The document discusses different approaches for searching large datasets in Hadoop, including MapReduce, Lucene/Solr, and building a new search engine called HSearch. Some key challenges with existing approaches included slow response times and the need for manual sharding. HSearch indexes data stored in HDFS and HBase. The document outlines several techniques used in HSearch to improve performance, such as using SSDs selectively, reducing HBase table size, distributing queries across region servers, moving processing near data, byte block caching, and configuration tuning. Benchmarks showed HSearch could return results for common words from a 100 million page index within seconds.