Alpine Data Labs presents a deep dive into our implementation of Multinomial Logistic Regression with Apache Spark. Machine Learning Engineer DB Tsai takes us through the technical implementation details step by step. First, he explains how the state of the art Machine Learning on Hadoop is not doing fulfilling the promise of Big Data. Next, he explains how Spark is a perfect match for machine learning through their in-memory cache-ing capability demonstrating 100x performance improvement. Third, he takes us through each aspect of a multinomial logistic regression and how this is developed with Spark APIs. Fourth, he demonstrates an extension of MLOR and training parameters. Finally, he benchmarks MLOR with 11M rows, 123 features, 11% non-zero elements with a 5 node Hadoop cluster. Finally, he shows Alpine's unique visual environment with Spark and verifies the performance with the job tracker. In conclusion, Alpine supports the state of the art Cloudera and Pivotal Hadoop clusters and performances at a level that far exceeds its next nearest competitor.