SlideShare a Scribd company logo
Block Sampling:
Efficient Accurate Online
Aggregation in MapReduce
5th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 2013)
Vasiliki Kalavri, Vaidas Brundza, Vladimir Vlassov
{kalavri, vaidas, vladv}@kth.se
3 December 2013, Bristol, UK
Problem and Motivation
Luckily, in many cases results can be
useful even before job completion
○ tolerate some inaccuracy
○ benefit from faster answers
2
Big data processing is usually very time-
consuming...
… but many applications require results
really fast or can only use results for a
limited window of time
MapReduce vs. MapReduce Online
mapper
reducer
Local
Disk
Input
Record map
function
Output
Record
HTTP request
In original MR, a reducer task cannot
fetch the output of a map task which
hasn't committed its output to disk
mapper
reducer
Input
Record map
function
Output
Record
TCP- push/pull
3
Online Aggregation
● Apply the reduce function to the data seen so far
● % input processed to estimate accuracy
4
Sampling Challenges
● Data in HDFS
○ Disk already access is terribly slow
○ Random disk access for sampling is even slower
● Unstructured Data
○ Sample based on what?
○ We don’t know the query, we don’t know the
key or the value!
5
The Block Sampling Technique
6
MapReduce Online vs. Block Sampling
Average Temperature Estimation on Weather Data
Unsorted Sorted
7
Takeaway
8
● Useful results even before job completion
● Disk random access is prohibitively
expensive → efficiently emulate sampling
using in-memory shuffling
● Higher sampling rate improves accuracy but
also increases communication costs among
mapper tasks
Block Sampling:
Efficient Accurate Online
Aggregation in MapReduce
5th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 2013)
Vasiliki Kalavri, Vaidas Brundza, Vladimir Vlassov
{kalavri, vaidas, vladv}@kth.se
3 December 2013, Bristol, UK
Average Temperature Estimation on
Sorted and Unsorted Weather Data
Unsorted Sorted
6
How do the block sampling rate and the % of processed input
affect accuracy?
Performance - Sampling Rate
Performance - Bias Reduction
snapshot freq = 10%
Experimental Setup
● 8 large-instance OpenStack VMs
○ 4 vCPUs, 8 GB memory, 90 GB disk
● Linux Ubuntu 12.04.2 LTS OSm Java 1.7.0 14
● up to 17 map tasks and 5 reduce tasks per job, HDFS
block size of 64MB
● weather station data from the National Climatic
Data Center ftp server (available years 1901 to 2013)
● the complete Project Gutenberg e-books catalog
(30615 e-books in .txt format)
System Configuration Parameters
Bias Reduction
● Access Phase: Store the entire input split
in the reader task’s local memory
● Shuffling Phase: Shuffle the records of
the block in-place
● Processing Phase: Serve a record to the
mapper task from local memory (avoids
additional disk I/O)
Future Work
● Integrate statistical estimators
○ provide error bounds for users
● Automatically fine-tune sampling
parameters based on system
configuration
● Explore alternative sampling techniques
and wavelet-approximation
Ad

More Related Content

What's hot (20)

Predictive Datacenter Analytics with Strymon
Predictive Datacenter Analytics with StrymonPredictive Datacenter Analytics with Strymon
Predictive Datacenter Analytics with Strymon
Vasia Kalavri
 
Gelly-Stream: Single-Pass Graph Streaming Analytics with Apache Flink
Gelly-Stream: Single-Pass Graph Streaming Analytics with Apache FlinkGelly-Stream: Single-Pass Graph Streaming Analytics with Apache Flink
Gelly-Stream: Single-Pass Graph Streaming Analytics with Apache Flink
Vasia Kalavri
 
A time energy performance analysis of map reduce on heterogeneous systems wit...
A time energy performance analysis of map reduce on heterogeneous systems wit...A time energy performance analysis of map reduce on heterogeneous systems wit...
A time energy performance analysis of map reduce on heterogeneous systems wit...
newmooxx
 
Chris Hillman – Beyond Mapreduce Scientific Data Processing in Real-time
Chris Hillman – Beyond Mapreduce Scientific Data Processing in Real-timeChris Hillman – Beyond Mapreduce Scientific Data Processing in Real-time
Chris Hillman – Beyond Mapreduce Scientific Data Processing in Real-time
Flink Forward
 
Deep Stream Dynamic Graph Analytics with Grapharis - Massimo Perini
Deep Stream Dynamic Graph Analytics with Grapharis -  Massimo PeriniDeep Stream Dynamic Graph Analytics with Grapharis -  Massimo Perini
Deep Stream Dynamic Graph Analytics with Grapharis - Massimo Perini
Flink Forward
 
HDFS-HC: A Data Placement Module for Heterogeneous Hadoop Clusters
HDFS-HC: A Data Placement Module for Heterogeneous Hadoop ClustersHDFS-HC: A Data Placement Module for Heterogeneous Hadoop Clusters
HDFS-HC: A Data Placement Module for Heterogeneous Hadoop Clusters
Xiao Qin
 
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Jen Aman
 
Apache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmapApache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmap
Kostas Tzoumas
 
Introduction to Real-time data processing
Introduction to Real-time data processingIntroduction to Real-time data processing
Introduction to Real-time data processing
Yogi Devendra Vyavahare
 
First Flink Bay Area meetup
First Flink Bay Area meetupFirst Flink Bay Area meetup
First Flink Bay Area meetup
Kostas Tzoumas
 
Managing Multi-DBMS on a Single UI , a Web-based Spatial DB Manager-FOSS4G A...
Managing Multi-DBMS on a Single UI, a Web-based Spatial DB Manager-FOSS4G A...Managing Multi-DBMS on a Single UI, a Web-based Spatial DB Manager-FOSS4G A...
Managing Multi-DBMS on a Single UI , a Web-based Spatial DB Manager-FOSS4G A...
BJ Jang
 
Implementing Near-Realtime Datacenter Health Analytics using Model-driven Ver...
Implementing Near-Realtime Datacenter Health Analytics using Model-driven Ver...Implementing Near-Realtime Datacenter Health Analytics using Model-driven Ver...
Implementing Near-Realtime Datacenter Health Analytics using Model-driven Ver...
Spark Summit
 
Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)
Ryan Blue
 
Case study- Real-time OLAP Cubes
Case study- Real-time OLAP Cubes Case study- Real-time OLAP Cubes
Case study- Real-time OLAP Cubes
Ziemowit Jankowski
 
Pregel: A System For Large Scale Graph Processing
Pregel: A System For Large Scale Graph ProcessingPregel: A System For Large Scale Graph Processing
Pregel: A System For Large Scale Graph Processing
Riyad Parvez
 
Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
Flink Forward
 
Map-Side Merge Joins for Scalable SPARQL BGP Processing
Map-Side Merge Joins for Scalable SPARQL BGP ProcessingMap-Side Merge Joins for Scalable SPARQL BGP Processing
Map-Side Merge Joins for Scalable SPARQL BGP Processing
Alexander Schätzle
 
Mikio Braun – Data flow vs. procedural programming
Mikio Braun – Data flow vs. procedural programming Mikio Braun – Data flow vs. procedural programming
Mikio Braun – Data flow vs. procedural programming
Flink Forward
 
Google's Dremel
Google's DremelGoogle's Dremel
Google's Dremel
Maria Stylianou
 
Apache Flink Internals: Stream & Batch Processing in One System – Apache Flin...
Apache Flink Internals: Stream & Batch Processing in One System – Apache Flin...Apache Flink Internals: Stream & Batch Processing in One System – Apache Flin...
Apache Flink Internals: Stream & Batch Processing in One System – Apache Flin...
ucelebi
 
Predictive Datacenter Analytics with Strymon
Predictive Datacenter Analytics with StrymonPredictive Datacenter Analytics with Strymon
Predictive Datacenter Analytics with Strymon
Vasia Kalavri
 
Gelly-Stream: Single-Pass Graph Streaming Analytics with Apache Flink
Gelly-Stream: Single-Pass Graph Streaming Analytics with Apache FlinkGelly-Stream: Single-Pass Graph Streaming Analytics with Apache Flink
Gelly-Stream: Single-Pass Graph Streaming Analytics with Apache Flink
Vasia Kalavri
 
A time energy performance analysis of map reduce on heterogeneous systems wit...
A time energy performance analysis of map reduce on heterogeneous systems wit...A time energy performance analysis of map reduce on heterogeneous systems wit...
A time energy performance analysis of map reduce on heterogeneous systems wit...
newmooxx
 
Chris Hillman – Beyond Mapreduce Scientific Data Processing in Real-time
Chris Hillman – Beyond Mapreduce Scientific Data Processing in Real-timeChris Hillman – Beyond Mapreduce Scientific Data Processing in Real-time
Chris Hillman – Beyond Mapreduce Scientific Data Processing in Real-time
Flink Forward
 
Deep Stream Dynamic Graph Analytics with Grapharis - Massimo Perini
Deep Stream Dynamic Graph Analytics with Grapharis -  Massimo PeriniDeep Stream Dynamic Graph Analytics with Grapharis -  Massimo Perini
Deep Stream Dynamic Graph Analytics with Grapharis - Massimo Perini
Flink Forward
 
HDFS-HC: A Data Placement Module for Heterogeneous Hadoop Clusters
HDFS-HC: A Data Placement Module for Heterogeneous Hadoop ClustersHDFS-HC: A Data Placement Module for Heterogeneous Hadoop Clusters
HDFS-HC: A Data Placement Module for Heterogeneous Hadoop Clusters
Xiao Qin
 
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Jen Aman
 
Apache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmapApache Flink: API, runtime, and project roadmap
Apache Flink: API, runtime, and project roadmap
Kostas Tzoumas
 
Introduction to Real-time data processing
Introduction to Real-time data processingIntroduction to Real-time data processing
Introduction to Real-time data processing
Yogi Devendra Vyavahare
 
First Flink Bay Area meetup
First Flink Bay Area meetupFirst Flink Bay Area meetup
First Flink Bay Area meetup
Kostas Tzoumas
 
Managing Multi-DBMS on a Single UI , a Web-based Spatial DB Manager-FOSS4G A...
Managing Multi-DBMS on a Single UI, a Web-based Spatial DB Manager-FOSS4G A...Managing Multi-DBMS on a Single UI, a Web-based Spatial DB Manager-FOSS4G A...
Managing Multi-DBMS on a Single UI , a Web-based Spatial DB Manager-FOSS4G A...
BJ Jang
 
Implementing Near-Realtime Datacenter Health Analytics using Model-driven Ver...
Implementing Near-Realtime Datacenter Health Analytics using Model-driven Ver...Implementing Near-Realtime Datacenter Health Analytics using Model-driven Ver...
Implementing Near-Realtime Datacenter Health Analytics using Model-driven Ver...
Spark Summit
 
Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)
Ryan Blue
 
Case study- Real-time OLAP Cubes
Case study- Real-time OLAP Cubes Case study- Real-time OLAP Cubes
Case study- Real-time OLAP Cubes
Ziemowit Jankowski
 
Pregel: A System For Large Scale Graph Processing
Pregel: A System For Large Scale Graph ProcessingPregel: A System For Large Scale Graph Processing
Pregel: A System For Large Scale Graph Processing
Riyad Parvez
 
Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
Flink Forward
 
Map-Side Merge Joins for Scalable SPARQL BGP Processing
Map-Side Merge Joins for Scalable SPARQL BGP ProcessingMap-Side Merge Joins for Scalable SPARQL BGP Processing
Map-Side Merge Joins for Scalable SPARQL BGP Processing
Alexander Schätzle
 
Mikio Braun – Data flow vs. procedural programming
Mikio Braun – Data flow vs. procedural programming Mikio Braun – Data flow vs. procedural programming
Mikio Braun – Data flow vs. procedural programming
Flink Forward
 
Apache Flink Internals: Stream & Batch Processing in One System – Apache Flin...
Apache Flink Internals: Stream & Batch Processing in One System – Apache Flin...Apache Flink Internals: Stream & Batch Processing in One System – Apache Flin...
Apache Flink Internals: Stream & Batch Processing in One System – Apache Flin...
ucelebi
 

Viewers also liked (8)

Like a Pack of Wolves: Community Structure of Web Trackers
Like a Pack of Wolves: Community Structure of Web TrackersLike a Pack of Wolves: Community Structure of Web Trackers
Like a Pack of Wolves: Community Structure of Web Trackers
Vasia Kalavri
 
The shortest path is not always a straight line
The shortest path is not always a straight lineThe shortest path is not always a straight line
The shortest path is not always a straight line
Vasia Kalavri
 
Graphs as Streams: Rethinking Graph Processing in the Streaming Era
Graphs as Streams: Rethinking Graph Processing in the Streaming EraGraphs as Streams: Rethinking Graph Processing in the Streaming Era
Graphs as Streams: Rethinking Graph Processing in the Streaming Era
Vasia Kalavri
 
Large-scale graph processing with Apache Flink @GraphDevroom FOSDEM'15
Large-scale graph processing with Apache Flink @GraphDevroom FOSDEM'15Large-scale graph processing with Apache Flink @GraphDevroom FOSDEM'15
Large-scale graph processing with Apache Flink @GraphDevroom FOSDEM'15
Vasia Kalavri
 
Apache Flink Deep Dive
Apache Flink Deep DiveApache Flink Deep Dive
Apache Flink Deep Dive
Vasia Kalavri
 
A Skype case study (2011)
A Skype case study (2011)A Skype case study (2011)
A Skype case study (2011)
Vasia Kalavri
 
Demystifying Distributed Graph Processing
Demystifying Distributed Graph ProcessingDemystifying Distributed Graph Processing
Demystifying Distributed Graph Processing
Vasia Kalavri
 
Flink vs. Spark
Flink vs. SparkFlink vs. Spark
Flink vs. Spark
Slim Baltagi
 
Like a Pack of Wolves: Community Structure of Web Trackers
Like a Pack of Wolves: Community Structure of Web TrackersLike a Pack of Wolves: Community Structure of Web Trackers
Like a Pack of Wolves: Community Structure of Web Trackers
Vasia Kalavri
 
The shortest path is not always a straight line
The shortest path is not always a straight lineThe shortest path is not always a straight line
The shortest path is not always a straight line
Vasia Kalavri
 
Graphs as Streams: Rethinking Graph Processing in the Streaming Era
Graphs as Streams: Rethinking Graph Processing in the Streaming EraGraphs as Streams: Rethinking Graph Processing in the Streaming Era
Graphs as Streams: Rethinking Graph Processing in the Streaming Era
Vasia Kalavri
 
Large-scale graph processing with Apache Flink @GraphDevroom FOSDEM'15
Large-scale graph processing with Apache Flink @GraphDevroom FOSDEM'15Large-scale graph processing with Apache Flink @GraphDevroom FOSDEM'15
Large-scale graph processing with Apache Flink @GraphDevroom FOSDEM'15
Vasia Kalavri
 
Apache Flink Deep Dive
Apache Flink Deep DiveApache Flink Deep Dive
Apache Flink Deep Dive
Vasia Kalavri
 
A Skype case study (2011)
A Skype case study (2011)A Skype case study (2011)
A Skype case study (2011)
Vasia Kalavri
 
Demystifying Distributed Graph Processing
Demystifying Distributed Graph ProcessingDemystifying Distributed Graph Processing
Demystifying Distributed Graph Processing
Vasia Kalavri
 
Ad

Similar to Block Sampling: Efficient Accurate Online Aggregation in MapReduce (20)

Refining the Estimation of the Available Bandwidth in Inter-Cloud Links for T...
Refining the Estimation of the Available Bandwidth in Inter-Cloud Links for T...Refining the Estimation of the Available Bandwidth in Inter-Cloud Links for T...
Refining the Estimation of the Available Bandwidth in Inter-Cloud Links for T...
Thiago Genez
 
Panel: NRP Science Impacts​
Panel: NRP Science Impacts​Panel: NRP Science Impacts​
Panel: NRP Science Impacts​
Larry Smarr
 
Grid computing
Grid computingGrid computing
Grid computing
Pramit Karmakar
 
HGrid A Data Model for Large Geospatial Data Sets in HBase
HGrid A Data Model for Large Geospatial Data Sets in HBaseHGrid A Data Model for Large Geospatial Data Sets in HBase
HGrid A Data Model for Large Geospatial Data Sets in HBase
Dan Han
 
Hpc Cloud project Overview
Hpc Cloud project OverviewHpc Cloud project Overview
Hpc Cloud project Overview
Floris Sluiter
 
Presented by Ahmed Abdulhakim Al-Absi - Scaling map reduce applications acro...
Presented by Ahmed Abdulhakim Al-Absi -  Scaling map reduce applications acro...Presented by Ahmed Abdulhakim Al-Absi -  Scaling map reduce applications acro...
Presented by Ahmed Abdulhakim Al-Absi - Scaling map reduce applications acro...
Absi Ahmed
 
Hadoop scheduler with deadline constraint
Hadoop scheduler with deadline constraintHadoop scheduler with deadline constraint
Hadoop scheduler with deadline constraint
ijccsa
 
Blue Waters and Resource Management - Now and in the Future
 Blue Waters and Resource Management - Now and in the Future Blue Waters and Resource Management - Now and in the Future
Blue Waters and Resource Management - Now and in the Future
inside-BigData.com
 
PERFORMANCE FACTORS OF CLOUD COMPUTING DATA CENTERS USING [(M/G/1) : (∞/GDM O...
PERFORMANCE FACTORS OF CLOUD COMPUTING DATA CENTERS USING [(M/G/1) : (∞/GDM O...PERFORMANCE FACTORS OF CLOUD COMPUTING DATA CENTERS USING [(M/G/1) : (∞/GDM O...
PERFORMANCE FACTORS OF CLOUD COMPUTING DATA CENTERS USING [(M/G/1) : (∞/GDM O...
ijgca
 
Presentation on Large Scale Data Management
Presentation on Large Scale Data ManagementPresentation on Large Scale Data Management
Presentation on Large Scale Data Management
Chris Bunch
 
Cluster computing
Cluster computingCluster computing
Cluster computing
brainbix
 
Performance Models for Apache Accumulo
Performance Models for Apache AccumuloPerformance Models for Apache Accumulo
Performance Models for Apache Accumulo
Sqrrl
 
Resisting skew accumulation
Resisting skew accumulationResisting skew accumulation
Resisting skew accumulation
Md. Hasibur Rashid
 
Hadoop Network Performance profile
Hadoop Network Performance profileHadoop Network Performance profile
Hadoop Network Performance profile
pramodbiligiri
 
Hardware Acceleration of SVM Training for Real-time Embedded Systems: An Over...
Hardware Acceleration of SVM Training for Real-time Embedded Systems: An Over...Hardware Acceleration of SVM Training for Real-time Embedded Systems: An Over...
Hardware Acceleration of SVM Training for Real-time Embedded Systems: An Over...
Ilham Amezzane
 
Dell PowerEdge R7615 servers with Broadcom BCM57508 NICs can accelerate your ...
Dell PowerEdge R7615 servers with Broadcom BCM57508 NICs can accelerate your ...Dell PowerEdge R7615 servers with Broadcom BCM57508 NICs can accelerate your ...
Dell PowerEdge R7615 servers with Broadcom BCM57508 NICs can accelerate your ...
Principled Technologies
 
DIET_BLAST
DIET_BLASTDIET_BLAST
DIET_BLAST
Frederic Desprez
 
Data Infra Meetup | Accelerate Distributed PyTorch/Ray Workloads in the Cloud
Data Infra Meetup | Accelerate Distributed PyTorch/Ray Workloads in the CloudData Infra Meetup | Accelerate Distributed PyTorch/Ray Workloads in the Cloud
Data Infra Meetup | Accelerate Distributed PyTorch/Ray Workloads in the Cloud
Alluxio, Inc.
 
week_2Lec02_CS422.pptx
week_2Lec02_CS422.pptxweek_2Lec02_CS422.pptx
week_2Lec02_CS422.pptx
mivomi1
 
Benchmarking data warehouse systems in the cloud: new requirements & new metrics
Benchmarking data warehouse systems in the cloud: new requirements & new metricsBenchmarking data warehouse systems in the cloud: new requirements & new metrics
Benchmarking data warehouse systems in the cloud: new requirements & new metrics
Rim Moussa
 
Refining the Estimation of the Available Bandwidth in Inter-Cloud Links for T...
Refining the Estimation of the Available Bandwidth in Inter-Cloud Links for T...Refining the Estimation of the Available Bandwidth in Inter-Cloud Links for T...
Refining the Estimation of the Available Bandwidth in Inter-Cloud Links for T...
Thiago Genez
 
Panel: NRP Science Impacts​
Panel: NRP Science Impacts​Panel: NRP Science Impacts​
Panel: NRP Science Impacts​
Larry Smarr
 
HGrid A Data Model for Large Geospatial Data Sets in HBase
HGrid A Data Model for Large Geospatial Data Sets in HBaseHGrid A Data Model for Large Geospatial Data Sets in HBase
HGrid A Data Model for Large Geospatial Data Sets in HBase
Dan Han
 
Hpc Cloud project Overview
Hpc Cloud project OverviewHpc Cloud project Overview
Hpc Cloud project Overview
Floris Sluiter
 
Presented by Ahmed Abdulhakim Al-Absi - Scaling map reduce applications acro...
Presented by Ahmed Abdulhakim Al-Absi -  Scaling map reduce applications acro...Presented by Ahmed Abdulhakim Al-Absi -  Scaling map reduce applications acro...
Presented by Ahmed Abdulhakim Al-Absi - Scaling map reduce applications acro...
Absi Ahmed
 
Hadoop scheduler with deadline constraint
Hadoop scheduler with deadline constraintHadoop scheduler with deadline constraint
Hadoop scheduler with deadline constraint
ijccsa
 
Blue Waters and Resource Management - Now and in the Future
 Blue Waters and Resource Management - Now and in the Future Blue Waters and Resource Management - Now and in the Future
Blue Waters and Resource Management - Now and in the Future
inside-BigData.com
 
PERFORMANCE FACTORS OF CLOUD COMPUTING DATA CENTERS USING [(M/G/1) : (∞/GDM O...
PERFORMANCE FACTORS OF CLOUD COMPUTING DATA CENTERS USING [(M/G/1) : (∞/GDM O...PERFORMANCE FACTORS OF CLOUD COMPUTING DATA CENTERS USING [(M/G/1) : (∞/GDM O...
PERFORMANCE FACTORS OF CLOUD COMPUTING DATA CENTERS USING [(M/G/1) : (∞/GDM O...
ijgca
 
Presentation on Large Scale Data Management
Presentation on Large Scale Data ManagementPresentation on Large Scale Data Management
Presentation on Large Scale Data Management
Chris Bunch
 
Cluster computing
Cluster computingCluster computing
Cluster computing
brainbix
 
Performance Models for Apache Accumulo
Performance Models for Apache AccumuloPerformance Models for Apache Accumulo
Performance Models for Apache Accumulo
Sqrrl
 
Hadoop Network Performance profile
Hadoop Network Performance profileHadoop Network Performance profile
Hadoop Network Performance profile
pramodbiligiri
 
Hardware Acceleration of SVM Training for Real-time Embedded Systems: An Over...
Hardware Acceleration of SVM Training for Real-time Embedded Systems: An Over...Hardware Acceleration of SVM Training for Real-time Embedded Systems: An Over...
Hardware Acceleration of SVM Training for Real-time Embedded Systems: An Over...
Ilham Amezzane
 
Dell PowerEdge R7615 servers with Broadcom BCM57508 NICs can accelerate your ...
Dell PowerEdge R7615 servers with Broadcom BCM57508 NICs can accelerate your ...Dell PowerEdge R7615 servers with Broadcom BCM57508 NICs can accelerate your ...
Dell PowerEdge R7615 servers with Broadcom BCM57508 NICs can accelerate your ...
Principled Technologies
 
Data Infra Meetup | Accelerate Distributed PyTorch/Ray Workloads in the Cloud
Data Infra Meetup | Accelerate Distributed PyTorch/Ray Workloads in the CloudData Infra Meetup | Accelerate Distributed PyTorch/Ray Workloads in the Cloud
Data Infra Meetup | Accelerate Distributed PyTorch/Ray Workloads in the Cloud
Alluxio, Inc.
 
week_2Lec02_CS422.pptx
week_2Lec02_CS422.pptxweek_2Lec02_CS422.pptx
week_2Lec02_CS422.pptx
mivomi1
 
Benchmarking data warehouse systems in the cloud: new requirements & new metrics
Benchmarking data warehouse systems in the cloud: new requirements & new metricsBenchmarking data warehouse systems in the cloud: new requirements & new metrics
Benchmarking data warehouse systems in the cloud: new requirements & new metrics
Rim Moussa
 
Ad

Recently uploaded (20)

AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
Build With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdfBuild With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdf
Google Developer Group - Harare
 
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
CSUC - Consorci de Serveis Universitaris de Catalunya
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
AI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of DocumentsAI Agents at Work: UiPath, Maestro & the Future of Documents
AI Agents at Work: UiPath, Maestro & the Future of Documents
UiPathCommunity
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Limecraft Webinar - 2025.3 release, featuring Content Delivery, Graphic Conte...
Maarten Verwaest
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 

Block Sampling: Efficient Accurate Online Aggregation in MapReduce

  • 1. Block Sampling: Efficient Accurate Online Aggregation in MapReduce 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2013) Vasiliki Kalavri, Vaidas Brundza, Vladimir Vlassov {kalavri, vaidas, vladv}@kth.se 3 December 2013, Bristol, UK
  • 2. Problem and Motivation Luckily, in many cases results can be useful even before job completion ○ tolerate some inaccuracy ○ benefit from faster answers 2 Big data processing is usually very time- consuming... … but many applications require results really fast or can only use results for a limited window of time
  • 3. MapReduce vs. MapReduce Online mapper reducer Local Disk Input Record map function Output Record HTTP request In original MR, a reducer task cannot fetch the output of a map task which hasn't committed its output to disk mapper reducer Input Record map function Output Record TCP- push/pull 3
  • 4. Online Aggregation ● Apply the reduce function to the data seen so far ● % input processed to estimate accuracy 4
  • 5. Sampling Challenges ● Data in HDFS ○ Disk already access is terribly slow ○ Random disk access for sampling is even slower ● Unstructured Data ○ Sample based on what? ○ We don’t know the query, we don’t know the key or the value! 5
  • 6. The Block Sampling Technique 6
  • 7. MapReduce Online vs. Block Sampling Average Temperature Estimation on Weather Data Unsorted Sorted 7
  • 8. Takeaway 8 ● Useful results even before job completion ● Disk random access is prohibitively expensive → efficiently emulate sampling using in-memory shuffling ● Higher sampling rate improves accuracy but also increases communication costs among mapper tasks
  • 9. Block Sampling: Efficient Accurate Online Aggregation in MapReduce 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2013) Vasiliki Kalavri, Vaidas Brundza, Vladimir Vlassov {kalavri, vaidas, vladv}@kth.se 3 December 2013, Bristol, UK
  • 10. Average Temperature Estimation on Sorted and Unsorted Weather Data Unsorted Sorted 6 How do the block sampling rate and the % of processed input affect accuracy?
  • 12. Performance - Bias Reduction snapshot freq = 10%
  • 13. Experimental Setup ● 8 large-instance OpenStack VMs ○ 4 vCPUs, 8 GB memory, 90 GB disk ● Linux Ubuntu 12.04.2 LTS OSm Java 1.7.0 14 ● up to 17 map tasks and 5 reduce tasks per job, HDFS block size of 64MB ● weather station data from the National Climatic Data Center ftp server (available years 1901 to 2013) ● the complete Project Gutenberg e-books catalog (30615 e-books in .txt format)
  • 15. Bias Reduction ● Access Phase: Store the entire input split in the reader task’s local memory ● Shuffling Phase: Shuffle the records of the block in-place ● Processing Phase: Serve a record to the mapper task from local memory (avoids additional disk I/O)
  • 16. Future Work ● Integrate statistical estimators ○ provide error bounds for users ● Automatically fine-tune sampling parameters based on system configuration ● Explore alternative sampling techniques and wavelet-approximation
  翻译: