SlideShare a Scribd company logo
MariaDB
ColumnStore
BigData Analytics
Agenda
Session 1
Overview
Architecture
Session 2
Window Functions
Analytic Functions
Session 3
Demo – DEX Data Explorer
Analytics
vs
Data Warehouse
What questions do you have?
What had happen?
Data Warehousing
Selective column
based queries
Large number
of dimensions
High Performance
Analytics On Large
Volume Of Data
Reporting and analysis
on millions or billions
of rows
From datasets
containing millions
to trillions of rows
Terabytes to Petabytes
of datasets
Analytics Require
Statistical Algorithms,
Windowing Functions
Learning from data and
understanding data
Technical Use Cases
Data Scientist/Engineer
What tool(s) do I use?
SQL interfaces
What’s inside the dataset?
Data Exploration
What story can I tell?
Visualization
(picture worth 1000 words)
MariaDB ColumnStore
•  GPLv2 Open Source
•  Columnar, Massively Parallel
MariaDB Storage Engine
•  Scalable, high-performance
analytics platform
•  Built in redundancy and
high availability
•  Runs on premise, on AWS cloud
•  Full SQL syntax and capabilities
regardless of platform
Big Data Sources Analytics Insight
MariaDB ColumnStore
. . .
Node 1 Node 2 Node 3 Node N
Local / AWS® / GlusterFS ®
ELT
Tools
BI Tools
Analyticials
MariaDB ColumnStore Architecture
Columnar Distributed Data Storage
User Connections
User Module nUser Module 1
Performance
Module n
Performance
Module 2
Performance
Module 1
MariaDB
Front End
Query Engine
User Module
Processes SQL Requests
Performance Module
Distributed Processing Engine
MariaDB ColumnStore
High performance columnar storage engine that support wide variety of
analytical use cases with SQL in a highly scalable distributed environments
Parallel query
processing for
distributed
environments
Faster, More
Efficient Queries
Single SQL Interface
for OLTP and
analytics
Easier Enterprise
Analytics
Power of SQL and
Freedom of Open
Source to Big Data
Analytics
Better Price
Performance
OLTP/NoSQL
Workloads
Suited for reporting or analysis of millions-billions of rows from data sets containing millions-trillions of rows.
OLAP/Analytic/
Reporting Workloads
Workload – Query Vision/Scope
1 100 10,000
10-100GB
10,000,000,000
1-10TB
1,000,000 100,000,000
100-1,000GB
Sizing
Minimum Spec
UM
4 core,
32 G RAM PM
4 core,
16 G RAM
Typical Server spec
PM
8 core 64G RAM
UM
8 core, 264G RAM
Data Storage
External Data Volumes
•  Maximum 2 data volume per IO
channel per PM node server
•  up to 2TB on the disk per data
volume ≈ Max 4 TB per PM node
Local disk
Up to 2TB on the disk per
PM node server
DETAILED SIZING GUIDE
based on data size
and workload
Sizing - Example
•  MariaDB ColumnStore 60TB uncompressed data =
6TB compressed data at 10x compression
•  2UM - 8 core 512G(based on work load)
•  6 TB compressed = 3 data volume (at 2TB per volume)
-  with 1 data volume per PM node - 3PMs
•  Data growth - 2TB per month, Data retention - 2 years
-  Plan for 2TB X24 = 48 TB additional
-  48 TB = 4.8TB compressed ≈ 3 data volume(at 2TB per volume)
with 1 data volume per PM node - 3 additional PMs
•  Total 6 PMs, 2 UMs
Analytics with
MariaDB
ColumnStore
SQL Features
Aggregation
Window Functions
ColumnStore
SQL Features
Source : InfiniDB SQL Syntax Guide
Cross Engine
Joins
CTE
DML
Aggregation
DDL
Disk Based
Joins
Windowing
Functions
SELECT
QUERY
MariaDB ColumnStore
MariaDB ColumnStore
uses standard
“Engine=columnstore”
syntax
mysql> use tpcds_djoshi
Database changed
mysql> select count(*) from store_sales;
+----------+
| count(*) |
+----------+
| 2880404 |
+----------+
1 row in set (1.68 sec)
mysql> describe warehouse;
+-------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------------+--------------+------+-----+---------+-------+
| w_warehouse_sk | int(11) | NO | | NULL | |
| w_warehouse_id | char(16) | NO | | NULL | |
| w_warehouse_name | varchar(20) | YES | | NULL | |
| w_warehouse_sq_ft | int(11) | YES | | NULL | |
| w_street_number | char(10) | YES | | NULL | |
| w_street_name | varchar(60) | YES | | NULL | |
| w_street_type | char(15) | YES | | NULL | |
| w_suite_number | char(10) | YES | | NULL | |
| w_city | varchar(60) | YES | | NULL | |
| w_county | varchar(30) | YES | | NULL | |
| w_state | char(2) | YES | | NULL | |
| w_zip | char(10) | YES | | NULL | |
| w_country | varchar(20) | YES | | NULL | |
| w_gmt_offset | decimal(5,2) | YES | | NULL | |
+-------------------+--------------+------+-----+---------+-------+
14 rows in set (0.05 sec)
CREATE TABLE `game_warehouse`.`dim_title` (
`id` INT,
`name` VARCHAR(45),
`publisher` VARCHAR(45),
`release_date` DATE,
`language` INT,
`platform_name` VARCHAR(45),
`version` VARCHAR(45)
) ENGINE=columnstore;
Uses custom scalable
columnar architecture
MariaDB ColumnStore
mysql> use tpcds_djoshi
Database changed
mysql> select count(*) from store_sales;
+----------+
| count(*) |
+----------+
| 2880404 |
+----------+
1 row in set (1.68 sec)
mysql> describe warehouse;
+-------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------------+--------------+------+-----+---------+-------+
| w_warehouse_sk | int(11) | NO | | NULL | |
| w_warehouse_id | char(16) | NO | | NULL | |
| w_warehouse_name | varchar(20) | YES | | NULL | |
| w_warehouse_sq_ft | int(11) | YES | | NULL | |
| w_street_number | char(10) | YES | | NULL | |
| w_street_name | varchar(60) | YES | | NULL | |
| w_street_type | char(15) | YES | | NULL | |
| w_suite_number | char(10) | YES | | NULL | |
| w_city | varchar(60) | YES | | NULL | |
| w_county | varchar(30) | YES | | NULL | |
| w_state | char(2) | YES | | NULL | |
| w_zip | char(10) | YES | | NULL | |
| w_country | varchar(20) | YES | | NULL | |
| w_gmt_offset | decimal(5,2) | YES | | NULL | |
+-------------------+--------------+------+-----+---------+-------+
14 rows in set (0.05 sec)
MariaDB Front End
Standard ANSI SQL
MAX RANK
MIN DENSE_RANK
COUNT PERCENT_RANK
SUM NTH_VALUE
AVG FIRST_VALUE
VARIANCE LAST_VALUE
VAR_POP CUME_DIST
VAR_SAMP LAG
STD LEAD
STDDEV NTILE
STDDEV_POP PERCENTILE_CONT
STDDEV_SAMP PERCENTILE_DISC
ROW_NUMBER MEDIAN
•  Aggregate over a series of related rows
•  Simplified function for complex statistical
analytics over sliding window per row
-  Cumulative, moving or centered aggregates
-  Simple Statistical functions like rank, max, min,
average, median
-  More complex functions such as distribution,
percentile, lag, lead
-  Without running complex sub-queries
Windowing Functions
Source : InfiniDB SQL Syntax Guide
Data exploration
Dataset
Import
Data
Visualization
Dataset Exploration Demo
Thank you
Ad

More Related Content

What's hot (14)

SDM (Standardized Data Management) - A Dynamic Adaptive Ingestion Frameworks ...
SDM (Standardized Data Management) - A Dynamic Adaptive Ingestion Frameworks ...SDM (Standardized Data Management) - A Dynamic Adaptive Ingestion Frameworks ...
SDM (Standardized Data Management) - A Dynamic Adaptive Ingestion Frameworks ...
DataWorks Summit
 
MariaDB TX 3.0 新機能 / ロードマップ
MariaDB TX 3.0 新機能 / ロードマップMariaDB TX 3.0 新機能 / ロードマップ
MariaDB TX 3.0 新機能 / ロードマップ
GOTO Satoru
 
Big Data Day LA 2016/ NoSQL track - MongoDB 3.2 Goodness!!!, Mark Helmstetter...
Big Data Day LA 2016/ NoSQL track - MongoDB 3.2 Goodness!!!, Mark Helmstetter...Big Data Day LA 2016/ NoSQL track - MongoDB 3.2 Goodness!!!, Mark Helmstetter...
Big Data Day LA 2016/ NoSQL track - MongoDB 3.2 Goodness!!!, Mark Helmstetter...
Data Con LA
 
AWS Big Data Demystified #1: Big data architecture lessons learned
AWS Big Data Demystified #1: Big data architecture lessons learned AWS Big Data Demystified #1: Big data architecture lessons learned
AWS Big Data Demystified #1: Big data architecture lessons learned
Omid Vahdaty
 
Quark Virtualization Engine for Analytics
Quark Virtualization Engine for Analytics Quark Virtualization Engine for Analytics
Quark Virtualization Engine for Analytics
DataWorks Summit/Hadoop Summit
 
Introduction of MariaDB 2017 09
Introduction of MariaDB 2017 09Introduction of MariaDB 2017 09
Introduction of MariaDB 2017 09
GOTO Satoru
 
In Search of Database Nirvana: Challenges of Delivering HTAP
In Search of Database Nirvana: Challenges of Delivering HTAPIn Search of Database Nirvana: Challenges of Delivering HTAP
In Search of Database Nirvana: Challenges of Delivering HTAP
HBaseCon
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at SalesforceArgus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon
 
Choosing the right high availability strategy
Choosing the right high availability strategyChoosing the right high availability strategy
Choosing the right high availability strategy
MariaDB plc
 
OLAP Basics and Fundamentals by Bharat Kalia
OLAP Basics and Fundamentals by Bharat Kalia OLAP Basics and Fundamentals by Bharat Kalia
OLAP Basics and Fundamentals by Bharat Kalia
Bharat Kalia
 
Amazon RedShift - Ianni Vamvadelis
Amazon RedShift - Ianni VamvadelisAmazon RedShift - Ianni Vamvadelis
Amazon RedShift - Ianni Vamvadelis
huguk
 
Introduction to hd insight
Introduction to hd insightIntroduction to hd insight
Introduction to hd insight
MSDEVMTL
 
What is Change Data Capture (CDC) and Why is it Important?
What is Change Data Capture (CDC) and Why is it Important?What is Change Data Capture (CDC) and Why is it Important?
What is Change Data Capture (CDC) and Why is it Important?
FlyData Inc.
 
Redshift overview
Redshift overviewRedshift overview
Redshift overview
Amazon Web Services LATAM
 
SDM (Standardized Data Management) - A Dynamic Adaptive Ingestion Frameworks ...
SDM (Standardized Data Management) - A Dynamic Adaptive Ingestion Frameworks ...SDM (Standardized Data Management) - A Dynamic Adaptive Ingestion Frameworks ...
SDM (Standardized Data Management) - A Dynamic Adaptive Ingestion Frameworks ...
DataWorks Summit
 
MariaDB TX 3.0 新機能 / ロードマップ
MariaDB TX 3.0 新機能 / ロードマップMariaDB TX 3.0 新機能 / ロードマップ
MariaDB TX 3.0 新機能 / ロードマップ
GOTO Satoru
 
Big Data Day LA 2016/ NoSQL track - MongoDB 3.2 Goodness!!!, Mark Helmstetter...
Big Data Day LA 2016/ NoSQL track - MongoDB 3.2 Goodness!!!, Mark Helmstetter...Big Data Day LA 2016/ NoSQL track - MongoDB 3.2 Goodness!!!, Mark Helmstetter...
Big Data Day LA 2016/ NoSQL track - MongoDB 3.2 Goodness!!!, Mark Helmstetter...
Data Con LA
 
AWS Big Data Demystified #1: Big data architecture lessons learned
AWS Big Data Demystified #1: Big data architecture lessons learned AWS Big Data Demystified #1: Big data architecture lessons learned
AWS Big Data Demystified #1: Big data architecture lessons learned
Omid Vahdaty
 
Introduction of MariaDB 2017 09
Introduction of MariaDB 2017 09Introduction of MariaDB 2017 09
Introduction of MariaDB 2017 09
GOTO Satoru
 
In Search of Database Nirvana: Challenges of Delivering HTAP
In Search of Database Nirvana: Challenges of Delivering HTAPIn Search of Database Nirvana: Challenges of Delivering HTAP
In Search of Database Nirvana: Challenges of Delivering HTAP
HBaseCon
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at SalesforceArgus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon
 
Choosing the right high availability strategy
Choosing the right high availability strategyChoosing the right high availability strategy
Choosing the right high availability strategy
MariaDB plc
 
OLAP Basics and Fundamentals by Bharat Kalia
OLAP Basics and Fundamentals by Bharat Kalia OLAP Basics and Fundamentals by Bharat Kalia
OLAP Basics and Fundamentals by Bharat Kalia
Bharat Kalia
 
Amazon RedShift - Ianni Vamvadelis
Amazon RedShift - Ianni VamvadelisAmazon RedShift - Ianni Vamvadelis
Amazon RedShift - Ianni Vamvadelis
huguk
 
Introduction to hd insight
Introduction to hd insightIntroduction to hd insight
Introduction to hd insight
MSDEVMTL
 
What is Change Data Capture (CDC) and Why is it Important?
What is Change Data Capture (CDC) and Why is it Important?What is Change Data Capture (CDC) and Why is it Important?
What is Change Data Capture (CDC) and Why is it Important?
FlyData Inc.
 

Similar to Big Data Analytics with MariaDB ColumnStore (20)

MariaDB ColumnStore
MariaDB ColumnStoreMariaDB ColumnStore
MariaDB ColumnStore
MariaDB plc
 
Big Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStoreBig Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStore
MariaDB plc
 
Big Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStoreBig Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStore
MariaDB plc
 
Big Data LDN 2017: Big Data Analytics with MariaDB ColumnStore
Big Data LDN 2017: Big Data Analytics with MariaDB ColumnStoreBig Data LDN 2017: Big Data Analytics with MariaDB ColumnStore
Big Data LDN 2017: Big Data Analytics with MariaDB ColumnStore
Matt Stubbs
 
04 2017 emea_roadshowmilan_mariadb columnstore
04 2017 emea_roadshowmilan_mariadb columnstore04 2017 emea_roadshowmilan_mariadb columnstore
04 2017 emea_roadshowmilan_mariadb columnstore
mlraviol
 
Columnstore
ColumnstoreColumnstore
Columnstore
George Tavares
 
MYSQL database presentation slides with examples
MYSQL database presentation slides with examplesMYSQL database presentation slides with examples
MYSQL database presentation slides with examples
dhanishev1
 
Oracle sql high performance tuning
Oracle sql high performance tuningOracle sql high performance tuning
Oracle sql high performance tuning
Guy Harrison
 
Improving MariaDB’s Query Optimizer with better selectivity estimates
Improving MariaDB’s Query Optimizer with better selectivity estimatesImproving MariaDB’s Query Optimizer with better selectivity estimates
Improving MariaDB’s Query Optimizer with better selectivity estimates
Sergey Petrunya
 
Data Serialization Frameworks for Java and the IoT
Data Serialization Frameworks for Java and the IoTData Serialization Frameworks for Java and the IoT
Data Serialization Frameworks for Java and the IoT
Manfred Dreese
 
Data Love Conference - Window Functions for Database Analytics
Data Love Conference - Window Functions for Database AnalyticsData Love Conference - Window Functions for Database Analytics
Data Love Conference - Window Functions for Database Analytics
Dave Stokes
 
The Magic of Window Functions in Postgres
The Magic of Window Functions in PostgresThe Magic of Window Functions in Postgres
The Magic of Window Functions in Postgres
EDB
 
Designing with malli
Designing with malliDesigning with malli
Designing with malli
Metosin Oy
 
5_MariaDB_What's New in MariaDB Server 10.2 and Big Data Analytics with Maria...
5_MariaDB_What's New in MariaDB Server 10.2 and Big Data Analytics with Maria...5_MariaDB_What's New in MariaDB Server 10.2 and Big Data Analytics with Maria...
5_MariaDB_What's New in MariaDB Server 10.2 and Big Data Analytics with Maria...
Kangaroot
 
2017 biological databasespart2
2017 biological databasespart22017 biological databasespart2
2017 biological databasespart2
Prof. Wim Van Criekinge
 
Getting to Insights Faster with the MongoDB Connector for BI
Getting to Insights Faster with the MongoDB Connector for BIGetting to Insights Faster with the MongoDB Connector for BI
Getting to Insights Faster with the MongoDB Connector for BI
MongoDB
 
ksqlDB - Stream Processing simplified!
ksqlDB - Stream Processing simplified!ksqlDB - Stream Processing simplified!
ksqlDB - Stream Processing simplified!
Guido Schmutz
 
Presentation
PresentationPresentation
Presentation
Dimitris Stripelis
 
Database and application performance vivek sharma
Database and application performance vivek sharmaDatabase and application performance vivek sharma
Database and application performance vivek sharma
aioughydchapter
 
MySQL and GIS Programming
MySQL and GIS ProgrammingMySQL and GIS Programming
MySQL and GIS Programming
Mike Benshoof
 
MariaDB ColumnStore
MariaDB ColumnStoreMariaDB ColumnStore
MariaDB ColumnStore
MariaDB plc
 
Big Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStoreBig Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStore
MariaDB plc
 
Big Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStoreBig Data Analytics with MariaDB ColumnStore
Big Data Analytics with MariaDB ColumnStore
MariaDB plc
 
Big Data LDN 2017: Big Data Analytics with MariaDB ColumnStore
Big Data LDN 2017: Big Data Analytics with MariaDB ColumnStoreBig Data LDN 2017: Big Data Analytics with MariaDB ColumnStore
Big Data LDN 2017: Big Data Analytics with MariaDB ColumnStore
Matt Stubbs
 
04 2017 emea_roadshowmilan_mariadb columnstore
04 2017 emea_roadshowmilan_mariadb columnstore04 2017 emea_roadshowmilan_mariadb columnstore
04 2017 emea_roadshowmilan_mariadb columnstore
mlraviol
 
MYSQL database presentation slides with examples
MYSQL database presentation slides with examplesMYSQL database presentation slides with examples
MYSQL database presentation slides with examples
dhanishev1
 
Oracle sql high performance tuning
Oracle sql high performance tuningOracle sql high performance tuning
Oracle sql high performance tuning
Guy Harrison
 
Improving MariaDB’s Query Optimizer with better selectivity estimates
Improving MariaDB’s Query Optimizer with better selectivity estimatesImproving MariaDB’s Query Optimizer with better selectivity estimates
Improving MariaDB’s Query Optimizer with better selectivity estimates
Sergey Petrunya
 
Data Serialization Frameworks for Java and the IoT
Data Serialization Frameworks for Java and the IoTData Serialization Frameworks for Java and the IoT
Data Serialization Frameworks for Java and the IoT
Manfred Dreese
 
Data Love Conference - Window Functions for Database Analytics
Data Love Conference - Window Functions for Database AnalyticsData Love Conference - Window Functions for Database Analytics
Data Love Conference - Window Functions for Database Analytics
Dave Stokes
 
The Magic of Window Functions in Postgres
The Magic of Window Functions in PostgresThe Magic of Window Functions in Postgres
The Magic of Window Functions in Postgres
EDB
 
Designing with malli
Designing with malliDesigning with malli
Designing with malli
Metosin Oy
 
5_MariaDB_What's New in MariaDB Server 10.2 and Big Data Analytics with Maria...
5_MariaDB_What's New in MariaDB Server 10.2 and Big Data Analytics with Maria...5_MariaDB_What's New in MariaDB Server 10.2 and Big Data Analytics with Maria...
5_MariaDB_What's New in MariaDB Server 10.2 and Big Data Analytics with Maria...
Kangaroot
 
Getting to Insights Faster with the MongoDB Connector for BI
Getting to Insights Faster with the MongoDB Connector for BIGetting to Insights Faster with the MongoDB Connector for BI
Getting to Insights Faster with the MongoDB Connector for BI
MongoDB
 
ksqlDB - Stream Processing simplified!
ksqlDB - Stream Processing simplified!ksqlDB - Stream Processing simplified!
ksqlDB - Stream Processing simplified!
Guido Schmutz
 
Database and application performance vivek sharma
Database and application performance vivek sharmaDatabase and application performance vivek sharma
Database and application performance vivek sharma
aioughydchapter
 
MySQL and GIS Programming
MySQL and GIS ProgrammingMySQL and GIS Programming
MySQL and GIS Programming
Mike Benshoof
 
Ad

More from MariaDB plc (20)

MariaDB Berlin Roadshow Slides - 8 April 2025
MariaDB Berlin Roadshow Slides - 8 April 2025MariaDB Berlin Roadshow Slides - 8 April 2025
MariaDB Berlin Roadshow Slides - 8 April 2025
MariaDB plc
 
MariaDB München Roadshow - 24 September, 2024
MariaDB München Roadshow - 24 September, 2024MariaDB München Roadshow - 24 September, 2024
MariaDB München Roadshow - 24 September, 2024
MariaDB plc
 
MariaDB Paris Roadshow - 19 September 2024
MariaDB Paris Roadshow - 19 September 2024MariaDB Paris Roadshow - 19 September 2024
MariaDB Paris Roadshow - 19 September 2024
MariaDB plc
 
MariaDB Amsterdam Roadshow: 19 September, 2024
MariaDB Amsterdam Roadshow: 19 September, 2024MariaDB Amsterdam Roadshow: 19 September, 2024
MariaDB Amsterdam Roadshow: 19 September, 2024
MariaDB plc
 
MariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB Paris Workshop 2023 - MaxScale 23.02.xMariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB plc
 
MariaDB Paris Workshop 2023 - Newpharma
MariaDB Paris Workshop 2023 - NewpharmaMariaDB Paris Workshop 2023 - Newpharma
MariaDB Paris Workshop 2023 - Newpharma
MariaDB plc
 
MariaDB Paris Workshop 2023 - Cloud
MariaDB Paris Workshop 2023 - CloudMariaDB Paris Workshop 2023 - Cloud
MariaDB Paris Workshop 2023 - Cloud
MariaDB plc
 
MariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB Paris Workshop 2023 - MariaDB EnterpriseMariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB plc
 
MariaDB Paris Workshop 2023 - Performance Optimization
MariaDB Paris Workshop 2023 - Performance OptimizationMariaDB Paris Workshop 2023 - Performance Optimization
MariaDB Paris Workshop 2023 - Performance Optimization
MariaDB plc
 
MariaDB Paris Workshop 2023 - MaxScale
MariaDB Paris Workshop 2023 - MaxScale MariaDB Paris Workshop 2023 - MaxScale
MariaDB Paris Workshop 2023 - MaxScale
MariaDB plc
 
MariaDB Paris Workshop 2023 - novadys presentation
MariaDB Paris Workshop 2023 - novadys presentationMariaDB Paris Workshop 2023 - novadys presentation
MariaDB Paris Workshop 2023 - novadys presentation
MariaDB plc
 
MariaDB Paris Workshop 2023 - DARVA presentation
MariaDB Paris Workshop 2023 - DARVA presentationMariaDB Paris Workshop 2023 - DARVA presentation
MariaDB Paris Workshop 2023 - DARVA presentation
MariaDB plc
 
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB plc
 
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-BackupMariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB plc
 
Einführung : MariaDB Tech und Business Update Hamburg 2023
Einführung : MariaDB Tech und Business Update Hamburg 2023Einführung : MariaDB Tech und Business Update Hamburg 2023
Einführung : MariaDB Tech und Business Update Hamburg 2023
MariaDB plc
 
Hochverfügbarkeitslösungen mit MariaDB
Hochverfügbarkeitslösungen mit MariaDBHochverfügbarkeitslösungen mit MariaDB
Hochverfügbarkeitslösungen mit MariaDB
MariaDB plc
 
Die Neuheiten in MariaDB Enterprise Server
Die Neuheiten in MariaDB Enterprise ServerDie Neuheiten in MariaDB Enterprise Server
Die Neuheiten in MariaDB Enterprise Server
MariaDB plc
 
Global Data Replication with Galera for Ansell Guardian®
Global Data Replication with Galera for Ansell Guardian®Global Data Replication with Galera for Ansell Guardian®
Global Data Replication with Galera for Ansell Guardian®
MariaDB plc
 
Introducing workload analysis
Introducing workload analysisIntroducing workload analysis
Introducing workload analysis
MariaDB plc
 
Under the hood: SkySQL monitoring
Under the hood: SkySQL monitoringUnder the hood: SkySQL monitoring
Under the hood: SkySQL monitoring
MariaDB plc
 
MariaDB Berlin Roadshow Slides - 8 April 2025
MariaDB Berlin Roadshow Slides - 8 April 2025MariaDB Berlin Roadshow Slides - 8 April 2025
MariaDB Berlin Roadshow Slides - 8 April 2025
MariaDB plc
 
MariaDB München Roadshow - 24 September, 2024
MariaDB München Roadshow - 24 September, 2024MariaDB München Roadshow - 24 September, 2024
MariaDB München Roadshow - 24 September, 2024
MariaDB plc
 
MariaDB Paris Roadshow - 19 September 2024
MariaDB Paris Roadshow - 19 September 2024MariaDB Paris Roadshow - 19 September 2024
MariaDB Paris Roadshow - 19 September 2024
MariaDB plc
 
MariaDB Amsterdam Roadshow: 19 September, 2024
MariaDB Amsterdam Roadshow: 19 September, 2024MariaDB Amsterdam Roadshow: 19 September, 2024
MariaDB Amsterdam Roadshow: 19 September, 2024
MariaDB plc
 
MariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB Paris Workshop 2023 - MaxScale 23.02.xMariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB plc
 
MariaDB Paris Workshop 2023 - Newpharma
MariaDB Paris Workshop 2023 - NewpharmaMariaDB Paris Workshop 2023 - Newpharma
MariaDB Paris Workshop 2023 - Newpharma
MariaDB plc
 
MariaDB Paris Workshop 2023 - Cloud
MariaDB Paris Workshop 2023 - CloudMariaDB Paris Workshop 2023 - Cloud
MariaDB Paris Workshop 2023 - Cloud
MariaDB plc
 
MariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB Paris Workshop 2023 - MariaDB EnterpriseMariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB plc
 
MariaDB Paris Workshop 2023 - Performance Optimization
MariaDB Paris Workshop 2023 - Performance OptimizationMariaDB Paris Workshop 2023 - Performance Optimization
MariaDB Paris Workshop 2023 - Performance Optimization
MariaDB plc
 
MariaDB Paris Workshop 2023 - MaxScale
MariaDB Paris Workshop 2023 - MaxScale MariaDB Paris Workshop 2023 - MaxScale
MariaDB Paris Workshop 2023 - MaxScale
MariaDB plc
 
MariaDB Paris Workshop 2023 - novadys presentation
MariaDB Paris Workshop 2023 - novadys presentationMariaDB Paris Workshop 2023 - novadys presentation
MariaDB Paris Workshop 2023 - novadys presentation
MariaDB plc
 
MariaDB Paris Workshop 2023 - DARVA presentation
MariaDB Paris Workshop 2023 - DARVA presentationMariaDB Paris Workshop 2023 - DARVA presentation
MariaDB Paris Workshop 2023 - DARVA presentation
MariaDB plc
 
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB plc
 
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-BackupMariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB plc
 
Einführung : MariaDB Tech und Business Update Hamburg 2023
Einführung : MariaDB Tech und Business Update Hamburg 2023Einführung : MariaDB Tech und Business Update Hamburg 2023
Einführung : MariaDB Tech und Business Update Hamburg 2023
MariaDB plc
 
Hochverfügbarkeitslösungen mit MariaDB
Hochverfügbarkeitslösungen mit MariaDBHochverfügbarkeitslösungen mit MariaDB
Hochverfügbarkeitslösungen mit MariaDB
MariaDB plc
 
Die Neuheiten in MariaDB Enterprise Server
Die Neuheiten in MariaDB Enterprise ServerDie Neuheiten in MariaDB Enterprise Server
Die Neuheiten in MariaDB Enterprise Server
MariaDB plc
 
Global Data Replication with Galera for Ansell Guardian®
Global Data Replication with Galera for Ansell Guardian®Global Data Replication with Galera for Ansell Guardian®
Global Data Replication with Galera for Ansell Guardian®
MariaDB plc
 
Introducing workload analysis
Introducing workload analysisIntroducing workload analysis
Introducing workload analysis
MariaDB plc
 
Under the hood: SkySQL monitoring
Under the hood: SkySQL monitoringUnder the hood: SkySQL monitoring
Under the hood: SkySQL monitoring
MariaDB plc
 
Ad

Recently uploaded (20)

Do not let staffing shortages and limited fiscal view hamper your cause
Do not let staffing shortages and limited fiscal view hamper your causeDo not let staffing shortages and limited fiscal view hamper your cause
Do not let staffing shortages and limited fiscal view hamper your cause
Fexle Services Pvt. Ltd.
 
Wilcom Embroidery Studio Crack Free Latest 2025
Wilcom Embroidery Studio Crack Free Latest 2025Wilcom Embroidery Studio Crack Free Latest 2025
Wilcom Embroidery Studio Crack Free Latest 2025
Web Designer
 
How to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryErrorHow to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryError
Tier1 app
 
Buy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training techBuy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training tech
Rustici Software
 
Solar-wind hybrid engery a system sustainable power
Solar-wind  hybrid engery a system sustainable powerSolar-wind  hybrid engery a system sustainable power
Solar-wind hybrid engery a system sustainable power
bhoomigowda12345
 
Top 12 Most Useful AngularJS Development Tools to Use in 2025
Top 12 Most Useful AngularJS Development Tools to Use in 2025Top 12 Most Useful AngularJS Development Tools to Use in 2025
Top 12 Most Useful AngularJS Development Tools to Use in 2025
GrapesTech Solutions
 
Welcome to QA Summit 2025.
Welcome to QA Summit 2025.Welcome to QA Summit 2025.
Welcome to QA Summit 2025.
QA Summit
 
Why CoTester Is the AI Testing Tool QA Teams Can’t Ignore
Why CoTester Is the AI Testing Tool QA Teams Can’t IgnoreWhy CoTester Is the AI Testing Tool QA Teams Can’t Ignore
Why CoTester Is the AI Testing Tool QA Teams Can’t Ignore
Shubham Joshi
 
Artificial hand using embedded system.pptx
Artificial hand using embedded system.pptxArtificial hand using embedded system.pptx
Artificial hand using embedded system.pptx
bhoomigowda12345
 
A Comprehensive Guide to CRM Software Benefits for Every Business Stage
A Comprehensive Guide to CRM Software Benefits for Every Business StageA Comprehensive Guide to CRM Software Benefits for Every Business Stage
A Comprehensive Guide to CRM Software Benefits for Every Business Stage
SynapseIndia
 
Multi-Agent Era will Define the Future of Software
Multi-Agent Era will Define the Future of SoftwareMulti-Agent Era will Define the Future of Software
Multi-Agent Era will Define the Future of Software
Ivo Andreev
 
Exchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv SoftwareExchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv Software
Shoviv Software
 
Medical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk ScoringMedical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk Scoring
ICS
 
Best HR and Payroll Software in Bangladesh - accordHRM
Best HR and Payroll Software in Bangladesh - accordHRMBest HR and Payroll Software in Bangladesh - accordHRM
Best HR and Payroll Software in Bangladesh - accordHRM
accordHRM
 
Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??
Web Designer
 
Quasar Framework Introduction for C++ develpoers
Quasar Framework Introduction for C++ develpoersQuasar Framework Introduction for C++ develpoers
Quasar Framework Introduction for C++ develpoers
sadadkhah
 
Applying AI in Marketo: Practical Strategies and Implementation
Applying AI in Marketo: Practical Strategies and ImplementationApplying AI in Marketo: Practical Strategies and Implementation
Applying AI in Marketo: Practical Strategies and Implementation
BradBedford3
 
How to Create a Crypto Wallet Like Trust.pptx
How to Create a Crypto Wallet Like Trust.pptxHow to Create a Crypto Wallet Like Trust.pptx
How to Create a Crypto Wallet Like Trust.pptx
riyageorge2024
 
Robotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptxRobotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptx
julia smits
 
Programs as Values - Write code and don't get lost
Programs as Values - Write code and don't get lostPrograms as Values - Write code and don't get lost
Programs as Values - Write code and don't get lost
Pierangelo Cecchetto
 
Do not let staffing shortages and limited fiscal view hamper your cause
Do not let staffing shortages and limited fiscal view hamper your causeDo not let staffing shortages and limited fiscal view hamper your cause
Do not let staffing shortages and limited fiscal view hamper your cause
Fexle Services Pvt. Ltd.
 
Wilcom Embroidery Studio Crack Free Latest 2025
Wilcom Embroidery Studio Crack Free Latest 2025Wilcom Embroidery Studio Crack Free Latest 2025
Wilcom Embroidery Studio Crack Free Latest 2025
Web Designer
 
How to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryErrorHow to Troubleshoot 9 Types of OutOfMemoryError
How to Troubleshoot 9 Types of OutOfMemoryError
Tier1 app
 
Buy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training techBuy vs. Build: Unlocking the right path for your training tech
Buy vs. Build: Unlocking the right path for your training tech
Rustici Software
 
Solar-wind hybrid engery a system sustainable power
Solar-wind  hybrid engery a system sustainable powerSolar-wind  hybrid engery a system sustainable power
Solar-wind hybrid engery a system sustainable power
bhoomigowda12345
 
Top 12 Most Useful AngularJS Development Tools to Use in 2025
Top 12 Most Useful AngularJS Development Tools to Use in 2025Top 12 Most Useful AngularJS Development Tools to Use in 2025
Top 12 Most Useful AngularJS Development Tools to Use in 2025
GrapesTech Solutions
 
Welcome to QA Summit 2025.
Welcome to QA Summit 2025.Welcome to QA Summit 2025.
Welcome to QA Summit 2025.
QA Summit
 
Why CoTester Is the AI Testing Tool QA Teams Can’t Ignore
Why CoTester Is the AI Testing Tool QA Teams Can’t IgnoreWhy CoTester Is the AI Testing Tool QA Teams Can’t Ignore
Why CoTester Is the AI Testing Tool QA Teams Can’t Ignore
Shubham Joshi
 
Artificial hand using embedded system.pptx
Artificial hand using embedded system.pptxArtificial hand using embedded system.pptx
Artificial hand using embedded system.pptx
bhoomigowda12345
 
A Comprehensive Guide to CRM Software Benefits for Every Business Stage
A Comprehensive Guide to CRM Software Benefits for Every Business StageA Comprehensive Guide to CRM Software Benefits for Every Business Stage
A Comprehensive Guide to CRM Software Benefits for Every Business Stage
SynapseIndia
 
Multi-Agent Era will Define the Future of Software
Multi-Agent Era will Define the Future of SoftwareMulti-Agent Era will Define the Future of Software
Multi-Agent Era will Define the Future of Software
Ivo Andreev
 
Exchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv SoftwareExchange Migration Tool- Shoviv Software
Exchange Migration Tool- Shoviv Software
Shoviv Software
 
Medical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk ScoringMedical Device Cybersecurity Threat & Risk Scoring
Medical Device Cybersecurity Threat & Risk Scoring
ICS
 
Best HR and Payroll Software in Bangladesh - accordHRM
Best HR and Payroll Software in Bangladesh - accordHRMBest HR and Payroll Software in Bangladesh - accordHRM
Best HR and Payroll Software in Bangladesh - accordHRM
accordHRM
 
Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??Serato DJ Pro Crack Latest Version 2025??
Serato DJ Pro Crack Latest Version 2025??
Web Designer
 
Quasar Framework Introduction for C++ develpoers
Quasar Framework Introduction for C++ develpoersQuasar Framework Introduction for C++ develpoers
Quasar Framework Introduction for C++ develpoers
sadadkhah
 
Applying AI in Marketo: Practical Strategies and Implementation
Applying AI in Marketo: Practical Strategies and ImplementationApplying AI in Marketo: Practical Strategies and Implementation
Applying AI in Marketo: Practical Strategies and Implementation
BradBedford3
 
How to Create a Crypto Wallet Like Trust.pptx
How to Create a Crypto Wallet Like Trust.pptxHow to Create a Crypto Wallet Like Trust.pptx
How to Create a Crypto Wallet Like Trust.pptx
riyageorge2024
 
Robotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptxRobotic Process Automation (RPA) Software Development Services.pptx
Robotic Process Automation (RPA) Software Development Services.pptx
julia smits
 
Programs as Values - Write code and don't get lost
Programs as Values - Write code and don't get lostPrograms as Values - Write code and don't get lost
Programs as Values - Write code and don't get lost
Pierangelo Cecchetto
 

Big Data Analytics with MariaDB ColumnStore

  • 2. Agenda Session 1 Overview Architecture Session 2 Window Functions Analytic Functions Session 3 Demo – DEX Data Explorer
  • 3. Analytics vs Data Warehouse What questions do you have? What had happen?
  • 4. Data Warehousing Selective column based queries Large number of dimensions High Performance Analytics On Large Volume Of Data Reporting and analysis on millions or billions of rows From datasets containing millions to trillions of rows Terabytes to Petabytes of datasets Analytics Require Statistical Algorithms, Windowing Functions Learning from data and understanding data Technical Use Cases
  • 5. Data Scientist/Engineer What tool(s) do I use? SQL interfaces What’s inside the dataset? Data Exploration What story can I tell? Visualization (picture worth 1000 words)
  • 6. MariaDB ColumnStore •  GPLv2 Open Source •  Columnar, Massively Parallel MariaDB Storage Engine •  Scalable, high-performance analytics platform •  Built in redundancy and high availability •  Runs on premise, on AWS cloud •  Full SQL syntax and capabilities regardless of platform Big Data Sources Analytics Insight MariaDB ColumnStore . . . Node 1 Node 2 Node 3 Node N Local / AWS® / GlusterFS ® ELT Tools BI Tools Analyticials
  • 7. MariaDB ColumnStore Architecture Columnar Distributed Data Storage User Connections User Module nUser Module 1 Performance Module n Performance Module 2 Performance Module 1 MariaDB Front End Query Engine User Module Processes SQL Requests Performance Module Distributed Processing Engine
  • 8. MariaDB ColumnStore High performance columnar storage engine that support wide variety of analytical use cases with SQL in a highly scalable distributed environments Parallel query processing for distributed environments Faster, More Efficient Queries Single SQL Interface for OLTP and analytics Easier Enterprise Analytics Power of SQL and Freedom of Open Source to Big Data Analytics Better Price Performance
  • 9. OLTP/NoSQL Workloads Suited for reporting or analysis of millions-billions of rows from data sets containing millions-trillions of rows. OLAP/Analytic/ Reporting Workloads Workload – Query Vision/Scope 1 100 10,000 10-100GB 10,000,000,000 1-10TB 1,000,000 100,000,000 100-1,000GB
  • 10. Sizing Minimum Spec UM 4 core, 32 G RAM PM 4 core, 16 G RAM Typical Server spec PM 8 core 64G RAM UM 8 core, 264G RAM Data Storage External Data Volumes •  Maximum 2 data volume per IO channel per PM node server •  up to 2TB on the disk per data volume ≈ Max 4 TB per PM node Local disk Up to 2TB on the disk per PM node server DETAILED SIZING GUIDE based on data size and workload
  • 11. Sizing - Example •  MariaDB ColumnStore 60TB uncompressed data = 6TB compressed data at 10x compression •  2UM - 8 core 512G(based on work load) •  6 TB compressed = 3 data volume (at 2TB per volume) -  with 1 data volume per PM node - 3PMs •  Data growth - 2TB per month, Data retention - 2 years -  Plan for 2TB X24 = 48 TB additional -  48 TB = 4.8TB compressed ≈ 3 data volume(at 2TB per volume) with 1 data volume per PM node - 3 additional PMs •  Total 6 PMs, 2 UMs
  • 13. ColumnStore SQL Features Source : InfiniDB SQL Syntax Guide Cross Engine Joins CTE DML Aggregation DDL Disk Based Joins Windowing Functions SELECT QUERY
  • 14. MariaDB ColumnStore MariaDB ColumnStore uses standard “Engine=columnstore” syntax mysql> use tpcds_djoshi Database changed mysql> select count(*) from store_sales; +----------+ | count(*) | +----------+ | 2880404 | +----------+ 1 row in set (1.68 sec) mysql> describe warehouse; +-------------------+--------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +-------------------+--------------+------+-----+---------+-------+ | w_warehouse_sk | int(11) | NO | | NULL | | | w_warehouse_id | char(16) | NO | | NULL | | | w_warehouse_name | varchar(20) | YES | | NULL | | | w_warehouse_sq_ft | int(11) | YES | | NULL | | | w_street_number | char(10) | YES | | NULL | | | w_street_name | varchar(60) | YES | | NULL | | | w_street_type | char(15) | YES | | NULL | | | w_suite_number | char(10) | YES | | NULL | | | w_city | varchar(60) | YES | | NULL | | | w_county | varchar(30) | YES | | NULL | | | w_state | char(2) | YES | | NULL | | | w_zip | char(10) | YES | | NULL | | | w_country | varchar(20) | YES | | NULL | | | w_gmt_offset | decimal(5,2) | YES | | NULL | | +-------------------+--------------+------+-----+---------+-------+ 14 rows in set (0.05 sec) CREATE TABLE `game_warehouse`.`dim_title` ( `id` INT, `name` VARCHAR(45), `publisher` VARCHAR(45), `release_date` DATE, `language` INT, `platform_name` VARCHAR(45), `version` VARCHAR(45) ) ENGINE=columnstore; Uses custom scalable columnar architecture
  • 15. MariaDB ColumnStore mysql> use tpcds_djoshi Database changed mysql> select count(*) from store_sales; +----------+ | count(*) | +----------+ | 2880404 | +----------+ 1 row in set (1.68 sec) mysql> describe warehouse; +-------------------+--------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +-------------------+--------------+------+-----+---------+-------+ | w_warehouse_sk | int(11) | NO | | NULL | | | w_warehouse_id | char(16) | NO | | NULL | | | w_warehouse_name | varchar(20) | YES | | NULL | | | w_warehouse_sq_ft | int(11) | YES | | NULL | | | w_street_number | char(10) | YES | | NULL | | | w_street_name | varchar(60) | YES | | NULL | | | w_street_type | char(15) | YES | | NULL | | | w_suite_number | char(10) | YES | | NULL | | | w_city | varchar(60) | YES | | NULL | | | w_county | varchar(30) | YES | | NULL | | | w_state | char(2) | YES | | NULL | | | w_zip | char(10) | YES | | NULL | | | w_country | varchar(20) | YES | | NULL | | | w_gmt_offset | decimal(5,2) | YES | | NULL | | +-------------------+--------------+------+-----+---------+-------+ 14 rows in set (0.05 sec) MariaDB Front End Standard ANSI SQL
  • 16. MAX RANK MIN DENSE_RANK COUNT PERCENT_RANK SUM NTH_VALUE AVG FIRST_VALUE VARIANCE LAST_VALUE VAR_POP CUME_DIST VAR_SAMP LAG STD LEAD STDDEV NTILE STDDEV_POP PERCENTILE_CONT STDDEV_SAMP PERCENTILE_DISC ROW_NUMBER MEDIAN •  Aggregate over a series of related rows •  Simplified function for complex statistical analytics over sliding window per row -  Cumulative, moving or centered aggregates -  Simple Statistical functions like rank, max, min, average, median -  More complex functions such as distribution, percentile, lag, lead -  Without running complex sub-queries Windowing Functions Source : InfiniDB SQL Syntax Guide
  翻译: