Casual  Game  Studio ServicesTop  Hyper-Casual  Game  Studio Services
Top Hyper-Casual Game Studio Services
Nova Carter
 
Build With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdfBuild With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdf
Google Developer Group - Harare
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
論文紹介:"InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning" ...
Toru Tamaki
 
Sustainable_Development_Goals_INDIANWraa
Sustainable_Development_Goals_INDIANWraaSustainable_Development_Goals_INDIANWraa
Sustainable_Development_Goals_INDIANWraa
03ANMOLCHAURASIYA
 
Computer Systems Quiz Presentation in Purple Bold Style (4).pdf
Computer Systems Quiz Presentation in Purple Bold Style (4).pdfComputer Systems Quiz Presentation in Purple Bold Style (4).pdf
Computer Systems Quiz Presentation in Purple Bold Style (4).pdf
fizarcse
 
How Top Companies Benefit from Outsourcing
How Top Companies Benefit from OutsourcingHow Top Companies Benefit from Outsourcing
How Top Companies Benefit from Outsourcing
Nascenture
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Google DeepMind’s New AI Coding Agent AlphaEvolve.pdf
Google DeepMind’s New AI Coding Agent AlphaEvolve.pdfGoogle DeepMind’s New AI Coding Agent AlphaEvolve.pdf
Google DeepMind’s New AI Coding Agent AlphaEvolve.pdf
derrickjswork
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Gary Arora
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
React Native for Business Solutions: Building Scalable Apps for Success
React Native for Business Solutions: Building Scalable Apps for SuccessReact Native for Business Solutions: Building Scalable Apps for Success
React Native for Business Solutions: Building Scalable Apps for Success
Amelia Swank
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Who's choice? Making decisions with and about Artificial Intelligence, Keele ...
Alan Dix
 
Top Hyper-Casual Game Studio Services
Top  Hyper-Casual  Game  Studio ServicesTop  Hyper-Casual  Game  Studio Services
Top Hyper-Casual Game Studio Services
Nova Carter
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 

Capturing and querying fine-grained provenance of preprocessing pipelines in data science (DP4DS)

  • 1. 1 Capturing and querying fine-grained provenance of preprocessing pipelines in data science (DP4DS) Adriane Chapman1, Paolo Missier2, Giulia Simonelli3, Riccardo Torlone3 (1) University of Southampton, UK (2) Newcastle University, UK (3) Universita’ Roma Tre, Italy VLDB 2021
  • 2. 2 M Data sources Acquisition, wrangling Test set Training set Preparing for learning Model Selection Training / test split Model Testing Model Learning Model Validation Predictions Model Usage Decision points: - Source selection - Sample / population shape - Cleaning - Integration Decision points: - Sampling / stratification - Feature selection - Feature engineering - Dimensionality reduction - Regularisation - Imputation - Class rebalancing - … Provenance trace M Model Learning Training set Training / test split Imputation Feature selection D’ D’’ … Hyper parameters C1 C2 C3 Pipeline structure with provenance annotations
  • 3. 3 <event name> Provenance of what? Base case: - opaque program Po - coarse-grained dataset Default provenance: - Every output depends on every input P0 - Transparent program PT - coarse-grained datasets PT f if c: y1  x1 else: y1  x2 Y2  f(x1, x2) - Transparent program PT - Fine-grained datasets PT … … … … … … … … - Transparent pipeline - Fine-grained datasets P’T … … … … … … … … Pn T Pn T Pn T
  • 4. 4 Typical operators used in data prep vertical augmentation Example:
  • 5. 5 Operators 14/03/2021 03_ b _c . :///U / 65/D a /03_ b _c . 1/1 14/03/2021 03_ b _c . :///U / 65/D a /03_ b _c . 1/1 op Ex.: vertical augmentation  adding columns - Values change - Shape change
  • 7. 7 Provenance templates Template + binding rules = instantiated provenance fragment + 14/03/2021 03_ b _c . :///U / 65/D a /03_ b _c . 1/1 14/03/2021 03_ b _c . :///U / 65/D a /03_ b _c . 1/1 op {old values: F, I, V}  {new values: F’, J, V’}
  • 8. 8 This applies to all operators…
  • 9. 9 Making your code provenance-aware df = pd.DataFrame(…) # Create a new provenance document p = pr.Provenance(df, savepath) # create provanance tracker tracker=ProvenanceTracker.ProvenanceTracker(df, p) # instance generation tracker.df = tracker.df.append({'key2': 'K4'}, ignore_index=True) # imputation tracker.df = tracker.df.fillna('imputato') # feature transformation of column D tracker.df['D'] = tracker.df['D']*2 # Feature transformation of column key2 tracker.df['key2'] = tracker.df['key2']*2 Approach: A python tracker object intercepts dataframe operations Operations that are channeled through the tracker generate provenance fragments
  • 10. 10 Shape change example: one-hot encoding Regular pandas operators are “observed” by the tracker The tracker object should be constantly in sync with the state of the underlying dataframe 1 2
  • 11. 11 Shape change example: one-hot encoding 1 2 New entities with unknown derivation Runtime analysis Provenance construction Detect shape change operator 1 New columns added 1 2 Column ‘c’ removed Inference: space transformation - New columns derived from ‘c’, - Column ‘c’ invalidated
  • 12. 12 Putting it all together
  • 13. 13 Evaluation – benchmark datasets Census pipeline: Clerical cleaning on every cell (removing blanks) Replace all ‘?’ with NaN One-hot encoding 7 categorical variables Map binary labels to 0,1 Drop one column
  • 16. 16 Scalability Synthetic Benchmarking datasets created using TPC-DI. (*) - 6 operations tested in isolation (no pipeline) (*) Meikel Poess, Tilmann Rabl, Hans-Arno Jacobsen, and Brian Caufield. 2014. TPC-DI: The First Industry Benchmark for Data Integration. VLDB 7, 13(Aug. 2014),
  • 17. 17 Scalability (*) Meikel Poess, Tilmann Rabl, Hans-Arno Jacobsen, and Brian Caufield. 2014. TPC-DI: The First Industry Benchmark for Data Integration. VLDB 7, 13(Aug. 2014), • IG only affects a small number of data values • FS touches every data item but only Invalidates cells • VT and Imputation only touch a small number of cells • FT and ST are more likely to touch every data item and create new entities
  • 18. 18 Summary Practical and efficient, but: 1. Can it be extended to arbitrary python / pandas programs? 2. What is the killer app for such granular provenance? A method and infrastructure for collecting and querying very fine-grained provenance from data processing pipelines

Editor's Notes

  • #6: \newcommand{\f}{\textbf{a}} \text{features}~ X=[\f_1 \ldots \f_k] \text{new features}~ Y=[\f'_1 \ldots \f'_l] \noindent new values for each row are  obtained by applying $f$\\ to values in the $X$ features
  翻译: